- Research
- Open Access
- Published:
Nonexistence results of solutions of parabolic-type equations and systems on the Heisenberg group
Boundary Value Problems volume 2023, Article number: 29 (2023)
Abstract
In this paper, we present necessary conditions for the existence of weak solution of the parabolic-type equations and systems on the Heisenberg group. The main technique for proving the results relies on the method of test functions.
1 Introduction
In this paper, we are interested in the nonexistence of nontrivial solutions of pseudo parabolic-type equations and systems in the Heisenberg group. Besides their intrinsic interest, nonexistence results are a useful tool for proving related existence theorems for the corresponding Dirichlet problem on bounded domains.
To better describe the setting, we recall the seminal work of Fujita. In his paper [6], Fujita studied the following nonlinear heat equation:
He showed the following results. If \(0< p<\frac{2}{N}\), then a solution of problem (1) blows up in finite time for \(N>2\) while being globally well-posed for \(p>\frac{2}{N}\).
One of the further generalizations of problem (1) is considering the fractional Laplacian \((-\Delta )^{s}\) instead of the classical one \((-\Delta )\). For example, in [9], the authors considered the Cauchy problem
for \(s>0\).
As a generalization to the Heisenberg group, Ahmad and Alsaedi in [1] considered the following problem:
where \(p>1\), supplemented with the initial data
where \((-\Delta _{H})^{s}\) is the fractional Kohn–Laplacian, \(s\in (0,1)\), \(p>1\).
In this paper, we study nonexistence of all nontrivial weak solutions of pseudo parabolic-type equation of the type
where \(p>1\), and γ is a real number, \(\vert \eta \vert _{H}\) is defined in (8), the operator \((-\Delta _{H})^{\frac{\alpha}{2}}\) (\(0<\alpha <2\)) accounts for anomalous diffusion (see below for the definition).
We also present the critical exponent for the pseudo parabolic-type system
where \(p>1\), \(q>1\).
In recent years, increasing attention has been given to the analysis and PDEs, An important aspect most directly related to the present work is the fine analysis of blow-up solutions of the nonlinear elliptic equations, see [14, 16]. In particular, equations on the Heisenberg have been widely studied, see [2, 3, 5, 7, 8, 10, 11, 13, 15, 18–20] and the references therein. In [12], the authors studied the Kirchhoff elliptic, parabolic, and hyperbolic-type equations on the Heisenberg group, In addition, the analogous results have been transferred to the cases of systems. Later, Zheng [21] established Liouville theorems for the following system of differential inequalities:
on different unbounded open domains of Heisenberg group \(H^{n}\), including the whole space and the half space of \(H^{n}\).
2 Preliminaries
In this section we recall some basic facts regarding the Heisenberg vector fields and fractional powers of subelliptic Laplacian in the Heisenberg group, which will be used in the sequel.
The Heisenberg group \(H^{n}\) can be identified with \((\mathbb{R}^{2n+1},\circ )\), where \(2n+1\) stands for the topological dimension and the group multiplication “∘” is defined by
for any \(\xi =(x,y,t)\), \(\hat{\xi}=(\hat{x},\hat{y},\hat{t})\) in \(H^{n}\) with \(x=(x_{1},\ldots ,x_{n})\), \(\hat{x}=(\hat{x}_{1},\ldots ,\hat{x}_{n})\), \(y=(y_{1},\ldots ,y_{n})\), and \(\hat{y}=(\hat{y}_{1},\ldots ,\hat{y}_{n})\) denoting the elements of \(\mathbb{R}^{n}\). Moreover, they are homogeneous of degree one with respect to the dilations
We consider the norm on \(H^{n}\) defined by
and the associated Heisenberg distance
where \({\hat{\xi}}^{-1}\) is the inverse of ξ̂ with respect to “∘”, i.e., \({\hat{\xi}}^{-1}=-\hat{\xi}\). Let \(D_{R}(\xi )\) denote the Koranyi ball with center at ξ and radius R associated with the gauge distance \(d_{H}(\xi ,\hat{\xi})=\rho ({\hat{\xi}}^{-1}\circ \xi )\), and we will refer to it as Heisenberg ball. For every \(\xi \in H^{n}\) and \(R>0\), we will use the notation
it follows that
where \(\vert D_{1}(0)\vert \) is the volume of the unit Heisenberg ball under Haar measure, which is equivalent to \(2n+1\) dimensional Lebesgue measure of \(\mathbb{R}^{2n+1}\). The n-dimensional Heisenberg algebra is the Lie algebra spanned by the left-invariant vector fields
The Heisenberg gradient, or the horizontal gradient of a regular function u, is then defined by
While its Heisenberg Hessian matrix is
Consider the vector fields \(X_{j}\), \(Y_{j}\) for \(j=1,\ldots , n\) in (9), the sub-Laplacian on the Heisenberg group is a linear differential operator of the second order defined by
A natural group of dilatations on \(H^{n}\) is given by
whose Jacobian determinant is \(\lambda ^{Q}\), where
is the homogeneous dimension of \(H^{n}\).
Here, we recall a result on fractional powers of sub-Laplacian in the Heisenberg group taken from [4]. Let \(\mathcal{N}(t,x)\) be the fundamental solution of \(-\Delta _{H}+\frac{\partial}{\partial t}\). For all \(0<\beta <4\), the integral
converges absolutely for \(x\neq 0\). If \(\beta <0\), \(\beta \notin \{0,-2,-4,\ldots \}\), then
defines a smooth function in \(H^{n}\setminus \{0\}\) since \(t\mapsto \mathcal{N}(t,x)\) vanishes of infinite order as \(t\rightarrow 0\) if \(x\neq 0\). In addition, \(\tilde{R}_{\beta}\) is positive and homogeneous of degree \(\beta -4\).
Lemma 2.1
If u belongs to the Schwartz class \(S(H^{n})\) (see [5]) and \(0<\alpha <2\), then \((-\Delta _{H})^{s}u\in L^{2}(H)\) and
where \(P.V.\) is the Cauchy principal value and χ is the characteristic function of the unit ball \(B_{\rho}(0,1)\), (\(\rho (x)=R_{2-\alpha}^{ \frac{-1}{2+\alpha}}(x)\), \(0<\alpha <2\), ρ is an H-homogeneous norm in \(H^{n}\) smooth outside the origin).
3 Main results
Definition 3.1
A locally integrable function \(u\in L_{\mathrm{loc}}^{p}(\Omega )\) is called a local weak solution to (4) in \(\Omega =H^{n}\times (0,T)\) with the initial data \(0\leq u_{0}(\eta )\in L_{\mathrm{loc}}^{1}(H^{n})\) if the equality
is satisfied for any test function \(0\leq \psi \in C_{\eta ,t}^{2,1}(\Omega )\).
Theorem 3.2
Let \(1< p\leq \frac{\gamma +Q+\alpha}{Q}\) and \(\gamma >-2\), then (4) does not have a nontrivial weak solution.
Proof
Let u be a global weak solution of (4) and ψ be a smooth nonnegative test function such that
where \(p'=p/(p-1)\). By using Young’s inequality, from identity (12) we obtain
In the sequel C denotes a constant which may vary from line to line but is independent of the terms which will take part in any limit processing. Therefor the inequality
follows from (14).
Taking
with \(\Psi \in C_{c}^{\infty}(\mathbb{R}\mathbbm{^{+}})\) is the standard cut-off function
We note that \(\operatorname{supp} (\psi )\) is a subset of
and \(\operatorname{supp} (\Delta _{H}\psi )\) is included in
We note from [17] that there is a positive constant \(C_{1}>0\), independent of R, such that
and
We perform the change of variables \(R\bar{\xi}=\xi \), \(R\hat{\xi}=\tilde{\xi}\), \(R^{2}\tilde{\tau}=\tau \), \(R^{ \alpha}\tilde{t}=t\), and from (15), we obtain the estimates
When \(1< p<\frac{\gamma +Q+\alpha}{Q}\), the exponents of R of (18) are negative. Letting R go to infinity and using Fatou’s lemma yields
which is zero from (18), and nonzero u cannot exist since
In the case where \(p=\frac{\gamma +Q+\alpha}{Q}\), from (15), we get
We recall the domain
then by (20) and the Lebesgue dominated convergence theorem, we have
By using the Hölder inequality in (14), we get
Finally, we get
By letting \(R\rightarrow \infty \) and using (21), we get \(u\equiv 0\), ending the proof. □
Next, we will consider system (5).
Definition 3.3
A pair \((u,v)\) with \(p,q>1\) is called a weak solution of system (5) in \(\Omega =H^{n}\times (0,T)\) with the Cauchy data \((u_{0},v_{0})\in L_{\mathrm{loc}}^{1}(H^{n})\times L_{\mathrm{loc}}^{1}(H^{n})\) if the following identities:
and
are satisfied for any regular function \(0\leq \psi \in C_{\eta ,t}^{2,1}(\Omega )\).
Theorem 3.4
Assume that
Then there is no nontrivial weak solution \((u,v)\) of system (5).
Proof
Let \(\psi _{R}\) be a nonnegative function such that
with \(\Psi \in C_{c}^{\infty}(\mathbb{R}\mathbbm{^{+}})\) being the standard cut-off function
Let \((u,v)\) be a nontrivial weak solution of (5). We note that for large R,
and
Using (24) with \(\psi =\psi _{R}\), one has
Setting
we have
where \(\mathscr{A}_{1}(R)=A_{\psi}(R)+B_{\psi}(R)+C_{\psi}(R)\), and
Similarly, we have
where \(\mathscr{A}_{2}(R)=A'(\psi )+B'(\psi )+C'(\psi )\) and
To estimate the integrals \(\mathscr{A}_{1}(R)\) and \(\mathscr{A}_{2}(R)\), we introduce the scaled variables \(R\bar{\xi}=\xi \), \(R\hat{\xi}=\tilde{\xi}\), \(R^{2}\tilde{\tau}=\tau \), \(R^{ \alpha}\tilde{t}=t\), and we conclude that
and
Using (31) and (33) in (30), we obtain
where \(\sigma _{J}=-\frac{\gamma _{1}}{pq}-\frac{2\alpha}{p}+ \frac{Q+2}{pq'}-\frac{\gamma _{2}}{p}-2\alpha +\frac{Q+2}{p'}\).
Similarly, we have
where \(\sigma _{I}=-\frac{\gamma _{2}}{pq}-\frac{2\alpha}{q}+ \frac{Q+2}{qp'}-\frac{\gamma _{1}}{q}-2\alpha +\frac{Q+2}{q'}\).
Now, we require that \(\sigma _{I}\leq 0\) or \(\sigma _{J}\leq 0\), which is equivalent to
In this case, the integrals \(I(R)\) and \(J(R)\), increasing in R, are bounded uniformly with respect to R. Using the monotone convergence theorem, we deduce that \(\vert \eta \vert _{H}^{\gamma _{1}}\vert v\vert ^{q}\) and \(\vert \eta \vert _{H}^{\gamma _{2}}\vert u\vert ^{p}\) are in \(L^{1}(H)\). Note that instead of (28), more precisely,
where C is a positive constant independent of R. Finally, using the dominated convergence theorem, we obtain that
Hence,
which implies that \(v\equiv 0\) and \(u\equiv 0\) via (29). This contradicts the fact that \((u,v)\) is a nontrivial weak solution of (5), which achieves the proof. □
Availability of data and materials
No applicable.
References
Ahmad, B., Alsaedi, A., Kirane, M.: Nonexistence of global solutions of some nonlinear space-nonlocal evolution equations on the Heisenberg groups. Electron. J. Differ. Equ. 2015, 227 (2015)
Birindelli, I.: Superharmonic functions in the Heisenberg group: estimates and Liouville theorems. NoDEA Nonlinear Differ. Equ. Appl. 10(2), 171–185 (2003)
Capogna, L., Pauls, S.D., Danielli, D., Tyson, J.T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Progress in Mathematics. Birkhäuser, Basel (2007)
Ferrari, F., Franchi, B.: Harnack inequality for fractional sub-Laplacians in Carnot groups. Math. Z. 2015(279), 435–458 (2015)
Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Mathematical Notes, vol. 28. Princeton University Press, Princeton (1982)
Fujita, H.: On the blowing up of solutions of the Cauchy problem for \(u_{t}=\Delta u+u^{1+\alpha}\). J. Fac. Sci., Univ. Tokyo, Sect. 1 13, 109–124 (1966)
Garofalo, N., Lanconelli, E.: Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ. Math. J. 41, 71–97 (1992)
Greiner, P.C.: Spherical harmonics on the Heisenberg group. Can. Math. Bull. 23(4), 383–396 (1980)
Guedda, M., Kirane, M.: A note on nonexistence of global solutions to a nonlinear integral equation. Bull. Belg. Math. Soc. Simon Stevin 6, 491–497 (1999)
Jerison, D.S., Lee, J.M.: Extremals for the Sobolev inequality on the Heisenberg group & the CR Yamabe problem. J. Am. Math. Soc. 1, 1–13 (1988)
Jleli, M., Kirane, M., Samet, B.: Nonexistence results for pseudo-parabolic equations in the Heisenberg group. Monatshefte Math. 180(2), 255–270 (2016)
Kassymov, A., Ruzhansky, M., Tokmagambetov, N., Torebek, B.: Liouville theorems for Kirchhoff-type hypoelliptic partial differential equations and systems. I. Heisenberg group. arXiv e-prints (2021)
Kassymov, A., Suragan, D.: Multiplicity of positive solutions for a nonlinear equation with a Hardy potential on the Heisenberg group. Bull. Sci. Math. 165, 102916 (2020)
Li, Y.Y., Nguyen, L., Wang, B.: Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc. Var. Partial Differ. Equ. 57(4), 57–96 (2018)
Li, Y.Y., Wang, B.: Comparison principles for some fully nonlinear sub-elliptic equations on the Heisenberg group. Anal. Theory Appl. 35, 312–334 (2019)
Li, Y.Y., Wang, B.: The axisymmetric \(\sigma_{k}\)-Nirenberg problem. J. Funct. Anal. 281, 109198 (2021)
Pohozaev, S., Véron, L.: Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group. Manuscr. Math. 102(1), 85–99 (2000)
Uguzzoni, F.: A Liouville-type theorem on halfspaces for the Kohn Laplacian. Proc. Am. Math. Soc. 127(1), 117–123 (1999)
Uguzzoni, F.: A non-existence theorem for a semilinear Dirichlet problem involving critical exponent on halfspaces of the Heisenberg group. NoDEA Nonlinear Differ. Equ. Appl. 6(2), 191–206 (1999)
Wang, B.: A Liouville-type theorem for fully nonlinear CR invariant equations on the Heisenberg group. Commun. Contemp. Math. 24(8), 2150060 (2022)
Zheng, Y.D.: Liouville theorems to system of elliptic differential inequalities on the Heisenberg group. arXiv e-prints (2021)
Acknowledgements
The author would like to thank everyone for their kind help.
Funding
Research supported by National Natural Science Foundation of China (11971061, 12271028) and Beijing Natural Science Foundation (1222017).
Author information
Authors and Affiliations
Contributions
The author read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Shi, W. Nonexistence results of solutions of parabolic-type equations and systems on the Heisenberg group. Bound Value Probl 2023, 29 (2023). https://doi.org/10.1186/s13661-023-01714-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01714-5
MSC
- 35K60
- 35R03
Keywords
- Nonlinear parabolic equations
- Pseudo parabolic-type systems
- Heisenberg group