Skip to main content

Stability of some generalized fractional differential equations in the sense of Ulam–Hyers–Rassias

Abstract

In this paper, we investigate the existence and uniqueness of fractional differential equations (FDEs) by using the fixed-point theory (FPT). We discuss also the Ulam–Hyers–Rassias (UHR) stability of some generalized FDEs according to some classical mathematical techniques and the FPT. Finally, two illustrative examples are presented to show the validity of our results.

1 Introduction

Fractional calculus (FC) has proved to be an efficient tool in the modeling and analysis of many diseases like, e.g., H1N1, COVID-19, and Ebola. This is due to the fact that fractional derivatives can describe the memory and heredity of many processes. Analytical solutions are mainly not reachable for such models (see [16]).

Ulam–Hyers stability (UHS) (also known as Ulam stability) for different kind of equations (see [710]) plays an essential role as it introduces analytical approximate solutions for many problems where the exact solutions are not reachable. It should be noted that stability is an important issue. This is because if a system is stable in the UHS or UHR sense, then essential properties hold around the exact solution. This can be seen in biology, optimization, and economics (e.g., in particular when an exact solution is quite difficult to obtain). UHS appeared after Ulam’s famous talk at a conference in 1940 (see [7]). Currently, it has become a research trend (see [11]) in many directions.

During the last sixty years, the stability subject has flourished (see [1221]). In particular, the stability of differential equations (DEs) has attracted the interest of many mathematicians. In 1993, Obloza seems to be the first person who investigated the Ulam stability of DEs (see [22]). In [16], the authors employed the FPT to study the stability of some DEs with delay.

Many authors have studied the UHS for several types of FDEs (see [2329]). In this sense, our paper presents the existence, uniqueness, and the UHR for a new class of FDEs and generalizes the work in [23].

The article is organized as following. Section 2 recalls some preliminaries, Sect. 3 presents the UHR stability. In Sect. 4, we present a couple of examples to illustrate our results, and Sect. 5 concludes our work.

2 Preliminaries

Here, we recall some basic notions and some useful results. Throughout the article, we denote real numbers by \(\mathbb{R}\), and the complex numbers by \(\mathbb{C}\). We also used the Mittag–Leffler function and generalized metric (see [3, 24, 30]). The theorem of Diaz and Margolis see [31] is the main tool in our analysis.

The objective of the current work is to investigate the stability of the solution of the following generalized FDE

$$\begin{aligned} dx(\varrho )=f_{1}(\varrho ,x) \,d\varrho +\sum _{i=2}^{n}f_{i}( \varrho ,x) (d \varrho )^{\theta _{i}}, \quad\varrho \in [a,a+b], \theta _{i} \in [0,1], \end{aligned}$$
(2.1)

with \(x(a)=x_{0}\), where \(a\in \mathbb{R}\), \(b>0\) and \(x_{0} \in \mathbb{R}\).

Definition 1

The function \(x:[a,a+b]\rightarrow \mathbb{R}\) is named a mild solution of (2.1) if it is a solution of

$$\begin{aligned} & x(\varrho )=x_{0}+ \int _{a}^{\varrho}f_{1}\bigl(\zeta ,x(\zeta ) \bigr) \,d\zeta + \sum_{i=2}^{n} \theta _{i} \int _{a}^{\varrho}(\varrho -\zeta )^{ \theta _{i}-1} f_{i}\bigl(\zeta ,x(\zeta )\bigr) \,d\zeta , \\ & \quad\varrho \in [a,a+b]. \end{aligned}$$
(2.2)

Definition 2

Equation (2.2) is UHR stable, if there is a constant \(C>0\) such that for each function y satisfying

$$\begin{aligned} \Biggl\vert y(\varrho )-y(a)- \int _{a}^{\varrho}f_{1}\bigl(\zeta ,y(\zeta ) \bigr) \,d \zeta -\sum_{i=2}^{n} \theta _{i} \int _{a}^{\varrho}(\varrho - \zeta )^{\theta _{i}-1} f_{i}\bigl(\zeta ,y(\zeta )\bigr) \,d\zeta \Biggr\vert \leq \epsilon \psi (\varrho ), \end{aligned}$$
(2.3)

\(\varrho \in [a,a+b]\), there is a solution \(y^{*}(\varrho )\) of (2.2):

$$\begin{aligned} \bigl\vert y(\varrho )-y^{*}(\varrho ) \bigr\vert \leq C \epsilon \psi (\varrho ),\quad \forall \varrho \in [a,a+b]. \end{aligned}$$

Definition 3

([3])

The Mittag–Leffler function is defined by

$$\begin{aligned} E_{\kappa}(y)= \sum_{m=0}^{+\infty} \frac{y^{m}}{\Gamma (m \kappa +1)}, \end{aligned}$$

where \(\kappa >0\), \(y\in \mathbb{C}\).

3 Stability results

Define \(E:=C([a,a+b],\mathbb{R})\). We start with the UHR stability of (2.2).

Theorem 1

Let \(L_{f_{i}}>0\), \(i\in \{1,2,\ldots,n \}\) be constants. Assume that \(f_{i}:[a,a+b]\times \mathbb{R}\rightarrow \mathbb{R}\), satisfies

$$\begin{aligned} \bigl\vert f_{i}(\varrho ,\sigma _{1})-f_{i}(\varrho ,\sigma _{2}) \bigr\vert \leq L_{f_{i}} \vert \sigma _{1}-\sigma _{2} \vert ,\quad \forall \varrho \in [a,a+b], \sigma _{1}, \sigma _{2}\in \mathbb{R}, i\in \{1,2,\ldots,n \}. \end{aligned}$$
(3.1)

If a continuous function \(y:[a,a+b]\rightarrow \mathbb{R}\) satisfies

$$\begin{aligned} & \Biggl\vert y(\varrho )-y(a)- \int _{a}^{\varrho}f_{1}\bigl(\eta ,y(\eta ) \bigr) \,d \eta -\sum_{i=2}^{n} \theta _{i} \int _{a}^{\varrho}(\varrho -\eta )^{ \theta _{i}-1} f_{i}\bigl(\eta ,y(\eta )\bigr) \,d\eta \Biggr\vert \leq \epsilon \psi ( \varrho ), \\ &\quad \forall \varrho \in [a,a+b], \end{aligned}$$
(3.2)

where \(\psi : [a,a+b] \rightarrow \mathbb{R}_{+}\) is a nondecreasing continuous function, then a unique solution \(y^{*}\) of (2.2) exists such that

$$\begin{aligned} \bigl\vert y(\varrho )-y^{*}(\varrho ) \bigr\vert \leq \frac{e^{(L_{f_{1}}+\delta )T}\prod_{i=2}^{n} \mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )T^{\theta _{i}} )}{1-c} \epsilon \psi (\varrho ), \quad\forall \varrho \in [a,a+b], \end{aligned}$$

where \(c= ( \frac{L_{f_{1}}}{L_{f_{1}}+\delta}+\sum_{i=2}^{n} \frac{L_{f_{i}}}{L_{f_{i}}+\delta}\Gamma (\theta _{i}+1) ) <1\), \(\delta >0\), and \(\Gamma (\cdot )\) is the well-known Gamma function.

Proof

First, we define the following metric on E

$$\begin{aligned} d(x_{1},x_{2}):=\inf \biggl\{ c\geq 0: \frac{ \vert x_{1}(\varrho )-x_{2}(\varrho ) \vert }{\varphi (\varrho )} \leq c \psi (\varrho ), \forall \varrho \in [a,a+b] \biggr\} , \end{aligned}$$
(3.3)

where \(\varphi (\varrho ):=e^{(L_{f_{1}}+\delta )(\varrho -a)}\times \prod_{i=2}^{n} \mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )(\varrho -a)^{\theta _{i}} )\). The space \((E,d)\) is a complete generalized metric space.

Let us consider the operator \(\mathcal{A}:E \rightarrow E\):

$$\begin{aligned} &(\mathcal{A}u) (\varrho ):=y(a)+ \int _{a}^{\varrho}f_{1}\bigl(\zeta ,u( \zeta ) \bigr) \,d\zeta +\sum_{i=2}^{n} \theta _{i} \int _{a}^{\varrho}( \varrho -\zeta )^{\theta _{i}-1} f_{i}\bigl(\zeta ,u(\zeta )\bigr) \,d\zeta , \\ & \quad\forall t\in [a,a+b]. \end{aligned}$$

Since \(\mathcal{A} u \in E\), for every \(u\in E\) and

$$\begin{aligned} \frac{ \vert (\mathcal{A}u_{0})(\varrho )-u_{0}(\varrho ) \vert }{\varphi (\varrho )} < + \infty ,\quad \forall u_{0}\in E, \varrho \in [a,a+b], \end{aligned}$$

it is clear that \(d(\mathcal{A}u_{0},u_{0}) < \infty \). Moreover, since \(d(u_{0},u)< \infty \), \(\forall u\in E\), then \(\{u\in E: d(u_{0},u)< \infty \}=E\).

In addition, for any \(x_{1},x_{2} \in E\) we obtain

$$\begin{aligned} & \bigl\vert (\mathcal{A} x_{1}) (\varrho )-(\mathcal{A} x_{2}) (\varrho ) \bigr\vert \\ &\quad\leq \biggl| \int _{a}^{\varrho} \bigl[f_{1}\bigl(\zeta ,x_{1}(\zeta )\bigr)-f_{1}( \zeta ,x_{2}(\zeta ) \bigr] \,d\zeta \biggr\vert \\ &\qquad{} + \Biggl| \sum_{i=2}^{n} \theta _{i} \int _{a}^{\varrho} (\varrho - \zeta )^{\theta _{i}-1} \bigl[f_{i}\bigl(\zeta ,x_{1}(\zeta )\bigr)-f_{i}( \zeta ,x_{2}( \zeta )\bigr] \,d\zeta \Biggr|. \end{aligned}$$
(3.4)

Then, we derive that

$$\begin{aligned} & \bigl\vert (\mathcal{A} x_{1}) (\varrho )-(\mathcal{A} x_{2}) (\varrho ) \bigr\vert \\ &\quad\leq \int _{a}^{\varrho} \bigl\vert f_{1}\bigl( \zeta ,x_{1}(\zeta )\bigr)-f_{1}\bigl( \zeta ,x_{2}(\zeta )\bigr) \bigr\vert \,d\zeta \\ &\qquad{}+\sum_{i=2}^{n} \theta _{i} \int _{a}^{\varrho} (\varrho -\zeta )^{ \theta _{i}-1} \bigl\vert f_{i}\bigl(\zeta ,x_{1}(\zeta )\bigr)-f_{i} \bigl(\zeta ,x_{2}( \zeta )\bigr) \bigr\vert \,d\zeta \\ &\quad\leq L_{f_{1}} \int _{a}^{\varrho} \bigl\vert x_{1}(\zeta )-x_{2}(\zeta ) \bigr\vert \,d\zeta +\sum _{i=2}^{n} \theta _{i} L_{f_{i}} \int _{a}^{ \varrho} (\varrho -\zeta )^{\theta _{i}-1} \bigl\vert x_{1}(\zeta )-x_{2}( \zeta ) \bigr\vert \,d\zeta \\ &\quad\leq L_{f_{1}} \int _{a}^{\varrho} \frac{ \vert x_{1}(\zeta )-x_{2}(\zeta ) \vert e^{(L_{f_{1}}+\delta )(\zeta -a)} \prod_{i=2}^{n}\mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )(\zeta -a)^{\theta _{i}} ) \,d\zeta }{e^{(L_{f_{1}}+\delta )(\zeta -a)}\prod_{i=2}^{n} \mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )(\zeta -a)^{\theta _{i}} )} \\ &\qquad{}+\sum_{i=2}^{n} \theta _{i} L_{f_{i}} \int _{a}^{\varrho} \frac{(\varrho -\zeta )^{\theta _{i}-1} \vert x_{1}(\zeta )-x_{2}(\zeta ) \vert e^{(L_{f_{1}}+\delta )(\zeta -a)}\prod_{i=2}^{n}\mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )(\zeta -a)^{\theta _{i}} )}{e^{(L_{f_{1}}+\delta )(\zeta -a)} \prod_{i=2}^{n}\mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )(\zeta -a)^{\theta _{i}} )} \,d\zeta \\ &\quad\leq d(x_{1},x_{2}) \Biggl[L_{f_{1}} \int _{a}^{\varrho} \psi ( \zeta )e^{(L_{f_{1}}+\delta )(\zeta -a)} \,d \zeta \prod_{i=2}^{n} \mathbb{E}_{\theta _{i}} \bigl((L_{f_{i}}+\delta ) (\varrho -a)^{\theta _{i}} \bigr) \\ &\qquad{}+e^{(L_{f_{1}}+\delta )(\varrho -a)}\sum_{i=2}^{n} \theta _{i} L_{f_{i}} \int _{a}^{\varrho}\psi (\zeta ) (\varrho -\zeta )^{\theta _{i}-1} \prod_{i=2}^{n} \mathbb{E}_{\theta _{i}} \bigl((L_{f_{i}}+\delta ) ( \zeta -a)^{\theta _{i}} \bigr) \,d\zeta \Biggr], \end{aligned}$$
(3.5)

which can easily be rewritten as

$$\begin{aligned} \bigl\vert (\mathcal{A} x_{1}) (\varrho )-( \mathcal{A} x_{2}) (\varrho ) \bigr\vert & \leq d(x_{1},x_{2}) \biggl[ \frac{L_{f_{1}} \psi (\varrho )\varphi (\varrho ) }{L_{f_{1}}+\delta}+ \frac{\sum_{i=2}^{n}\theta _{i} L_{f_{i}} \Gamma (\theta _{i})}{L_{f_{i}}+\delta} \psi (\varrho ) \varphi (\varrho ) \biggr] \\ &\leq \Biggl(\frac{L_{f_{1}} }{L_{f_{1}}+\delta}+ \sum_{i=2}^{n} \frac{L_{f_{i}} \Gamma (\theta _{i}+1)}{L_{f_{i}}+\delta} \Biggr)\,d(x_{1},x_{2}) \varphi (\varrho ) \psi (\varrho ). \end{aligned}$$
(3.6)

Therefore,

$$\begin{aligned} d(\mathcal{A} x_{1},\mathcal{A} x_{2})\leq c d(x_{1},x_{2}), \end{aligned}$$

which proves that \(\mathcal{A}\) is strictly contractive. From (3.6) it follows that

$$\begin{aligned} d(y,\mathcal{A}y)\leq \epsilon . \end{aligned}$$

Now, as a consequence of the Diaz and Margolis Theorem (see [31]), there exists a solution \(y^{*}\):

$$\begin{aligned} d\bigl(y^{*},y\bigr)\leq \frac{1}{1-c} \epsilon \end{aligned}$$

and then

$$\begin{aligned} \bigl\vert y^{*}(\varrho )-y(\varrho ) \bigr\vert \leq \frac{\epsilon}{1-c} \varphi ( \varrho ) \psi (\varrho ), \end{aligned}$$

for all \(t\in [a,a+b]\), which implies that

$$\begin{aligned} \bigl\vert y^{*}(\varrho )-y(\varrho ) \bigr\vert \leq \frac{ e^{(L_{f_{1}}+\delta )(\varrho -a)} \prod_{i=2}^{n}\mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )(\varrho -a)^{\theta _{i}} )}{1-c} \epsilon \psi (\varrho ), \end{aligned}$$

for all \(\varrho \in [a,a+b]\). □

Remark 1

It should be noted that when \(f_{1}=0\), \(f_{i}=0,i\ge 3\) we easily obtain the results in [23] and when \(f_{i}=0\), \(i\geq 2\) we obtain the results in [32].

The next theorem is a direct consequence of Theorem 1 (Ulam stability of (2.2)).

Theorem 2

Let \(L_{f_{i}}>0\), \(i\in \{1,2,\ldots,n \}\) be constants. Assume that \(f_{i}:[a,a+b]\times \mathbb{R}\rightarrow \mathbb{R}\), satisfies

$$\begin{aligned} \bigl\vert f_{i}(\varrho ,\sigma _{1})-f_{i}(\varrho ,\sigma _{2}) \bigr\vert \leq L_{f_{i}} \vert \sigma _{1}-\sigma _{2} \vert ,\quad \forall \varrho \in [a,a+b], \sigma _{1}, \sigma _{2}\in \mathbb{R}, i\in \{1,2,\ldots,n \}. \end{aligned}$$
(3.7)

If a continuous function \(y:[a,a+b]\rightarrow \mathbb{R}\) satisfies

$$\begin{aligned} &\Biggl\vert y(\varrho )-y(a)- \int _{a}^{\varrho}f_{1}\bigl(\zeta ,y(\zeta ) \bigr) \,d \zeta -\sum_{i=2}^{n}\theta _{i} \int _{a}^{\varrho}(\varrho -\zeta )^{ \theta _{i}-1} f_{i}\bigl(\zeta ,y(\zeta )\bigr) \,d\zeta \Biggr\vert \leq \epsilon , \\ & \quad\forall \varrho \in [a,a+b], \end{aligned}$$
(3.8)

then a unique solution \(y^{*}\) of (2.2) exists satisfying

$$\begin{aligned} \bigl\vert y(\varrho )-y^{*}(\varrho ) \bigr\vert \leq \frac{e^{(L_{f_{1}}+\delta )T} \prod_{i=2}^{n} \mathbb{E}_{\theta _{i}} ((L_{f_{i}}+\delta )T^{\theta _{i}} )}{1-c} \epsilon ,\quad \forall \varrho \in [a,a+b], \end{aligned}$$

where \(c= ( \frac{L_{f_{1}}}{L_{f_{1}}+\delta}+\sum_{i=2}^{n} \frac{L_{f_{i}}}{L_{f_{i}}+\delta}\Gamma (\theta _{i}+1) )<1\), \(\delta >0\), and \(\Gamma (\cdot )\) is the well-known Gamma function.

4 Examples

A couple of examples are used to show the validity of Theorem 1 and Theorem 2.

Example 1

Let (2.1) for \({\theta}=0.5\), \(a=0\), \(b=2\), \(f_{1}(\alpha ,\beta )=\alpha ^{2} \sin (\beta )\), \(f_{2}(\alpha ,\beta )=\alpha \cos (\beta )\) and \(f_{i}=0, i\in \{3,4,\ldots,n \}\).

We have

$$\begin{aligned} \bigl\vert \alpha ^{2}\sin (\beta _{1})- \alpha ^{2}\sin (\beta _{2}) \bigr\vert \leq 4 \vert \beta _{1}-\beta _{2} \vert ,\quad \forall \alpha \in [0,2], \beta _{1}, \beta _{2}\in \mathbb{R}, \end{aligned}$$

and

$$\begin{aligned} \bigl\vert \alpha \cos (\beta _{1})- \alpha \cos (\beta _{2}) \bigr\vert \leq 2 \vert \beta _{1}- \beta _{2} \vert ,\quad \forall \alpha \in [0,2], \beta _{1}, \beta _{2} \in \mathbb{R}. \end{aligned}$$

Then, \(L_{f_{1}}=4\) and \(L_{f_{2}}=2\).

Suppose that y satisfies

$$\begin{aligned} \biggl\vert y(\varrho )-y(0)- \int _{0}^{\varrho} s^{2} \sin \bigl(y(s) \bigr) \,ds-0.5 \int _{0}^{\varrho}(\varrho -s)^{-0.5} s \cos \bigl( y(s) \bigr) \,ds \biggr\vert \leq \varrho , \end{aligned}$$
(4.1)

for all \(\varrho \in [0,2]\).

Here, \(\epsilon =1\) and \(\psi (\varrho )=\varrho \). In view of Theorem 1 there is a continuous function \(y^{*}\),

$$\begin{aligned} y^{*}(\varrho )=y(0)+ \int _{0}^{\varrho}s^{2} \sin \bigl(y^{*}(s) \bigr) \,ds+0.5 \int _{0}^{\varrho}(\varrho -s)^{-0.5} s \cos \bigl( y^{*}(s) \bigr) \,ds, \end{aligned}$$

such that

$$\begin{aligned} \bigl\vert y(\varrho )-y^{*}(\varrho ) \bigr\vert \leq \frac{ e^{16} \mathbb{E}_{0.5}(6 \sqrt{2})}{1- (\frac{1}{2}+\frac{1}{3} \Gamma (1.5) )} \varrho , \quad\forall \varrho \in [0,2]. \end{aligned}$$

Example 2

Let equation (2.1) for \({\theta}=0.6\), \(a=0\), \(b=5\), \(f_{1}(\alpha ,\beta )=\alpha \cos (\beta )\), \(f_{2}(\alpha ,\beta )= \sin (\beta )\) and \(f_{i}=0, i\in \{3,4,\ldots,n \}\).

We have

$$\begin{aligned} \bigl\vert \alpha \cos (\beta _{1})- \alpha \cos (\beta _{2}) \bigr\vert \leq 5 \vert \beta _{1}- \beta _{2} \vert ,\quad \forall \alpha \in [0,5], \beta _{1}, \beta _{2} \in \mathbb{R}, \end{aligned}$$

and

$$\begin{aligned} \bigl\vert \sin (\beta _{1})- \sin (\beta _{2}) \bigr\vert \leq \vert \beta _{1}-\beta _{2} \vert ,\quad \forall \alpha \in [0,5], \beta _{1}, \beta _{2}\in \mathbb{R}. \end{aligned}$$

Then, \(L_{f_{1}}=5\) and \(L_{f_{2}}=1\).

Suppose that y satisfies

$$\begin{aligned} \biggl\vert y(\varrho )-y(0)- \int _{0}^{\varrho} s \cos \bigl(y(s) \bigr) \,ds-0.6 \int _{0}^{\varrho}(\varrho -s)^{-0.4} \sin \bigl( y(s) \bigr) \,ds \biggr\vert \leq 0.1, \end{aligned}$$
(4.2)

for all \(\varrho \in [0,5]\).

Here, \(\epsilon =0.1\). Employing Theorem 2 there is a continuous function \(y^{*}\),

$$\begin{aligned} y^{*}(\varrho )=y(0)+ \int _{0}^{\varrho}s \cos \bigl(y^{*}(s) \bigr) \,ds+0.6 \int _{0}^{\varrho}(\varrho -s)^{-0.4} \sin \bigl( y^{*}(s) \bigr) \,ds, \end{aligned}$$

such that

$$\begin{aligned} \bigl\vert y(\varrho )-y^{*}(\varrho ) \bigr\vert \leq \frac{ e^{50} \mathbb{E}_{0.6}(6 \times 5^{0.6})}{1- (\frac{1}{2}+\frac{1}{6} \Gamma (1.6) )} 0.1,\quad \forall \varrho \in [0,5]. \end{aligned}$$

5 Conclusion

In this paper, we utilized some results of Banach FPT to study the existence, uniqueness, and the UHR stability of some generalized FDEs. Finally, we have presented two examples to illustrate our results. In future work, we intend to extend our results to the stochastic case.

Availability of data and materials

Not applicable.

References

  1. Rezapour, S., Mohammadi, H.: A study on the AH1N1/09 influenza transmission model with the fractional Caputo–Fabrizio derivative. Adv. Differ. Equ. 2020(1), 1 (2020)

    Article  MATH  Google Scholar 

  2. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for Covid-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals 140, 110107 (2020)

    Article  MATH  Google Scholar 

  3. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  4. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of \(CD4+CD^{4}\) T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, Article ID 71 (2020)

    Article  MATH  Google Scholar 

  5. Bohner, M., Tunç, O., Tunç, C.: Qualitative analysis of Caputo fractional integro-differential equations with constant delays. Comput. Appl. Math. 40, 214 (2021)

    Article  MATH  Google Scholar 

  6. Tunç, O., Atan, Ö., Tunç, C., Yao, J.C.: Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov–Razumikhin method. Axioms 10, 1–19 (2021)

    Article  Google Scholar 

  7. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MATH  Google Scholar 

  8. Rassias, T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MATH  Google Scholar 

  9. Rassias, T.M.: On a modified Hyers–Ulam sequence. J. Math. Anal. Appl. 158, 106–113 (1991)

    Article  MATH  Google Scholar 

  10. Gajda, Z.: On stability of additive mappings. Int. J. Math. Math. Sci. 14, 431–434 (1991)

    Article  MATH  Google Scholar 

  11. Hyers, D.H., Isac, G., Rassias, T.: Stability of Functional Equations in Several Variables. Springer, Berlin (2012)

    MATH  Google Scholar 

  12. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)

    MATH  Google Scholar 

  13. Forti, G.L.: Hyers–Ulam stability of functional equations in several variables. Aequ. Math. 50(1–2), 143–190 (1995)

    Article  MATH  Google Scholar 

  14. Miura, T., Miyajima, S., Takahasi, S.H.: A characterization of Hyers–Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 286, 136–146 (2003)

    Article  MATH  Google Scholar 

  15. Obloza, M.: Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 14, 141–146 (1997)

    MATH  Google Scholar 

  16. Shah, R., Zada, A.: A fixed point approach to the stability of a nonlinear Volterra integrodifferential equation with delay. Hacet. J. Math. Stat. 47(3), 615–623 (2018)

    MATH  Google Scholar 

  17. Shen, Y.: The Ulam stability of first order linear dynamic equations on time scales. Results Math. 72(4), 1881–1895 (2017)

    Article  MATH  Google Scholar 

  18. Tunç, C., Biçer, E.: Hyers–Ulam–Rassias stability for a first order functional differential equation. J. Math. Fundam. Sci. 47, 143–153 (2015)

    Article  Google Scholar 

  19. Inoan, D., Marian, D.: Semi–Hyers–Ulam–Rassias stability of a Volterra integro-differential equation of order I with a convolution type kernel via Laplace transform. Symmetry 13, 1–11 (2021)

    Article  Google Scholar 

  20. Inoan, D., Marian, D.: Semi-Hyers–Ulam–Rassias stability via Laplace transform, for an integro-differential equation of the second order. Mathematics 10, 1–11 (2022)

    Article  Google Scholar 

  21. Babolian, E., Shamloo, A.S.: Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions. J. Comput. Appl. Math. 214, 498–508 (2008)

    Article  MATH  Google Scholar 

  22. Obloza, M.: Hyers–Ulam stability of the linear differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 13, 259–270 (1993)

    MATH  Google Scholar 

  23. El-hady, E., Ben Makhlouf, A.: Novel stability results for Caputo fractional differential equations. Math. Probl. Eng. 2021, Article ID 9817668 (2021)

    Google Scholar 

  24. Ben Makhlouf, A., El-hady, E., Boulaaras, S., Mchiri, L.: Stability results of some fractional neutral integrodifferential equations with delay. J. Funct. Spaces 2022, Article ID 8211420 (2022)

    MATH  Google Scholar 

  25. El-hady, E., Ben Makhlouf, A., Boulaaras, S., Mchiri, L.: Ulam–Hyers–Rassias stability of nonlinear differential equations with Riemann–Liouville fractional derivative. J. Funct. Spaces 2022, Article ID 7827579 (2022)

    MATH  Google Scholar 

  26. Ameen, R., Jarad, F., Abdeljawad, T.: Ulam stability for delay fractional differential equations with a generalized Caputo derivative. Filomat 32, 5265–5274 (2018)

    Article  MATH  Google Scholar 

  27. Başcı, Y., Öğrekçi, S., Mısır, A.: On Hyers–Ulam stability for fractional differential equations including the new Caputo–Fabrizio fractional derivative. Mediterr. J. Math. 16, 131 (2019)

    Article  MATH  Google Scholar 

  28. Öğrekçi, S., Başcı, Y., Mısır, A.: Ulam type stability for conformable fractional differential equations. Rend. Circ. Mat. Palermo 70, 807–817 (2019)

    Article  MATH  Google Scholar 

  29. Khan, H., Tunç, C., Chen, W., Khan, A.: Existence theorems and Hyers–Ulam stability for a class of hybrid fractional differential equations with p-Laplacian operator. J. Appl. Anal. Comput. 8, 1211–1226 (2018)

    MATH  Google Scholar 

  30. Shah, R., Zada, A.: Hyers–Ulam–Rassias stability of impulsive Volterra integral equation via a fixed point approach. J. Linear Topol. Algebra 8, 219–227 (2019)

    MATH  Google Scholar 

  31. Diaz, J.B., Margolis, B.: A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Am. Math. Soc. 74, 305–309 (1968)

    Article  MATH  Google Scholar 

  32. Başci, Y., Misir, A., Öğrekçi, S.: On the stability problem of differential equations in the sense of Ulam. Results Math. 75(1), 6 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number (DSR2022-RG-0120).

Funding

This work was funded by the Deanship of Scientific Research at Jouf University under Grant Number (DSR2022-RG-0120).

Author information

Authors and Affiliations

Authors

Contributions

“1. wrote the main manuscript text 2-3,5: supervisor, 4. reviewed the manuscript.”

Corresponding author

Correspondence to Abdellatif Ben Makhlouf.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhlouf, A.B., El-hady, Es., Arfaoui, H. et al. Stability of some generalized fractional differential equations in the sense of Ulam–Hyers–Rassias. Bound Value Probl 2023, 8 (2023). https://doi.org/10.1186/s13661-023-01695-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01695-5

MSC

Keywords