In this section, we recall some basic concepts and fixed point theorem (FPT), which we use to prove the main results. We start with the confluent hypergeometric (CHG) functions, which are solutions of a hypergeometric differential equation and have different standard forms like Tricomi, Kummer, Coulomb wave, and so on [5]. In this paper, we use the solution of \(\mathfrak{z}\frac {d^{2} \mathfrak{u}}{dz} +(\delta _{2}- \mathfrak{z}) \frac {d\mathfrak{u}}{d\mathfrak{z}} - \delta _{1} \mathfrak{u}(\mathfrak{z})=0\), where \(\mathfrak{z}, \delta _{1} \in{\mathbb{C}}\) and \(\delta \in{\mathbb{C}\setminus {\mathbb{Z}}^{-}_{0}}\), which is the CHG function
$$\begin{aligned} \Xi (\delta _{1}, \delta _{2}; \mathfrak{z})={}_{1}{F}_{1}(\delta _{1}, \delta _{2}; \mathfrak{z})= \frac {\Gamma (\delta _{2})}{\Gamma (\delta _{1})} \sum _{k=0}^{ \infty} \frac {\Gamma (\delta _{1}+k)}{\Gamma (\delta _{2}+k)} \frac {\mathfrak{z}^{k}}{k!}. \end{aligned}$$
(2.1)
Series (2.1) is known as the CHG function of the first kind and was introduced in 1837; it converges for al \(\mathfrak{z}\) belonging to \(\mathbb{C}\). Clearly, for \(\delta _{1}=\delta _{2}=\delta \), \(\Xi (\delta , \delta ; \mathfrak{z})= \sum_{k=0}^{\infty} \frac {\mathfrak{z}^{k}}{k!}= e^{\mathfrak{z}}\) (see [1, 5] and references therein). We provide our stability result by applying series (2.1) on the real line \(\mathbb{R}\) as our control functions.
To define a new concept of stability, called the α-confluent-hyper-geometric stability, we consider the inequality
$$ \biggl\vert {}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{0^{+}} \mathcal{Z}(\mathfrak{z}) -{\mathcal{K}}\bigl(\mathcal{Z}(\mathfrak{z})\bigr) - \int _{0}^{\mathfrak{z}} {\mathcal{J}}\bigl(\mathfrak{z}, s, \mathcal{Z}(s)\bigr) \,ds \biggr\vert \leq \epsilon \Xi \bigl(\lambda , \varrho ; \bigl(\xi (\mathfrak{z})-\xi (0)\bigr)^{ \lambda}\bigr) $$
for \(\epsilon > 0\), where Ξ is the CHG function (see [5]).
Definition 1
Let \(\alpha \in{(0, 1],}\) and let \(\mathcal{Y}\) be a vector space over field \(\mathbb{F}\). A function \(\| \cdot \|_{\alpha }: \mathcal{Y} \rightarrow \mathbb{R}^{+} \cup \{0\}\) is called a α-norm [14] if it satisfies the following conditions:
-
(I1)
\(\| \mathfrak{z}\|_{\alpha }=0\) if and only if, \(\mathfrak{z}=0\),
-
(I2)
\(\| k\mathfrak{z}\|_{\alpha}= |k|^{\alpha }\|\mathfrak{z}\|_{\alpha}\) for all \(k\in{\mathbb{K}}\) and \(\mathfrak{z}\in{\mathcal{X}}\),
-
(I3)
\(\|\mathfrak{z}_{1} + \mathfrak{z}_{2}\|_{\alpha }\leq \|\mathfrak{z}_{1}\|_{ \alpha }+ \|\mathfrak{z}_{2}\|_{\alpha}\) for all \(\mathfrak{z}_{1}, \mathfrak{z}_{2} \in{\mathcal{X}}\).
Let \(\mathcal{M}([0, \rho ], \mathbb{R})\) be the space of continuous real-valued functions. Furthermore, the weighted space \(\mathcal{M}_{\mathfrak{X}, \xi} (0, \rho ] \) of continuous functions \(\xi : (0, \rho ] \rightarrow \mathbb{R}\) is defined as
$$\begin{aligned} \mathcal{M}_{1- \mathfrak{X}, \xi} [0, \rho ] = \bigl\lbrace \pi :(0, d] \rightarrow \mathbb{R}; \bigl(\xi (\mathfrak{z})- \xi (0)\bigr)^{1- \mathfrak{X}} \pi ( \mathfrak{z}) \in{\mathcal{M}[0, d]} \bigr\rbrace , \quad \text{where } 0 < \mathfrak{X} < 1, \end{aligned}$$
with norm
$$\begin{aligned} \Vert \pi \Vert _{\mathcal{M}_{1- \mathfrak{X}, \xi} [0, \rho ], \alpha } = \sup_{\mathfrak{z} \in{(0, \rho ]}} \bigl(\xi ( \mathfrak{z})- \xi (0)\bigr)^{1- \mathfrak{X}} \bigl\Vert \pi (\mathfrak{z}) \bigr\Vert _{\alpha}, \end{aligned}$$
where \(\xi : [0, \rho ] \longrightarrow \mathbb{R}\) is an arbitrary function, and \(\mathfrak{z} \in{[0, \rho ]}\).
The piecewise weighted space \(\mathcal{PM}_{\mathfrak{X}, \xi} (t_{\mathfrak{k}}, t_{\mathfrak{k}+1}]\) is defined as follows:
$$\begin{aligned} \mathcal{PM}_{1- \mathfrak{X}, \xi} [0, \rho ] =& \Bigl\{ \tilde{\pi}:(0, \rho ] \rightarrow \mathbb{R}; \bigl(\xi (\mathfrak{z})- \xi (t_{ \mathfrak{k}})- \xi (0) \bigr)^{1-\mathfrak{X}} \rho (\eta ) \in{ \mathcal{C}(t_{\mathfrak{k}}, t_{\mathfrak{k}+1}]}, \\ &\lim_{\mathfrak{z} \rightarrow t_{\mathfrak{k}}} \bigl(\xi (\mathfrak{z})- \xi (t_{\mathfrak{k}})- \xi (0) \bigr)^{1-\mathfrak{X}} \xi (\mathfrak{z}) < \infty \Bigr\} \end{aligned}$$
for all \(k=1,2, \ldots, m \), where \(0 < \mathfrak{X} < 1\). The space \(\mathcal{PM}_{\mathfrak{X}, \xi} (t_{\mathfrak{k}}, t_{\mathfrak{k}+1}]\) is equipped by the norm
$$\begin{aligned} \Vert \tilde{\pi} \Vert _{\mathcal{PM}_{1- \mathfrak{X}, \xi} [0, \rho ], \alpha } =\max_{k= 1,2, \ldots, m} \Bigl( \sup_{\eta \in{(t_{k}, t_{k+1}]}} \bigl(\xi (\mathfrak{z})- \xi (t_{\mathfrak{k}})- \xi (0) \bigr)^{1- \mathfrak{X}} \bigl\Vert \tilde{\pi}(\mathfrak{z}) \bigr\Vert _{\alpha } \Bigr), \end{aligned}$$
where \(\xi : [0, \rho ] \longrightarrow \mathbb{R}\) is an arbitrary function, \(\mathfrak{z} \in{[0, \rho ]}\), and there exist \(\tilde{\pi}(t_{\mathfrak{k}}^{-})\) and \(\tilde{\pi}(t_{\mathfrak{k}}^{+})\) for all \(\mathfrak{k}=1,2, \ldots, m \) with \(\tilde{\pi}(t_{\mathfrak{k}}^{-})= \tilde{\pi}(t_{\mathfrak{k}}^{+})\). The piecewise weighted space \(\mathcal{PM}_{1- \mathfrak{X}, \xi} [0, \rho ]\) and weighted space \(\mathcal{M}_{\mathfrak{X}, \xi} (0, \rho ]\) with the above defined norm are Banach spaces [14].
Definition 2
([9])
Let \((\mathfrak{s}, \rho )\) be an interval on real line (finite or infinite), let \(\lambda > 0\), let \(\xi (\mathfrak{z}): [\mathfrak{s}, \rho ] \rightarrow \mathbb{R}^{+}\) be a nondecreasing function on \((\mathfrak{s}, \rho ]\), and let \(\xi '(\mathfrak{z})\) be a continuous mapping on \((\mathfrak{s}, \rho )\). The left- and right-sided fractional integrals of a function ξ with respect to the function ξ on \([\mathfrak{s}, \rho ]\) are defined by
$$\begin{aligned} I^{\lambda ; \xi}_{\mathfrak{s}^{+}} w(x)= \frac {1}{\Gamma (\lambda )} \int _{\mathfrak{s}}^{x} \xi '( \mathfrak{z}) \bigl(\xi (x)- \xi (\mathfrak{z})\bigr)^{\lambda - 1} w( \mathfrak{z}) \,d \mathfrak{z} \end{aligned}$$
and
$$\begin{aligned} I^{\lambda ; \xi}_{\rho ^{-}} w(x)= \frac {1}{\Gamma (\lambda )} \int _{x}^{\rho }\xi '(\mathfrak{z}) \bigl(\xi (\mathfrak{z})- \xi (x)\bigr)^{ \lambda - 1} w(\mathfrak{z}) \,d \mathfrak{z}, \end{aligned}$$
respectively, where Γ is the gamma function.
It is worth mentioning here that for \(\lambda , \sigma > 0\), we have [13]
-
if \(\Delta (x)= (\xi (x)- \xi (\mathfrak{s}))^{\sigma - 1} \), then \(I^{\lambda ; \xi}_{\mathfrak{s}^{+}} \Delta (x)= C_{\lambda , \sigma}(\xi (x)- \xi (\mathfrak{s}))^{\lambda + \sigma - 1} \), and
-
if \(\Delta (x)= (\xi (\rho )- \xi (x))^{\sigma - 1} \), then \(I^{\lambda ; \xi}_{\rho ^{-}} \Delta (x)= C_{\lambda , \sigma} ( \phi (\rho )- \xi (x))^{\lambda + \sigma - 1} \),
where \(C_{\lambda , \sigma}= \frac {\Gamma (\sigma )}{\Gamma (\lambda + \sigma )}\). Also, the semigroup properties \(I^{\lambda ; \xi}_{\mathfrak{s}^{+}} I^{\varrho ; \xi}_{ \mathfrak{s}^{+}} \Lambda (x)= I^{\lambda + \varrho ; \xi}_{ \mathfrak{s}^{+}} \Lambda (x)\) and \(I^{\lambda ; \xi}_{\rho ^{-}} I^{\varrho ; \xi}_{\rho ^{-}} \Lambda (x)= I^{\lambda + \varrho ; \xi}_{\mathfrak{m}^{-}} \Lambda (x)\) are satisfied.
Definition 3
([9])
Let \((\mathfrak{s}, \rho )\subseteq \mathbb{R}\) be an interval (finite or infinite), \(\xi '(\mathfrak{z})\neq 0\) for all \(\mathfrak{z}\in{(\mathfrak{s}, \rho )}\), and \(\lambda > 0\), \(\mathfrak{k}\in{\mathbb{N}}\). The left-sided Riemann–Liouville derivative of a function χ with respect to ξ of order λ is defined by
$$ \begin{aligned} D^{\lambda , \xi}\chi (\mathfrak{z})&=\biggl( \frac {1}{\xi '(\mathfrak{z})} \frac {d}{dx}\biggr)^{\mathfrak{k}} I^{ \mathfrak{k}-\lambda , \xi} \chi (\eta ) \\ &=\frac {1}{\Gamma (\mathfrak{k}-\lambda )} \biggl( \frac {1}{\xi '(\mathfrak{z})}\frac {d}{dx} \biggr)^{\mathfrak{k}} \times \int _{\mathfrak{s}}^{\mathfrak{z}} \xi '(s) \bigl(\xi ( \mathfrak{z})- \xi (s)\bigr)^{ \mathfrak{k}-\lambda -1} \chi (s) \,ds. \end{aligned} $$
Definition 4
([9])
Let \(\mathfrak{k}\in{\mathbb{N}}\), \(\lambda \in{(\mathfrak{k}-1, \mathfrak{k})}\), \(\varpi =[\mathfrak{s}, \rho ]\) (\(-\infty \leq \mathfrak{s} < \rho \leq \infty \)), and let \(\hat{\pi}, \xi \in{\mathcal{C}^{n}([\mathfrak{s}, \rho ], \mathbb{R})} \) be two mappings with \(\xi (x) \) increasing for all \(x\in{\varpi}\). The left-sided and right-sided ξ-Hilfer fractional derivatives \({}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{0^{+}}( \cdot )\) of an arbitrary function π̂ of order λ and type \(\varrho \in{[0, 1)}\) are defined by
$$\begin{aligned} {}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{\mathfrak{s}^{+}} \hat{\pi}(x)= I^{\varrho (\mathfrak{k}-\lambda ); \phi}_{\mathfrak{s}^{+}} \biggl( \frac {1}{\xi '(x)} \frac {d}{dx} \biggr) ^{\mathfrak{k}} I^{(1- \varrho )(\mathfrak{k}-\lambda ); \xi}_{\mathfrak{s}^{+}} \hat{\pi}(x) \end{aligned}$$
and
$$\begin{aligned} {}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{\rho ^{-}} \hat{\pi}(x)= I^{\varrho (\mathfrak{k}-\lambda ); \xi}_{\rho ^{-}} \biggl( -\frac {1}{\xi '(x)} \frac {d}{dx} \biggr) ^{\mathfrak{k}} I^{(1- \varrho )(\mathfrak{k}-\lambda ); \xi}_{\rho ^{-}} \hat{\pi}(x), \end{aligned}$$
respectively.
Theorem 1
Let \(\varrho \in{[0,1)}\), \(\lambda > 0\), and \(\mathfrak{X}= \lambda + \varrho (1- \lambda )\). Then for \(\Lambda \in{\mathcal{C}^{1}[\mathfrak{s}, \rho ]}\), we have \({}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{\mathfrak{s}^{+}} I^{\lambda ; \xi}_{\mathfrak{s}^{+}} \Lambda (x)= \Lambda (x)\) and \({}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{\rho ^{-}} I^{ \lambda ; \xi}_{\rho ^{-}} \Lambda (x)= \Lambda (x)\). Also, we have
-
\(I^{\lambda ; \xi}_{\mathfrak{s}^{+}} {}^{\mathcal{H}}{\mathbb{D}}^{ \lambda , \varrho ; \xi}_{\mathfrak{s}^{+}} \Lambda (x) = \Lambda (x)- \frac {(\xi (x)-\xi (\mathfrak{s}))^{\gamma -1} I^{(1- \varrho )(1-\lambda ); \phi}_{\mathfrak{s}^{+}} \Lambda (\mathfrak{s})}{\Gamma (\gamma )} \),
-
\(I^{\lambda ; \xi}_{\rho ^{-}} {}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{\rho ^{-}} \Lambda (x) = \Lambda (x)- \frac {(\xi (\rho )-\xi (x))^{\gamma -1}I^{(1- \varrho )(1-\lambda ); \xi}_{\rho ^{-}} \Lambda (\rho )}{\Gamma (\gamma )} \).
Proof
See [13]. □
Now we recall an alternative FPT, which plays a crucial role in proving our main result and was proved by Diaz and Margolis [2] in 1967.
Theorem 2
([2])
Let \((\mathfrak{O}, \tilde{d}) \) be a generalized complete metric space, and let Π be a strictly contracting self-mapping with Lipschitz constant \(\kappa < 1\). Then either \(\tilde{d}(\Pi ^{\mathfrak{k} +1}\mathfrak{z}, \Pi ^{n}\mathfrak{z})=+ \infty \) for every \(\mathfrak{k} \in{\mathbb{N}}\), or
-
(i)
if there exists \(\mathfrak{k} \in{\mathbb{N}}\) such that \(\tilde{d}(\Pi ^{\mathfrak{k} +1}\mathfrak{z}, \Pi ^{n}\mathfrak{z})< \infty \) for some \(\mathfrak{z}\in{\mathfrak{O}}\), then the sequence \(\lbrace \Pi ^{\mathfrak{k}} \mathfrak{z}\rbrace \) converges to a unique fixed point \({\mathfrak{z}}^{*}\) of Π in the set \(\mathfrak{O}^{*}= \lbrace \tilde{o}\in{\mathfrak{O}} : \tilde{d}( \Pi ^{\mathfrak{k}} \tilde{o}, \Pi ^{\mathfrak{k}} \tilde{o}) < \infty \rbrace \),
-
(ii)
Furthermore, \(\tilde{d}(\mathfrak{z}, \mathfrak{z}^{*} ) \leq C_{\kappa} \tilde{d}( \mathfrak{z}, \Pi \mathfrak{z} )\) for all \(\mathfrak{z} \in{\mathfrak{O}}\), where \(C_{\kappa}=\frac {1}{1- \kappa}\), and \(\mathfrak{z}^{*}\) is defined in (i).
Definition 5
Let t \(\lambda \in{(0, 1]} \), \(\varrho \in{[0, 1)} \), and let \(\mathfrak{X}= \lambda + \varrho (1- \lambda )\) be nonnegative. The function \(v\in{\tilde{W}:= \mathcal{PM}_{1- \gamma ; \xi}([0, \rho ], \mathbb{R}) \bigcap_{j=0}^{m} \mathcal{M}^{1}((s_{j}, t_{j+1}], \mathbb{R})}\) is said to be a mild solution of IFDE (1.1) if
$$ v(\mathfrak{z}) = \textstyle\begin{cases} \frac{(\xi (\mathfrak{z})- \xi (0))^{\mathfrak{X}-1}}{\Gamma (\mathfrak{X})} \mathfrak{v}_{0} + I^{\lambda ; \xi}_{0^{+}} [ {\mathcal{K}}(v( \mathfrak{z}))+ \int _{0}^{\mathfrak{z}} {\mathcal{J}}(\mathfrak{z}, s, v(\mathfrak{z})) \,ds ], & \mathfrak{z}\in{[0, t_{1}]}, \\ {\mathcal{Q}}_{j}(\mathfrak{z}, v(\mathfrak{z}_{j}^{+})), & \mathfrak{z}\in{(t_{j}, s_{j}]}, \\ {\mathcal{Q}}_{j}(\mathfrak{z}, v(\mathfrak{z}_{j}^{+})) + I^{ \lambda ; \xi}_{0^{+}} [ {\mathcal{K}}(v(\mathfrak{z}))+ \int _{0}^{ \mathfrak{z}} {\mathcal{J}}(\mathfrak{z}, s, v(\mathfrak{z})) \,ds ], & \mathfrak{z}\in{(s_{j}, t_{j+1}]}, \end{cases} $$
(2.2)
for all \(j=1,2, \ldots, m\).
In the rest of the paper, we assume that for a continuously differentiable function \(v: [0, \rho ] \rightarrow \mathbb{R}\) and \(\epsilon \geq 0\), we have
$$ \textstyle\begin{cases} \vert {}^{\mathcal{H}}{\mathbb{D}}^{\lambda , \varrho ; \xi}_{0^{+}} v( \mathfrak{z}) - \mathcal{K}(v(\mathfrak{z}))- \int _{0}^{\mathfrak{z}} \mathcal{J}(\mathfrak{z}, s, v(s)) \,ds \vert \leq \epsilon \Xi , & \mathfrak{z}\in{(s_{j}, t_{j+1}]},j=0, 1, \ldots, m, \\ \vert v(\mathfrak{z})- \mathcal{Q}_{j}(\mathfrak{z}, v(\mathfrak{z}_{j}^{+})) \vert \leq \xi , & \mathfrak{z}\in{(t_{j}, s_{j}]},j= 1, \ldots, m, \end{cases} $$
(2.3)
for some positive ξ, where \(\alpha \in{(0,1]}\), and \(\Xi =\Xi (\lambda , \varrho ; (\xi (\eta )-\xi (0))^{\lambda})\).
Definition 6
Let \(\alpha \in{(0, 1]}\). Equation (1.1) has confluent-hyper-geometric stability (in short, CHG stability) with respect to \(\Xi (\lambda ,\varrho ;(\xi (\mathfrak{z})-\xi (0))^{\lambda})\) if for all \(v\in{(\mathcal{PC}[0, \rho ], \mathbb{R})}\) satisfying inequalities (2.3), there exists a solution \(w\in{(\mathcal{PM}[0, \rho ], \mathbb{R})}\) of equation (1.1) such that for all \(\epsilon > 0 \),
$$\begin{aligned} \bigl\vert w(\mathfrak{z})- v(\mathfrak{z}) \bigr\vert ^{\alpha }\leq C_{\Xi }\epsilon \Xi \bigl(\lambda , \varrho ; \bigl(\xi (\mathfrak{z})- \xi (0)\bigr)^{\lambda}\bigr) \quad \text{for all } \mathfrak{z} \in{[0, \rho ]}, \end{aligned}$$
where \(\mathcal{C}_{\Xi} \) is a positive constant.
Remark 1
([9, 14])
Let \(\mathfrak{w}\in{\mathcal{PM}([0, \rho ], \mathbb{R})}\) satisfy inequalities (2.3). Then we have the following integral inequalities:
-
For \(\mathfrak{z}\in{[0, t_{1}]}\),
$$\begin{aligned} &\biggl\vert \mathfrak{w}(\mathfrak{z}) - \frac{(\xi (\mathfrak{z})- \xi (0))^{\gamma -1}}{\Gamma (\gamma )} \mathfrak{v}_{0} - I^{\lambda ; \xi}_{0^{+}} \biggl[ \int _{0}^{ \mathfrak{z}} \mathcal{J}\bigl(\mathfrak{z}, s, v(s) \bigr) \,ds \biggr] \\ &\quad {}-I^{\lambda ; \xi}_{0^{+}}\bigl(\mathcal{K}\bigl(v(\mathfrak{z})\bigr) \bigr) \biggr\vert \leq \epsilon \Xi \bigl(\lambda , \varrho ; \bigl({\xi ( \mathfrak{z})-\xi (0)}\bigr)^{ \lambda}\bigr); \end{aligned}$$
-
For \(\mathfrak{z}\in{(t_{j}, s_{j}]}\), \(j=0,1, \ldots, m\),
$$\begin{aligned} \bigl\vert v(\mathfrak{z})- \mathcal{Q}_{j} \bigl(\mathfrak{z}, v \bigl(\mathfrak{z}_{j}^{+}\bigr)\bigr) \bigr\vert \leq \xi \epsilon \Phi \bigl(\lambda , \varrho ; \bigl({\xi (\mathfrak{z})-\xi (0)} \bigr)^{ \lambda}\bigr), \end{aligned}$$
where ξ is defined in (2.3);
-
For \((s_{j}, t_{j+1}]\), and \(j=1, 2, \ldots, m\),
$$\begin{aligned} &\biggl\vert \mathfrak{w}(\mathfrak{z}) - \mathcal{Q}_{j} \bigl( \mathfrak{z}, v\bigl( \mathfrak{z}_{j}^{+}\bigr)\bigr)- \frac{(\xi (\mathfrak{z})- \xi (0))^{\gamma -1}}{\Gamma (\gamma )} \mathfrak{v}_{0} - I^{\lambda ; \xi}_{0^{+}} \biggl[ \int _{0}^{ \mathfrak{z}} \mathcal{J}\bigl(\mathfrak{z}, s, v(s) \bigr) \,ds \biggr] \\ &\quad {}-I^{\lambda ; \xi}_{0^{+}}\bigl(\mathcal{K}\bigl(v(\mathfrak{z})\bigr) \bigr) \biggr\vert \leq (1+ \xi ) \epsilon \Xi \bigl(\lambda , \varrho ; \bigl({ \xi (\mathfrak{z})-\xi (0)}\bigr)^{ \lambda}\bigr), \end{aligned}$$
where ξ is defined in (2.3).