Skip to main content

New product-type oscillation criteria for first-order linear differential equations with several nonmonotone arguments

Abstract

We use an improved technique to establish new sufficient criteria of product type for the oscillation of the delay differential equation

$$\begin{aligned} x'(t)+\sum_{l=1}^{m} b_{l}(t)x\bigl(\sigma _{l}(t)\bigr)= 0,\quad t\geq t_{0}, \end{aligned}$$

with \(b_{l},\sigma _{l}\in C([t_{0},\infty ),[0,\infty ))\) such that \(\sigma _{l}(t)\leq t\) and \(\lim_{t \rightarrow \infty} \sigma _{l}(t)=\infty \), \(l=1,2,\ldots,m\). The obtained results are applicable for the nonmonotone delay case. Their strength is supported by a detailed practical example.

1 Introduction

Consider the first-order differential equation with several delays of the form

$$\begin{aligned} x'(t)+\sum_{l=1}^{m} b_{l}(t)x\bigl(\sigma _{l}(t)\bigr)=0,\quad t\geq t_{0}, \end{aligned}$$
(1.1)

with \(b_{l},\sigma _{l}\in C([t_{0},\infty ),[0,\infty ))\) such that \(\sigma _{l}(t)\leq t\) and \(\lim_{t \rightarrow \infty} \sigma _{l}(t)=\infty \), \(l=1,2,\ldots,m\).

Let \(t_{-1}\) be a real number defined by \(t_{-1}= \min_{1\leq l\leq m}\{ { \inf_{t\geq t_{0}} {\sigma _{l}(t)}\}}\). A function \(x(t)\) is called a solution of Eq. (1.1) if \(x\in C([t_{-1},\infty ),\mathbb{R})\) is continuously differentiable on \([t_{0},\infty )\) and satisfies Eq. (1.1) for all \(t \geq t_{0}\). If \(x(t)\) has arbitrary large zeros, then it is said to be oscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory; otherwise, it is nonoscillatory.

Oscillation and delay phenomena appear in various models from real-world applications; see, e.g., [30, 31] for models from mathematical biology, where oscillation and/or delay actions may be formulated by means of cross-diffusion terms. In particular, the oscillation of first-order delay differential equations has numerous applications in the analysis of higher-order differential equations with deviating arguments (e.g., we can investigate the oscillation and asymptotic behavior of higher-order differential equations with deviating arguments by relating the oscillation of these equations to that of associated first-order delay differential equations); see, e.g., [16, 22, 28, 32] for more detail. Indeed, the oscillation of first-order delay differential equations has attracted the attention of many mathematicians; see [115, 1721, 2327, 29, 3342] and the references therein.

Note that most known criteria require the delays to be nondecreasing, although in many situations, relaxation of the monotonicity of the delay is required for some equations to be more realistic; see [13]. Indeed, the nonmonotonicity of the delay adds difficulties to the problem. As a result, some known criteria for the monotonic case fail to extend to the nonmonotone one; see Braverman and Karpuz [9]. This motivates us to investigate the oscillation of Eq. (1.1) without restricting the monotonic behavior of the delays. Our focus will be only on the lim sup-type conditions in the product form. Next, we give a brief summary of these criteria. First, we introduce the following important notation:

$$\begin{aligned} &\zeta _{r,l}=\liminf_{t\rightarrow \infty } \int _{ \sigma _{r}(t)}^{t} b_{l}(u) \,du, \quad\zeta _{r,l}\leq \frac{1}{\mathrm{e}},\\ &\zeta _{r}=\liminf_{t\rightarrow \infty } \int _{\sigma _{r}(t)}^{t} \sum_{l=1}^{m} b_{l}(u) \,du, \quad\zeta _{r}\leq \frac{1}{\mathrm{e}},\\ &\zeta =\liminf_{t\rightarrow \infty } \int _{\sigma _{ \max}(t)}^{t} \sum_{l=1}^{m} b_{l}(u) \,du, \quad\zeta \leq \frac{1}{\mathrm{e}},\\ &\eta _{l}=\liminf_{t\rightarrow \infty } \int _{\varphi _{l}(t)}^{t} b_{l}(u)\,du, \quad\eta _{l}\leq \frac{1}{\mathrm{e}}, \end{aligned}$$

and

$$\begin{aligned} \eta =\liminf_{t\rightarrow \infty } \int _{\varphi (t)}^{t} \sum_{l=1}^{m} b_{l}(u) \,du,\quad \eta \leq \frac{1}{\mathrm{e}}, \end{aligned}$$

where \(r,l=1,2,\ldots,m\), and \(\varphi _{l}(t)\) and \(\varphi (t)\) are nondecreasing continuous functions such that

$$\begin{aligned} \sigma _{l}(t)\leq \varphi _{l}(t),\quad \text{and}\quad \varphi _{l}(t)\leq \varphi (t),\quad t\geq t_{1}, t_{1} \geq t_{0}, l=1,2,\ldots,m, \end{aligned}$$

and

$$\begin{aligned} \sigma _{\max}(t)=\max_{1\leq l \leq m} \sigma _{l}(t) \quad\text{and}\quad \theta _{l}(t)= \sup _{t_{0}\leq u\leq t} \sigma _{l}(u),\quad l=1,2,\ldots,m, t\geq t_{0}. \end{aligned}$$
(1.2)

Furthermore, the number \(\lambda (\alpha )\) is defined as the smaller real root of the equation \({\mathrm{e}}^{\alpha z}=z\), and the number \(Q(\alpha )\) is defined by

$$\begin{aligned} Q(\alpha )=\frac{1-\alpha -\sqrt{1-2\alpha -\alpha ^{2}}}{2},\quad 0 \leq \alpha \leq \frac{1}{\mathrm{e}}. \end{aligned}$$

The first work in our summary of oscillation criteria is due to Infante et al. [24]. They obtained the following two criteria:

$$\begin{aligned} \limsup_{t\rightarrow \infty } \prod _{r=1}^{m} \Biggl[ \prod _{r_{1}=1}^{m} \int _{\varphi _{r}(t)}^{t} b_{r_{1}}(u) { \mathrm{e}}^{ \int _{\sigma _{r_{1}}(u)}^{\varphi _{r_{1}}(t)} \sum _{l=1}^{m} b_{l}(u_{1}) {\mathrm{e}}^{\int _{\sigma _{l}(u_{1})}^{u_{1}} \sum _{l_{1}=1}^{m} b_{l_{1}}(u_{2}) \,du_{2}}\,du_{1} } \,du \Biggr]^{\frac{1}{m}}>\frac{1}{m^{m}} \end{aligned}$$
(1.3)

and

$$\begin{aligned} \limsup_{\epsilon \rightarrow 0^{+}} \Biggl[ \limsup _{t\rightarrow \infty } \prod_{r=1}^{m} \Biggl[ \prod_{r_{1}=1}^{m} \int _{\varphi _{r}(t)}^{t} b_{r_{1}}(u) { \mathrm{e}}^{ \int _{\sigma _{r_{1}}(u)}^{\varphi _{r_{1}}(t)} \sum _{l=1}^{m} ( \lambda (\zeta _{l,l})-\epsilon )b_{l}(u_{1})\,du_{1} }\,du \Biggr]^{ \frac{1}{m}} \Biggr]>\frac{1}{m^{m}}, \end{aligned}$$
(1.4)

where \(\zeta _{l,l}>0\), \(l=1,2,\ldots,m\).

Koplatadze [25] established the following three conditions:

$$\begin{aligned} \bar{d}>\frac{1}{\mathrm{e}} \quad\text{and} \quad \limsup _{t\rightarrow \infty } \prod_{r=1}^{m} \Biggl[ \prod_{r_{1}=1}^{m} \int _{\varphi _{r}(t)}^{t} b_{r_{1}}(u) \int _{ \sigma _{r_{1}}(u)}^{\varphi _{r_{1}}(t)} \Biggl(\prod _{r_{2}=1}^{m} b_{r_{2}}(u_{1}) \Biggr)^{\frac{1}{m}} \,du_{1} \,du \Biggr]^{\frac{1}{m}}>0, \end{aligned}$$
(1.5)

where \(\bar{d}=\liminf_{t\rightarrow \infty } \sum_{l=1}^{m} \int _{\sigma _{l}(t)}^{t} (\prod_{r=1}^{m}b_{r}(u) )^{ \frac{1}{m}}\,du\),

$$\begin{aligned} & \limsup_{t\rightarrow \infty } \prod _{r=1}^{m} \Biggl[ \prod _{{r_{1}}=1}^{m} \int _{\varphi _{r}(t)}^{t} b_{r_{1}}(u) { \mathrm{e}}^{m (\lambda (\bar{d})-\epsilon )\int _{\sigma _{r_{1}}(u)}^{\varphi _{r_{1}}(t)} (\prod _{r_{2}=1}^{m} b_{r_{2}}(u_{1}) )^{\frac{1}{m}} \,du_{1} } \,du \Biggr]^{\frac{1}{m}} \\ &\quad >\frac{1}{m^{m}}- \frac{\prod_{r=1}^{m} Q(\eta _{r})}{m^{m}}, \end{aligned}$$
(1.6)

where \(0<\bar{d}\leq \frac{1}{\mathrm{e}}\), \(\epsilon \in (0, \lambda (\bar{d}))\), and finally

$$\begin{aligned} & \limsup_{t\rightarrow \infty } \prod _{r=1}^{m} \Biggl[ \prod _{r_{1}=1}^{m} \int _{\varphi _{r}(t)}^{t} b_{r_{1}}(u) { \mathrm{e}}^{m \int _{\sigma _{r_{1}}(u)}^{\varphi _{r_{1}}(t)} (\prod _{r_{2}=1}^{m} b_{r_{2}}(u_{1}) )^{\frac{1}{m}} \Upsilon _{i}(u_{1}) \,du_{1} }\,du \Biggr]^{\frac{1}{m}} \\ &\quad >\frac{1}{m^{m}}- \frac{\prod_{r=1}^{m} Q(\eta _{r})}{m^{m}}, \end{aligned}$$
(1.7)

where \(\Upsilon _{1}(t)=0\) and \(\Upsilon _{i}(t)={\mathrm{e}}^{\sum _{l=1}^{m} \int _{\sigma _{l}(t)}^{t} (\prod _{r=1}^{m} b_{r}(u) )^{\frac{1}{m}}\Upsilon _{i-1}(u) \,du}\), \(i=2,3,\ldots \) .

Attia et al. [4] introduced the condition

$$\begin{aligned} &\limsup_{t\rightarrow \infty } \Biggl(\prod _{r=1}^{m} \Biggl(\prod_{r_{1}=1}^{m} \int _{\varphi _{r}(t)}^{t} W_{r_{1}}(u)\,du \Biggr)^{\frac{1}{m}}+\frac{\prod_{r=1}^{m} Q(\eta _{r})}{m^{m}} { \mathrm{e}}^{\sum _{r=1}^{m}\int _{\varphi _{r}(t)}^{t} \sum _{r_{1}=1}^{m} b_{r_{1}}(u) \,du} \Biggr) \\ &\quad > \frac{1}{m^{m}}, \end{aligned}$$
(1.8)

where

$$\begin{aligned} W_{r_{1}}(u)={\mathrm{e}}^{\int _{\varphi _{r_{1}}(u)}^{u} \sum _{r_{2}=1}^{m} b_{r_{2}}(u_{1}) \,du_{1}} \sum _{r_{2}=1}^{m} b_{r_{2}}(u) \int _{ \sigma _{r_{2}}(u)}^{u} b_{r_{1}}(u_{1}) {\mathrm{e}}^{(\lambda (\eta )- \epsilon )\int _{\sigma _{r_{2}}(u_{1})}^{\varphi _{r_{1}}(u)}\sum _{r_{3}=1}^{m} b_{r_{3}}(u_{2}) \,du_{2}} \,du_{1}, \end{aligned}$$

with \(\eta >0\), \(\epsilon \in (0, \lambda (\eta ))\), and \(r_{1}=1,2,\ldots,m\).

Bereketoglu et al. [7] defined the sequence \(\{\Phi _{\ell}(t)\}_{\ell \ge 0}\) by

$$\begin{aligned} &\Phi _{0}(t)=m \Biggl(\prod_{r_{1}=1}^{m} b_{r_{1}}(t) \Biggr)^{ \frac{1}{m}}, \\ &\Phi _{\ell}(t)= \sum_{l_{1}=1}^{m} b_{l_{1}}(t) \Biggl[ 1+m \Biggl( \prod_{r=1}^{m} \int _{\varphi _{l_{1}}(t)}^{t} b_{r}(u){ \mathrm{e}}^{\int _{\sigma _{r}(u)}^{t} \Phi _{\ell -1}(u_{1}) \,du_{1} }\,du \Biggr)^{\frac{1}{m}} \Biggr],\quad \ell =1,2,\dots, \end{aligned}$$

and obtained the condition

$$\begin{aligned} \limsup_{t\rightarrow \infty } \prod _{l_{1}=1}^{m} \Biggl[\prod_{l_{2}=1}^{m} \int _{\varphi _{l_{1}}(t)}^{t} b_{l_{2}}(u) { \mathrm{e}}^{\int _{\sigma _{l_{2}}(u)}^{\varphi _{l_{2}}(t)} \Phi _{\ell}(u_{1}) \,du_{1}} \,du \Biggr]^{\frac{1}{m}} >\frac{1}{m^{m}} \Biggl( 1-\prod_{r=1}^{m} Q(\eta _{r}) \Biggr). \end{aligned}$$
(1.9)

Moremedi et al. [33] established the criterion

$$\begin{aligned} \limsup_{t\rightarrow \infty } \prod _{r=1}^{m} \Biggl[ \prod _{r_{1}=1}^{m} \int _{\varphi _{r}(t)}^{t} b_{r_{1}}(u) { \mathrm{e}}^{ \int _{\sigma _{r_{1}}(u)}^{\varphi _{r_{1}}(t)} \Lambda _{\ell}(u_{1}) \,du_{1}} \,du \Biggr]^{\frac{1}{m}} >\frac{1}{m^{m}} \Biggl( 1-\prod_{r=1}^{m} Q(\eta _{r}) \Biggr), \end{aligned}$$
(1.10)

where \(\Lambda _{0}(t)=\sum_{l=1}^{m} b_{l}(t)\) and

$$\begin{aligned} \Lambda _{\ell}(t)= \sum_{l=1}^{m} b_{l}(t) \Biggl[ 1+ \int _{ \varphi _{l}(t)}^{t} \sum_{l_{1}=1}^{m} b_{l_{1}}(u) {\mathrm{e}}^{\int _{ \sigma _{l_{1}}(u)}^{t} \sum _{l_{2}=1}^{m} b_{l_{2}}(u_{1}) {\mathrm{e}}^{ \int _{\sigma _{l_{2}}(u_{1})}^{u_{1}} \Lambda _{{\ell}-1}(u_{2}) \,du_{2}} \,du_{1}} \,du \Biggr],\quad \ell \in \mathbb{N}. \end{aligned}$$

Attia and El-Morshedy [5] improved (1.3) and (1.7) with \(i=3\) and obtained the criterion

$$\begin{aligned} & \limsup_{t\rightarrow \infty } \Biggl(m \Biggl( \prod _{r=1}^{m} Q(\eta _{r}) \Biggr)^{1-\frac{1}{m}} \sum_{l=1}^{m} Z_{l}(t)+\sum_{l=2}^{m} m^{l} \Biggl(\prod_{l_{1}=1}^{m} Q( \eta _{l_{1}}) \Biggr)^{1- \frac{l}{m}} \prod_{r=1}^{l} Z_{r}(t) \Biggr) \\ &\quad> 1-\prod_{r=1}^{m} Q( \eta _{r}), \end{aligned}$$
(1.11)

where

$$\begin{aligned} Z_{l}(t)= \Biggl(\prod_{r=1}^{m} \int _{\varphi _{l}(t)}^{t} b_{r}(u) { \mathrm{e}}^{\int _{\sigma _{r}(u)}^{\varphi _{r}(t)}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) {\mathrm{e}}^{ (\lambda (\eta )-\epsilon ) \int _{\sigma _{l_{1}}(u_{1})}^{u_{1}} \sum _{{l_{2}}=1}^{m} b_{l_{2}}(u_{2}) \,du_{2}} \,du_{1}} \,du \Biggr)^{ \frac{1}{m}} \end{aligned}$$

for \(l=1,2,\ldots,m\), \(\eta >0\), and \(\epsilon \in (0, \lambda (\eta ))\).

In the next section, we obtain several new oscillation criteria for Eq. (1.1). Moreover, we give a practical example to show that our results can be used to test the oscillation of a certain equation, whereas the criteria listed above fail.

2 Main results

We state some important results for Eq. (1.1) when it possesses a positive solution \(x(t)\). In this case, \(x(t)\) is eventually nonincreasing and eventually satisfies the inequalities

$$\begin{aligned} x'(t)+x\bigl(\sigma _{l}(t)\bigr) b_{l}(t) \leq 0,\quad l=1,2,\dots,m, \end{aligned}$$

and

$$\begin{aligned} x'(t)+x\bigl(\sigma _{\max}(t)\bigr)\sum _{l=1}^{m} b_{l}(t)\leq 0. \end{aligned}$$

Therefore [42], [24, Lemma 3.1], [19, Lemma 2.1.2], and the nonincreasing nature of \(x(t)\) imply respectively, for \(l=1,2,\dots,m\), that

$$\begin{aligned} & \liminf_{t\rightarrow \infty } \frac{x(t)}{x(\varphi _{l}(t))}\geq Q(\eta _{l}), \end{aligned}$$
(2.1)
$$\begin{aligned} &\liminf_{t\rightarrow \infty } \frac{x(\sigma _{l}(t))}{x(t)}\geq \lambda ( \zeta _{l,l}),\quad l=1,2,\dots,m, \end{aligned}$$
(2.2)

and

$$\begin{aligned} \liminf_{t\rightarrow \infty } \frac{x(\sigma _{l}(t))}{x(t)}\geq \liminf _{t\rightarrow \infty } \frac{x(\sigma _{\max}(t))}{x(t)}\geq \lambda (\zeta ), \end{aligned}$$
(2.3)

where \(\zeta, \zeta _{l,l}>0\).

If nothing else is stated, all inequalities are assumed to hold eventually.

Lemma 2.1

If \(x(t)\) is an eventually positive solution of Eq. (1.1), then

$$\begin{aligned} \liminf_{t\rightarrow \infty } \frac{x(\sigma _{r}(t))}{ x(t)} \geq { \mathrm{e}}^{\max \{\sum _{l=1}^{m} \zeta _{r,l} \lambda ^{*}_{l}, \lambda ^{*} (\zeta ) \zeta _{r} \}},\quad r=1,2,\ldots,m, \end{aligned}$$
(2.4)

where \(\lambda _{l}^{*}=\max \{\lambda ^{*}(\zeta _{l,l}),\lambda ^{*}( \zeta )\}\), and

$$\begin{aligned} \lambda ^{*}(z)=\textstyle\begin{cases} 1,& z=0, \\ \lambda (z ),& z>0. \end{cases}\displaystyle \end{aligned}$$

Proof

Dividing Eq. (1.1) by \(x(t)\) and integrating from u to t, \(u \leq t\), we obtain

$$\begin{aligned} -\ln \biggl(\frac{x(t)}{x(u)} \biggr)=\sum_{l=1}^{m} \int _{u}^{t} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}, \end{aligned}$$

which is equivalent to

$$\begin{aligned} x(u)=x(t) {\mathrm{e}}^{\int _{u}^{t}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}}. \end{aligned}$$
(2.5)

Therefore

$$\begin{aligned} \frac{x(\sigma _{r}(t))}{ x(t)}= {\mathrm{e}}^{\int _{\sigma _{r}(t)}^{t} \sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}}. \end{aligned}$$
(2.6)

Equation (2.6) leads to the following two inequalities, using (2.2) and (2.3), for all sufficiently small \(\epsilon >0\):

$$\begin{aligned} \frac{x(\sigma _{r}(t))}{ x(t)} \geq {\mathrm{e}}^{\sum _{l=1}^{m} ( \zeta _{r,l}-\epsilon ) (\lambda _{l}^{*}-\epsilon )} \end{aligned}$$

and

$$\begin{aligned} \frac{x(\sigma _{r}(t))}{ x(t)}\geq {\mathrm{e}}^{ (\lambda ^{*}( \zeta )-\epsilon ) (\zeta _{r}-\epsilon )}. \end{aligned}$$

Now taking the lower limits as \(t\rightarrow \infty \) and then letting \(\epsilon \rightarrow 0\), we get

$$\begin{aligned} \liminf_{t\rightarrow \infty } \frac{x(\sigma _{r}(t))}{ x(t)} \geq {\mathrm{e}}^{\sum _{l=1}^{m} \zeta _{r,l} \lambda _{l}^{*}} \end{aligned}$$

and

$$\begin{aligned} \liminf_{t\rightarrow \infty } \frac{x(\sigma _{r}(t))}{ x(t)}\geq {\mathrm{e}}^{\lambda ^{*}(\zeta ) \zeta _{r}}. \end{aligned}$$

The last two inequalities are equivalent to (2.4). □

For an easy reference, the sequences \(\{\Omega _{r}^{(n)}(t)\}_{n\geq 0}\), \(r=1,2,\dots,m\), are defined as follows:

$$\begin{aligned} &\Omega _{r}^{(0)}(t)=\textstyle\begin{cases} 1 & \zeta =\zeta _{r,l}=0 \text{ for all } l=1,2,\dots,m, \\ {\mathrm{e}}^{\max \{\sum _{l=1}^{m} \zeta _{r,l} \lambda ^{*}_{l}, \lambda ^{*} (\zeta )\zeta _{r} \}}-\epsilon _{r} &\text{otherwise}, \end{cases}\displaystyle \\ &\Omega _{r}^{(n)}(t)= \frac{{\mathrm{e}}^{\int _{\varphi _{r}(t)}^{t}\sum _{\underset{k \neq r}{k=1}}^{m} b_{k}(u) \Omega _{k}^{(n-1)}(u) \,du} }{1-G_{r,r}^{(n-1)}(t)},\quad n=1,2, \dots, \end{aligned}$$

where \(\epsilon _{r} \in (0,{\mathrm{e}}^{\max \{\sum _{l=1}^{m} \zeta _{r,l} \bar{\lambda _{l}}, \lambda (\zeta )\zeta _{r} \}} )\), and

$$\begin{aligned} G_{i,k}^{(n)}(t)= \int _{\varphi _{i}(t)}^{t} b_{k}(u) { \mathrm{e}}^{\int _{ \sigma _{k}(u)}^{\varphi _{k}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \Omega _{l}^{(n)}(u_{1}) \,du_{1}} \,du,\quad i,k=1,2,\dots,m. \end{aligned}$$

Lemma 2.2

Assume that \(x(t)\) is an eventually positive solution of Eq. (1.1), \(n \in \mathbb{N}_{0}\), and \(j\in \{1,2,\dots,m\}\). Then the inequalities \(G_{j,j}^{(n)}(t)<1\) and

$$\begin{aligned} \prod_{r=1}^{m} \biggl( \frac{1}{1-G_{r,r}^{(n)}(t)} \biggr) \Biggl( \prod_{r=1}^{m} \biggl(\frac{x(t)}{x(\varphi _{r}(t))} \biggr)+ (m-1 )^{m} \prod _{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{ \frac{1}{m-1}} \Biggr) \leq 1 \end{aligned}$$
(2.7)

are satisfied.

Proof

Since \(x(t)\) is an eventually positive solution of Eq. (1.1), for any sufficiently small \(\epsilon _{r}>0\), inequality (2.4) yields

$$\begin{aligned} \frac{x(\sigma _{r}(t))}{x(t)}> {\mathrm{e}}^{\max \{\sum _{l=1}^{m} \zeta _{r,l} \lambda ^{*}_{l}, \lambda ^{*} (\zeta ) \zeta _{r} \}} -\epsilon _{r},\quad \zeta >0 \text{ or } \zeta _{r,l}>0 \text{ for some } l=1,2,\dots,m. \end{aligned}$$

Combining this inequality with the fact that \(\frac{x(\sigma _{r}(t))}{x(t)}\geq 1\), we obtain

$$\begin{aligned} \frac{x(\sigma _{r}(t))}{x(t)}\geq \Omega _{r}^{(0)}(t). \end{aligned}$$
(2.8)

Integrating Eq. (1.1) from \(\varphi _{i}(t)\) to t, \(i=1,2,\ldots,m\), we get

$$\begin{aligned} x(t)-x\bigl(\varphi _{i}(t)\bigr)+ \int _{\varphi _{i}(t)}^{t} b_{i}(u) x\bigl( \sigma _{i}(u)\bigr) \,du+ \sum_{\underset{l \neq i}{l=1}}^{m} \int _{ \varphi _{i}(t)}^{t} b_{l}(u) x\bigl(\sigma _{l}(u)\bigr) \,du=0. \end{aligned}$$
(2.9)

On the other hand, proceeding as in the proof of Lemma 2.1, we obtain (2.5), which yields

$$\begin{aligned} x\bigl(\sigma _{i}(u)\bigr)=x\bigl(\varphi _{i}(t)\bigr) {\mathrm{e}}^{\int _{\sigma _{i}(u)}^{ \varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}}, \quad\varphi _{i}(t) \leq u \leq t, \end{aligned}$$

and

$$\begin{aligned} x\bigl(\sigma _{l}(u)\bigr)=\frac{x(\sigma _{l}(u))}{x(u)}x(u)=x(t) \frac{x(\sigma _{l}(u))}{x(u)} {\mathrm{e}}^{\int _{u}^{t}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) \frac{x(\sigma _{l_{1}}(u_{1}))}{x(u_{1})} \,du_{1}},\quad \varphi _{i}(t)\leq u \leq t. \end{aligned}$$

Substituting into (2.9), we get

$$\begin{aligned} x\bigl(\varphi _{i}(t)\bigr)={}&x(t)+x\bigl(\varphi _{i}(t)\bigr) \int _{\varphi _{i}(t)}^{t} b_{i}(u) { \mathrm{e}}^{\int _{\sigma _{i}(u)}^{\varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}} \,du \\ &{}+ x(t) \sum_{\underset{l \neq i}{l=1}}^{m} \int _{\varphi _{i}(t)}^{t} b_{l}(u) \frac{x(\sigma _{l}(u))}{x(u)} {\mathrm{e}}^{\int _{u}^{t}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) \frac{x(\sigma _{l_{1}}(u_{1}))}{x(u_{1})} \,du_{1}} \,du. \end{aligned}$$

Therefore

$$\begin{aligned} x\bigl(\varphi _{i}(t)\bigr)\geq {}&x(t)+x\bigl(\varphi _{i}(t)\bigr) \int _{\varphi _{i}(t)}^{t} b_{i}(u) { \mathrm{e}}^{\int _{\sigma _{i}(u)}^{\varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}} \,du \\ &{}+x(t) \int _{\varphi _{i}(t)}^{t} \sum_{\underset{l \neq i}{l=1}}^{m} b_{l}(u) \frac{x(\sigma _{l}(u))}{x(u)} {\mathrm{e}}^{\int _{u}^{t}\sum _{\underset{j \neq i}{j=1}}^{m} b_{j}(u_{1}) \frac{x(\sigma _{j}(u_{1}))}{x(u_{1})} \,du_{1}} \,du, \end{aligned}$$

that is,

$$\begin{aligned} x\bigl(\varphi _{i}(t)\bigr)\geq{} &x\bigl(\varphi _{i}(t)\bigr) \int _{\varphi _{i}(t)}^{t} b_{i}(u) { \mathrm{e}}^{\int _{\sigma _{i}(u)}^{\varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}} \,du \\ &{}+x(t) {\mathrm{e}}^{\int _{\varphi _{i}(t)}^{t}\sum _{\underset{l \neq i}{l=1}}^{m} b_{l}(u) \frac{x(\sigma _{l}(u))}{x(u)} \,du}. \end{aligned}$$

Hence

$$\begin{aligned} \frac{ x(\varphi _{i}(t))}{ x(t)} \geq \frac{{\mathrm{e}}^{\int _{\varphi _{i}(t)}^{t}\sum _{\underset{l \neq i}{l=1}}^{m} b_{l}(u) \frac{x(\sigma _{l}(u))}{x(u)} \,du} }{1-\int _{\varphi _{i}(t)}^{t} b_{i}(u) {\mathrm{e}}^{\int _{\sigma _{i}(u)}^{\varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}} \,du}. \end{aligned}$$

Now by (2.8) it follows that

$$\begin{aligned} \frac{ x(\varphi _{i}(t))}{ x(t)} &\geq \frac{{\mathrm{e}}^{\int _{\varphi _{i}(t)}^{t}\sum _{\underset{l \neq i}{l=1}}^{m} b_{l}(u) \Omega _{l}^{(0)}(u) \,du} }{1-\int _{\varphi _{i}(t)}^{t} b_{i}(u) {\mathrm{e}}^{\int _{\sigma _{i}(u)}^{\varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \Omega _{l}^{(0)}(u_{1}) \,du_{1}} \,du} \\ &= \frac{{\mathrm{e}}^{\int _{\varphi _{i}(t)}^{t}\sum _{\underset{l \neq i}{l=1}}^{m} b_{l}(u) \Omega _{l}^{(0)}(u) \,du}}{1-G_{i,i}^{(0)}(t)}= \Omega _{i}^{(1)}(t). \end{aligned}$$

Continuing in this way, we can prove that

$$\begin{aligned} \frac{ x(\varphi _{i}(t))}{ x(t)} \geq \frac{{\mathrm{e}}^{\int _{\varphi _{i}(t)}^{t}\sum _{\underset{l \neq i}{l=1}}^{m} b_{l}(u) \Omega _{l}^{(n-1)}(u) \,du} }{1-G_{i,i}^{(n-1)}(t)}= \Omega _{i}^{(n)}(t),\quad n\geq 1. \end{aligned}$$
(2.10)

Returning to (2.5), we obtain

$$\begin{aligned} x\bigl(\sigma _{i}(u)\bigr)=x\bigl(\varphi _{i}(t)\bigr) {\mathrm{e}}^{\int _{\sigma _{i}(u)}^{ \varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}},\quad \varphi _{i}(t) \leq u \leq t. \end{aligned}$$
(2.11)

Therefore (2.9) implies that

$$\begin{aligned} x\bigl(\varphi _{i}(t)\bigr)={}&x(t)+x\bigl(\varphi _{i}(t)\bigr) \int _{\varphi _{i}(t)}^{t} b_{i}(u) { \mathrm{e}}^{\int _{\sigma _{i}(u)}^{\varphi _{i}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})} \,du_{1}} \,du \\ &{}+\sum_{\underset{l \neq i}{l=1 }}^{m} x\bigl(\varphi _{l}(t)\bigr) \int _{ \varphi _{i}(t)}^{t} b_{l}(u) { \mathrm{e}}^{\int _{\sigma _{l}(u)}^{ \varphi _{l}(t)}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) \frac{x(\sigma _{l_{1}}(u_{1}))}{x(u_{1})} \,du_{1}} \,du. \end{aligned}$$

However, (2.10) leads to

$$\begin{aligned} \frac{x(\sigma _{l}(u_{1}))}{x(u_{1})}\geq \frac{ x(\varphi _{i}(t))}{ x(t)} \geq \Omega _{l}^{(n)}(t). \end{aligned}$$

Consequently, the previous equation leads to the inequality

$$\begin{aligned} x\bigl(\varphi _{i}(t)\bigr) \bigl(1-G_{i,i}^{(n)}(t) \bigr) \geq x(t)+\sum_{\underset {l \neq i}{l=1}}^{m} x\bigl( \varphi _{l}(t)\bigr) G_{i,l}^{(n)}(t)>0. \end{aligned}$$

This proves that \(G_{i,i}^{(n)}(t)<1\) and

$$\begin{aligned} \frac{x(\varphi _{i}(t))}{x(t)} \geq \frac{1+\sum_{\underset {l \neq i}{l=1}}^{m} \frac{x(\varphi _{l}(t))}{x(t)} G_{i,l}^{(n)}(t)}{1-G_{i,i}^{(n)}(t)}. \end{aligned}$$

Then the arithmetic–geometric mean leads to

$$\begin{aligned} \frac{x(\varphi _{i}(t))}{x(t)} \geq \frac{1+ (m-1 ) ( \prod_{\underset{r \neq i}{r=1}}^{m} \frac{x(\varphi _{r}(t))}{x(t)} )^{\frac{1}{m-1}} ( \prod_{\underset{r \neq i}{r=1}}^{m} G_{i,r}^{(n)}(t) )^{\frac{1}{m-1}}}{1-G_{i,i}^{(n)}(t)}. \end{aligned}$$

Taking the product of both sides, we get

$$\begin{aligned} &\prod_{r=1}^{m} \biggl(\frac{x(\varphi _{r}(t))}{x(t)} \biggr) \\ &\quad\geq A^{(n)}(t) \Biggl(1+ (m-1 )^{m} \prod _{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} \frac{x(\varphi _{r_{1}}(t))}{x(t)} \Biggr)^{\frac{1}{m-1}} \prod_{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{\frac{1}{m-1}} \Biggr), \end{aligned}$$

where \(A^{(n)}(t)=\prod_{r=1}^{m} (\frac{1}{1-G_{r,r}^{(n)}(t)} )\). Therefore

$$\begin{aligned} &\prod_{r=1}^{m} \biggl(\frac{x(\varphi _{r}(t))}{x(t)} \biggr) \\ &\quad\geq A^{(n)}(t) \Biggl(1+ (m-1 )^{m} \Biggl( \Biggl( \prod_{r=1}^{m} \frac{x(\varphi _{r}(t))}{x(t)} \Biggr)^{m-1} \Biggr)^{\frac{1}{m-1}} \prod_{r=1}^{m} \Biggl( \prod_{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{\frac{1}{m-1}} \Biggr). \end{aligned}$$

Thus

$$\begin{aligned} \prod_{r=1}^{m} \biggl(\frac{x(\varphi _{r}(t))}{x(t)} \biggr) \geq A^{(n)}(t) \Biggl(1+ (m-1 )^{m} \prod _{r=1}^{m} \biggl( \frac{x(\varphi _{r}(t))}{x(t)} \biggr) \prod _{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{\frac{1}{m-1}} \Biggr). \end{aligned}$$

Then

$$\begin{aligned} A^{(n)}(t) \Biggl(\prod_{r=1}^{m} \biggl( \frac{x(t)}{x(\varphi _{r}(t))} \biggr)+ (m-1 )^{m} \prod _{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{\frac{1}{m-1}} \Biggr) \leq 1. \end{aligned}$$

 □

Theorem 2.1

Assume that \(i\in \{1,2,\dots,m\}\) and either one of the following conditions is satisfied for some \(n \in \mathbb{N}_{0}\):

  1. (i)

    there exists a sequence \(\{c_{k}\}_{k\geq 0}\) such that \(\lim_{k\rightarrow \infty } c_{k}=\infty \) and

    $$\begin{aligned} G_{i,i}^{(n)}(c_{k})\geq 1\quad \textit{for all $k \in \mathbb{N}_{0}$}, \end{aligned}$$
    (2.12)
  2. (ii)
    $$\begin{aligned} &\limsup_{t\rightarrow \infty } \Biggl(\prod _{r=1}^{m} \frac{1}{1-G_{r,r}^{(n)}(t)} \Biggl(\prod _{r=1}^{m} Q (\eta _{r} )+ (m-1 )^{m} \prod_{r=1}^{m} \Biggl( \prod_{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{ \frac{1}{m-1}} \Biggr) \Biggr) \\ &\quad >1. \end{aligned}$$
    (2.13)

Then Eq. (1.1) is oscillatory.

Proof

We assume for contradiction that Eq. (1.1) has a nonoscillatory solution \(x(t)\). Because of the linearity of Eq. (1.1), there is no loss of generality to assume the existence of a sufficiently large \(T\geq t_{0}\) such that \(x(t)>0\) for all \(t\geq T\). Then Lemma 2.2 leads to \(G_{i,i}^{(n)}(t)<1\) for all \(i=1,2,\dots,m\) and \(n \in \mathbb{N}_{0}\). This contradicts (2.12) and hence proves (i). For the proof of (ii), we see from (2.1) and (2.7) that

$$\begin{aligned} \limsup_{t\rightarrow \infty } \Biggl(\prod_{r=1}^{m} \frac{1}{1-G_{r,r}^{(n)}(t)} \Biggl(\prod_{r=1}^{m} Q (\eta _{r} )+ (m-1 )^{m} \prod _{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{ \frac{1}{m-1}} \Biggr) \Biggr)\leq 1, \end{aligned}$$

which is impossible due to (2.13). □

Next, we define the functions \(C^{(n)}_{r}(t)\) and \(D_{r}^{(n)}(t)\) for some \(n\in \mathbb{N}_{0}\) as follows:

$$\begin{aligned} C^{(n)}_{r}(t)={}& \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \,du\\ &{}+ \int _{t}^{ \varphi ^{-1}_{r}(t)}b_{r}(u) \int _{\sigma _{r}(u)}^{t} \sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u_{1}) {\mathrm{e}}^{\int _{\sigma _{l}(u_{1})}^{t} \sum _{l_{1}=1}^{m} b_{l_{1}}(u_{2}) \Omega _{l_{1}}^{(n)}(u_{2}) \,du_{2}} \,du_{1} \,du \\ &{}+ \int _{t}^{\varphi ^{-1}_{r}(t)}\sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u){\mathrm{e}}^{\int _{\sigma _{l}(u)}^{t}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) \Omega ^{(n)}_{l_{1}}(u_{1}) \,du_{1}} \,du, \end{aligned}$$

and

$$\begin{aligned} D_{r}^{(n)}(t)= \frac{\int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u)\int _{\sigma _{r}(u)}^{t}b_{r}(u_{1})\,du_{1} \,du}{1-C^{(n)}_{r}(t)}, \end{aligned}$$

where \(\varphi _{r}(t)\) are strictly increasing functions for all \(r=1,2,\dots,m\).

Theorem 2.2

Assume that the function \(\varphi _{r}(t)\) is strictly increasing for each \(r=1,2,\dots,m\). Suppose that for some \(n\in \mathbb{N}_{0}\),

  1. (i)

    there exists a sequence \(\{d_{k}\}_{k\geq 0}\) such that \(\lim_{k\rightarrow \infty } d_{k}=\infty \),

    $$\begin{aligned} C_{r}^{(n)}(d_{k})\geq 1\quad \textit{for some $r\in \{1,2,\dots,m\}$ and all $k\in \mathbb{N}_{0}$}, \end{aligned}$$
    (2.14)

    or

  2. (ii)
    $$\begin{aligned} &\limsup_{t\rightarrow \infty } \Biggl(\prod _{r=1}^{m} \biggl(\frac{1}{1-G_{r,r}^{(n)}(t)} \biggr) \Biggl( \prod_{r=1}^{m} D_{r}^{(n)}(t)+ (m-1 )^{m} \prod_{r=1}^{m} \Biggl( \prod_{\underset {r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{ \frac{1}{m-1}} \Biggr) \Biggr) \\ &\quad >1. \end{aligned}$$
    (2.15)

Then Eq. (1.1) is oscillatory.

Proof

As in the proof of the previous theorem, we assume that Eq. (1.1) has an eventually positive solution \(x(t)\). Integrating Eq. (1.1) from t to \(\varphi ^{-1}_{r}(t)\), we have

$$\begin{aligned} x\bigl(\varphi ^{-1}_{r}(t)\bigr)-x(t)+ \int _{t}^{\varphi ^{-1}_{r}(t)}\sum_{l=1}^{m} b_{l}(u)x\bigl(\sigma _{l}(u)\bigr)\,du=0, \end{aligned}$$

that is,

$$\begin{aligned} x\bigl(\varphi ^{-1}_{r}(t)\bigr)-x(t)+ \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u)x\bigl( \sigma _{r}(u)\bigr)\,du + \int _{t}^{\varphi ^{-1}_{r}(t)}\sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u)x\bigl(\sigma _{l}(u)\bigr)\,du=0. \end{aligned}$$
(2.16)

Again, integrating Eq. (1.1) from \(\sigma _{r}(u)\) to \(t\leq u \leq \varphi ^{-1}_{r}(t)\), we obtain

$$\begin{aligned} x\bigl(\sigma _{r}(u)\bigr)=x(t)+ \int _{\sigma _{r}(u)}^{t}\sum_{l=1}^{m} b_{l}(u_{1})x\bigl( \sigma _{l}(u_{1}) \bigr)\,du_{1}. \end{aligned}$$

Substituting into (2.16), we get

$$\begin{aligned} x(t)={}&x\bigl(\varphi ^{-1}_{r}(t)\bigr)+x(t) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \,du + \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \int _{\sigma _{r}(u)}^{t}b_{r}(u_{1})x \bigl( \sigma _{r}(u_{1})\bigr)\,du_{1} \,du \\ &{}+ \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \int _{\sigma _{r}(u)}^{t} \sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u_{1})x\bigl(\sigma _{l}(u_{1}) \bigr)\,du_{1} \,du+ \int _{t}^{\varphi ^{-1}_{r}(t)}\sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u)x\bigl(\sigma _{l}(u)\bigr)\,du. \end{aligned}$$

Recalling that (2.5) holds and \(x(t)\) is nonincreasing, it follows that

$$\begin{aligned} x(t)\geq {}&x\bigl(\varphi ^{-1}_{r}(t)\bigr)+x(t) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \,du +x\bigl( \varphi _{r}(t)\bigr) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \int _{ \sigma _{r}(u)}^{t}b_{r}(u_{1}) \,du_{1} \,du \\ &{}+x(t) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \int _{\sigma _{r}(u)}^{t} \sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u_{1}) {\mathrm{e}}^{\int _{ \sigma _{l}(u_{1})}^{t}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{2}) \frac{x(\sigma _{l_{1}}(u_{2}))}{x(u_{2})} \,du_{2}} \,du_{1} \,du \\ &{}+x(t) \int _{t}^{\varphi ^{-1}_{r}(t)}\sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u){\mathrm{e}}^{\int _{\sigma _{l}(u)}^{t} \sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) \frac{x(\sigma _{l_{1}}(u_{1}))}{x(u_{1})} \,du_{1}} \,du. \end{aligned}$$

Since \(\frac{x(\sigma _{l_{1}}(u_{2}))}{x(u_{2})}\geq \Omega ^{(n)}_{l_{1}}(u_{2})\) (from (2.11)), we have

$$\begin{aligned} x(t)\geq{} &x\bigl(\varphi ^{-1}_{r}(t)\bigr)+x(t) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \,du +x\bigl( \varphi _{r}(t)\bigr) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \int _{ \sigma _{r}(u)}^{t}b_{r}(u_{1}) \,du_{1} \,du \\ &{}+x(t) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \int _{\sigma _{r}(u)}^{t} \sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u_{1}) {\mathrm{e}}^{\int _{ \sigma _{l}(u_{1})}^{t}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{2}) \Omega ^{(n)}_{l_{1}}(u_{2}) \,du_{2}} \,du_{1} \,du \\ &{}+x(t) \int _{t}^{\varphi ^{-1}_{r}(t)}\sum_{\underset {l \neq r}{l=1}}^{m} b_{l}(u){\mathrm{e}}^{\int _{\sigma _{l}(u)}^{t} \sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) \Omega ^{(n)}_{l_{1}}(u_{1}) \,du_{1}} \,du. \end{aligned}$$

Therefore

$$\begin{aligned} x(t) \bigl(1-C_{r}^{(n)}(t) \bigr) \geq x \bigl(\varphi ^{-1}_{r}(t)\bigr)+x\bigl( \varphi _{r}(t)\bigr) \int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u) \int _{ \sigma _{r}(u)}^{t}b_{r}(u_{1}) \,du_{1} \,du>0, \end{aligned}$$
(2.17)

which leads to \(C_{r}^{(n)}(t)<1\). This contradicts (2.14) and completes the proof of (i).

To prove (ii), we notice from (2.17) that

$$\begin{aligned} \frac{x(t)}{x(\varphi _{r}(t))} > \frac{\int _{t}^{\varphi ^{-1}_{r}(t)}b_{r}(u)\int _{\sigma _{r}(u)}^{t}b_{r}(u_{1})\,du_{1} \,du}{1-C_{r}^{(n)}(t)}=D_{r}^{(n)}(t). \end{aligned}$$

Substituting into (2.7) and then taking the upper limit of both sides, we get a contradiction with (2.15). The proof of the theorem is complete. □

Corollary 2.1

Let \(q_{k},\mu _{k}>0\) be such that \(\sigma _{k}(t) \leq t- \mu _{k}\), \(b_{k}(t) \geq q_{k}\) on \((a_{j}, a_{j}+3\mu ^{*} )\), \(k\in \{1,2,\dots,m\}\) and \(j \in \mathbb{N}_{0}\), \(\mu ^{*}={\max \mu _{k}}_{1\leq k \leq m}\), and \(\lim_{j\rightarrow \infty } a_{j}= \infty \). If

$$\begin{aligned} \prod_{r=1}^{m} \frac{1}{1-D_{r,r} } \Biggl(\prod_{r=1}^{m} Q ( \eta _{r} )+ (m-1 )^{m} \prod _{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} D_{r,r_{1}} \Biggr)^{ \frac{1}{m-1}} \Biggr) > 1, \end{aligned}$$
(2.18)

where \(D_{i,k}=\frac{q_{k}}{B} ({\mathrm{e}}^{\mu _{i} B}-1 )\) and \(B=\sum_{l=1}^{m} \frac{q_{l}}{1-\mu _{l} q_{l}}\), \(i=1,2,\ldots,m\), then Eq. (1.1) is oscillatory.

Proof

Let \(\varphi _{k}(t)=t-\mu _{k}\), \(k=1,2,\dots,m\). Then

$$\begin{aligned} G_{k,k}^{(0)}(t)= \int _{\varphi _{k}(t)}^{t} b_{k}(u) { \mathrm{e}}^{\int _{ \sigma _{k}(u)}^{\varphi _{k}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \Omega _{l}^{(0)}(u_{1}) \,du_{1}} \,du \geq \int _{t- \mu _{k}}^{t} b_{k}(u) \,du. \end{aligned}$$

This leads to

$$\begin{aligned} \Omega _{k}^{(1)}(t)= \frac{{\mathrm{e}}^{\int _{\varphi _{k}(t)}^{t}\sum _{\underset{l \neq k}{l=1}}^{m} b_{l}(u) \Omega _{l}^{(0)}(u) \,du} }{1-G_{k,k}^{(0)}(t)} \geq \frac{1}{1-\int _{t- \mu _{k}}^{t} b_{k}(u) \,du}. \end{aligned}$$
(2.19)

Also,

$$\begin{aligned} G_{i,k}^{(1)}(t)&= \int _{\varphi _{i}(t)}^{t} b_{k}(u) { \mathrm{e}}^{ \int _{\sigma _{k}(u)}^{\varphi _{k}(t)}\sum _{l=1}^{m} b_{l}(u_{1}) \Omega _{l}^{(1)}(u_{1}) \,du_{1}} \,du \\ &\geq \int _{t- \mu _{i}}^{t} b_{k}(u) { \mathrm{e}}^{\int _{u- \mu _{k}}^{t- \mu _{k}}\sum _{l=1}^{m} b_{l}(u_{1}) \Omega _{l}^{(1)}(u_{1}) \,du_{1}} \,du \\ &\geq \int _{t- \mu _{i}}^{t} b_{k}(u) { \mathrm{e}}^{\int _{u- \mu _{k}}^{t- \mu _{k}}\sum _{l=1}^{m} \frac{b_{l}(u_{1})}{1-\int _{u_{1}- \mu _{l}}^{u_{1}} b_{l}(u_{2}) \,du_{2}} \,du_{1}} \,du, \quad i=1,2,\dots,m. \end{aligned}$$

Therefore

$$\begin{aligned} G_{i,k}^{(1)}(a_{j}+3\mu _{k})&\geq \int _{a_{j}+3\mu _{k}- \mu _{i}}^{a_{j}+3 \mu _{k}} q_{k} { \mathrm{e}}^{\int _{u- \mu _{k}}^{a_{j}+3\mu _{k}- \mu _{k}} \sum _{l=1}^{m} \frac{q_{l}}{1-\mu _{l} q_{l}}\,du_{1}} \,du \\ &=\frac{q_{k}}{B} \bigl({\mathrm{e}}^{\mu _{i} B}-1 \bigr)=D_{i,k}. \end{aligned}$$
(2.20)

Now let

$$\begin{aligned} I(t)=\prod_{r=1}^{m} \frac{1}{1-G_{r,r}^{(1)}(t)} \Biggl(\prod_{r=1}^{m} Q (\eta _{r} )+ (m-1 )^{m} \prod_{r=1}^{m} \Biggl( \prod_{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(n)}(t) \Biggr)^{\frac{1}{m-1}} \Biggr). \end{aligned}$$

Then (2.20) leads to

$$\begin{aligned} I(a_{j}+3\mu _{k})\geq \prod _{r=1}^{m} \frac{1}{1-D_{r,r} } \Biggl( \prod _{r=1}^{m} Q (\eta _{r} )+ (m-1 )^{m} \prod_{r=1}^{m} \Biggl( \prod_{\underset{r_{1} \neq r}{r_{1}=1}}^{m} D_{r,r_{1}} \Biggr)^{\frac{1}{m-1}} \Biggr) >1. \end{aligned}$$

It follows that (2.13) with \(n=1\) is satisfied, and hence (ii) of Theorem 2.1 guarantees the oscillation of Eq. (1.1). □

Corollary 2.2

Let \(q_{k},\mu _{k}>0\) be such that \(\sigma _{k}(t) \leq t- \mu _{k}\), \(b_{k}(t) \geq q_{k}\) on \((a_{j}, a_{j}+4\mu ^{*} )\), \(k\in \{1,2,\dots,m\}\), and \(j \in \mathbb{N}\), \(\mu ^{*}={\max \mu _{k}}_{1\leq k \leq m}\), and \(\lim_{j\rightarrow \infty } a_{j}= \infty \). If

$$\begin{aligned} \prod_{r=1}^{m} \frac{1}{1-D_{r,r} } \Biggl(\prod_{r=1}^{m} \frac{q^{2}_{r} \mu _{r}^{2}}{2 (1-H_{r} )} + (m-1 )^{m} \prod_{r=1}^{m} \Biggl(\prod_{\underset{r_{1} \neq r}{r_{1}=1}}^{m} D_{r,r_{1}} \Biggr)^{ \frac{1}{m-1}} \Biggr) > 1, \end{aligned}$$
(2.21)

where B, \(D_{i,k}\) are defined as in Corollary 2.1, and

$$\begin{aligned} H_{k}=q_{k}\mu _{k} +q_{k} \bigl(1-{\mathrm{e}}^{-B \mu _{k}} \bigr) \sum_{\underset{l \neq k}{l=1}}^{m} q_{l} \frac{{\mathrm{e}}^{B \mu _{l}}}{B}+ \bigl({\mathrm{e}}^{B \mu _{k}}-B \mu _{k}-1 \bigr)\sum_{\underset{l \neq k}{l=1}}^{m} q_{l} \frac{{\mathrm{e}}^{B \mu _{l}}}{B^{2}}, \end{aligned}$$

then Eq. (1.1) is oscillatory.

Proof

Let \(\varphi _{k}(t)=t-\mu _{k}\), \(k=1,2,\dots,m\). Then

$$\begin{aligned} C^{(1)}_{k}(t)\geq {}& \int _{t}^{t+\mu _{k}}b_{k}(u) \,du\\ &{}+ \int _{t}^{t+ \mu _{k}}b_{k}(u) \int _{u-\mu _{k}}^{t} \sum_{\underset{l \neq k}{l=1}}^{m} b_{l}(u_{1}) {\mathrm{e}}^{\int _{u_{1}- \mu _{l}}^{t}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{2}) \Omega _{l_{1}}^{(1)}(u_{2}) \,du_{2}} \,du_{1} \,du \\ &{}+ \int _{t}^{t+\mu _{k}}\sum_{\underset{l \neq k}{l=1}}^{m} b_{l}(u){ \mathrm{e}}^{\int _{u-\mu _{l}}^{t}\sum _{l_{1}=1}^{m} b_{l_{1}}(u_{1}) \Omega ^{(1)}_{l_{1}}(u_{1}) \,du_{1}} \,du. \end{aligned}$$

In view of (2.19), we have

$$\begin{aligned} C^{(1)}_{k}(t)\geq {}& \int _{t}^{t+\mu _{k}}b_{k}(u) \,du\\ &{}+ \int _{t}^{t+ \mu _{k}}b_{k}(u) \int _{u-\mu _{k}}^{t} \sum_{\underset{l \neq k}{l=1}}^{m} b_{l}(u_{1}) {\mathrm{e}}^{\int _{u_{1}- \mu _{l}}^{t}\sum _{l_{1}=1}^{m} \frac{b_{l_{1}}(u_{2})}{1-\int _{u_{2}- \mu _{l_{1}}}^{u_{2}} b_{l_{1}}(u_{3}) \,du_{3}} \,du_{2}} \,du_{1} \,du \\ &{}+ \int _{t}^{t+\mu _{k}}\sum_{\underset{l \neq k}{l=1}}^{m} b_{l}(u){ \mathrm{e}}^{\int _{u-\mu _{l}}^{t} \sum _{l_{1}=1}^{m} \frac{b_{l_{1}}(u_{1})}{1-\int _{u_{1}- \mu _{l_{1}}}^{u_{1}} b_{l_{1}}(u_{2}) \,du_{2}} \,du_{1}} \,du. \end{aligned}$$

Thus

$$\begin{aligned} C^{(1)}_{k}(a_{j}+3\mu _{k})\geq{}& \mu _{k} q_{k}+q_{k} \sum _{\underset{l \neq k}{l=1}}^{m} q_{l} \int _{a_{j}+3\mu _{k}}^{a_{j}+4 \mu _{k}} \int _{u-\mu _{k}}^{a_{j}+3\mu _{k}} {\mathrm{e}}^{\int _{u_{1}- \mu _{l}}^{a_{j}+3\mu _{k}}B \,du_{2}} \,du_{1} \,du\\ &{}+\sum_{\underset{l \neq k}{l=1}}^{m} q_{l} \int _{a_{j}+3\mu _{k}}^{a_{j}+4 \mu _{k}}{\mathrm{e}}^{\int _{u-\mu _{l}}^{a_{j}+3\mu _{k}} B \,du_{1}} \,du, \end{aligned}$$

that is,

$$\begin{aligned} C^{(1)}_{k}(a_{j}+3\mu _{k})&\geq q_{k}\mu _{k} +q_{k} \bigl(1-{\mathrm{e}}^{-B \mu _{k}} \bigr)\sum_{\underset{l \neq k}{l=1}}^{m} q_{l} \frac{{\mathrm{e}}^{B \mu _{l}}}{B}+ \bigl({\mathrm{e}}^{B \mu _{k}}-B \mu _{k}-1 \bigr)\sum_{\underset{l \neq k}{l=1}}^{m} q_{l} \frac{{\mathrm{e}}^{B \mu _{l}}}{B^{2}} \\ &=H_{k}. \end{aligned}$$
(2.22)

Also,

$$\begin{aligned} \int _{a_{j}+3\mu _{k}}^{\varphi ^{-1}_{k}(a_{j}+3\mu _{k})}b_{k}(u) \int _{\sigma _{k}(u)}^{a_{j}+3\mu _{k}}b_{k}(u_{1}) \,du_{1} \,du\geq q^{2}_{k} \int _{a_{j}+3\mu _{k}}^{a_{j}+4\mu _{k}} \int _{u-\mu _{k}}^{a_{j}+3 \mu _{k}}\,du_{1} \,du= \frac{1}{2} q^{2}_{k} \mu _{k}^{2}. \end{aligned}$$

This inequality and (2.22) lead to

$$\begin{aligned} D_{k}^{(1)}(a_{j}+3\mu _{k})= \frac{\int _{a_{j}+3\mu _{k}}^{\varphi ^{-1}_{k}(a_{j}+3\mu _{k})}b_{k}(u)\int _{\sigma _{k}(u)}^{a_{j}+3\mu _{k}}b_{k}(u_{1})\,du_{1} \,du}{1-C_{k}^{(1)}(a_{j}+3\mu _{k})} \geq \frac{q^{2}_{k} \mu _{k}^{2}}{2 (1-H_{k} )}. \end{aligned}$$
(2.23)

Let

$$\begin{aligned} I_{1}(t)=\prod_{r=1}^{m} \biggl(\frac{1}{1-G_{r,r}^{(1)}(t)} \biggr) \Biggl(\prod_{r=1}^{m} D_{r}^{(1)}(t)+ (m-1 )^{m} \prod _{r=1}^{m} \Biggl( \prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} G_{r,r_{1}}^{(1)}(t) \Biggr)^{\frac{1}{m-1}} \Biggr). \end{aligned}$$

Then (2.20), (2.21), and (2.23) imply that

$$\begin{aligned} I_{1}(a_{j}+3\mu _{k})\geq \prod _{r=1}^{m} \frac{1}{1-D_{r,r} } \Biggl(\prod _{r=1}^{m} \frac{q^{2}_{r} \mu _{r}^{2}}{2 (1-H_{r} )} + (m-1 )^{m} \prod_{r=1}^{m} \Biggl(\prod _{\underset{r_{1} \neq r}{r_{1}=1}}^{m} D_{r,r_{1}} \Biggr)^{ \frac{1}{m-1}} \Biggr) > 1. \end{aligned}$$

Therefore condition (2.15) with \(n=1\) is satisfied, so Eq. (1.1) is oscillatory. The proof is complete. □

The following illustrative example highlights the significance of some of our results. All calculations are done using a Maple code.

Example 2.1

Consider the equation

$$\begin{aligned} x'(t)+\sum_{l=1}^{2} b_{l}(t)x\bigl(\sigma _{l}(t)\bigr)=0,\quad t\geq 2, \end{aligned}$$
(2.24)

where \(\sigma _{2}(t)=t-1-0.0001 \sin ^{2} ( 20000 \pi t )\), and

$$\begin{aligned} \sigma _{1}(t)= \textstyle\begin{cases} t-0.1, &t \in [4k, 4k+3], \\ \frac{1}{\delta} [ (0.1-\delta ) (4k+3-t ) ]+4k+2.9, &t \in [4k+3, 4k+3+\delta ], \\ \frac{1.1-\delta}{1-\delta} (t-4k-3-\delta )+4k+2.8+ \delta, &t \in [4k+3+\delta, 4k+4], \end{cases}\displaystyle \quad k \in \mathbb{N}, \end{aligned}$$

where \(0<\delta <0.1\). Also,

$$\begin{aligned} b_{1}(t)=\textstyle\begin{cases} 0, &t \in [b_{k}, c_{k}], \\ \frac{1}{2 {\mathrm{e}}\delta} (t-c_{k} ), &t \in [c_{k}, c_{k}+\delta ], \\ \frac{1}{2{\mathrm{e}}} &t \in [c_{k}+\delta, c_{k}+3.0001+\delta ], \\ \frac{1}{2{\mathrm{e}}} (1- \frac{t-c_{k}-3.0001-\delta}{b_{k+1}-c_{k}-3.0001-\delta} ), & t \in [c_{k}+3.0001+\delta, b_{k+1}], \end{cases}\displaystyle \quad k \in \mathbb{N}_{0}, \end{aligned}$$

and

$$\begin{aligned} b_{2}(t)=\textstyle\begin{cases} 0, &t \in [b_{k}, c_{k}], \\ \frac{\beta}{\delta} (t-c_{k} ), &t \in [c_{k}, c_{k}+ \delta ], \\ \beta &t \in [c_{k}+\delta, c_{k}+3.0001+\delta ], \\ \beta (1- \frac{t-c_{k}-3.0001-\delta}{b_{k+1}-e_{k}-3.0001-\delta} ), & t \in [c_{k}+3.0001+\delta, b_{k+1}], \end{cases}\displaystyle \quad k \in \mathbb{N}_{0}, \end{aligned}$$

where \(\beta \geq 0\), and \(\{b_{k}\}_{k\geq 0}\), \(\{c_{k}\}_{k\geq 0}\) are sequences of positive integers such that \(c_{k}>b_{k}+1\), \(b_{k+1}>c_{k}+3.0001+\delta \), and \(\lim_{k\rightarrow \infty } b_{k}=\infty \). Let us assume that \(\varphi _{i}(t)=\theta _{i}(t)\), \(i=1,2\) (see (1.2) for definition). It is not difficult to see that \(0\leq b_{1}(t) \leq \frac{1}{2{\mathrm{e}}}\), \(0\leq b_{2}(t) \leq \beta \),

$$\begin{aligned} t-0.2 \leq \sigma _{1}(t) \leq \varphi _{1}(t) \leq t-0.1, \quad\text{and}\quad t-1.0001 \leq \sigma _{2}(t) \leq \varphi _{2}(t) \leq t-1. \end{aligned}$$
(2.25)

Since

$$\begin{aligned} 0&\leq \liminf_{t\rightarrow \infty } \int _{\sigma _{2}(t)}^{t} \sum_{l=1}^{2} b_{l}(u) \,du\leq \lim_{k\rightarrow \infty } \int _{ \sigma _{2}(c_{k})}^{c_{k}} \sum_{l=1}^{2} b_{l}(u) \,du\\ &=\lim_{k \rightarrow \infty } \int _{c_{k}-1}^{c_{k}} \sum_{l=1}^{2} b_{l}(u) \,du=0, \end{aligned}$$

we conclude that

$$\begin{aligned} \liminf_{t\rightarrow \infty } \int _{\sigma _{2}(t)}^{t} \sum_{l=1}^{2} b_{l}(u) \,du=0. \end{aligned}$$

On the other hand,

$$\begin{aligned} \liminf_{t\rightarrow \infty } \int _{\sigma _{1}(t)}^{t} \sum_{l=1}^{2} b_{l}(u) \,du\leq \liminf_{t\rightarrow \infty } \int _{\sigma _{2}(t)}^{t} \sum_{k=1}^{2} b_{k}(u) \,du \end{aligned}$$

and

$$\begin{aligned} \liminf_{t\rightarrow \infty } \sum_{l=1}^{2} \int _{ \sigma _{l}(t)}^{t} \Biggl(\prod _{r=1}^{2}b_{r}(u) \Biggr)^{ \frac{1}{2}} \,du \leq 2 \liminf_{t\rightarrow \infty } \int _{\sigma _{2}(t)}^{t} \sum_{l=1}^{2} b_{l}(u) \,du. \end{aligned}$$

It follows that \(\bar{d}=\liminf_{t\rightarrow \infty } \sum_{l=1}^{2} \int _{\sigma _{l}(t)}^{t} (\prod_{l_{1}=1}^{2}b_{l_{1}}(u) )^{\frac{1}{2}}\,du=0\) and \(\zeta _{i,l}=\zeta =\eta _{l}=\eta =Q(\zeta _{i,l})=Q(\eta _{l})=0\) for \(l,i=1,2\). Consequently, conditions (1.4), (1.5), (1.6), (1.8), and (1.11) cannot be applied.

Also, since

$$\begin{aligned} \Lambda _{0}(t)= \sum_{l=1}^{2} b_{l}(t)\leq \frac{1}{2\mathrm{e}}+\beta \end{aligned}$$

and

$$\begin{aligned} \Lambda _{1}(t)={}& \sum_{l=1}^{2} b_{l}(t) \Biggl[ 1+ \int _{ \varphi _{l}(t)}^{t} \sum_{l_{1}=1}^{2} b_{l_{1}}(u) {\mathrm{e}}^{\int _{ \sigma _{l_{1}}(u)}^{t} \sum _{l_{2}=1}^{2} b_{l_{2}}(u_{1}) {\mathrm{e}}^{ \int _{\sigma _{l_{2}}(u_{1})}^{u_{1}} \Lambda _{0}(u_{2}) \,du_{2}} \,du_{1}} \,du \Biggr] \\ \leq {}&\frac{1}{2\mathrm{e}} \biggl[ 1+ \int _{t-0.2}^{t} \frac{1}{2\mathrm{e}} { \mathrm{e}}^{ (t-u+0.2 )A_{1}} \,ds+ \int _{t-0.2}^{t} \beta {\mathrm{e}}^{ (t-u+1.0001 )A_{1}} \,ds \biggr] \\ &{}+\beta \biggl[ 1+ \int _{t-1.0001}^{t} \frac{1}{2\mathrm{e}} { \mathrm{e}}^{ (t-u+0.2 )A_{1}} \,ds+ \int _{t-1.0001}^{t} \beta {\mathrm{e}}^{ (t-u+1.0001 )A_{1}} \,ds \biggr]< \frac{8.373}{\mathrm{e}} \end{aligned}$$

for all \(\beta \in [0, \frac{1.43}{\mathrm{e}} ]\), where \(A_{1}= (\frac{1}{2\mathrm{e}} {\mathrm{e}}^{0.2 (\frac{1}{2\mathrm{e}}+ \beta )}+\beta {\mathrm{e}}^{1.0001 (\frac{1}{2\mathrm{e}}+\beta )} )\), we have

$$\begin{aligned} \limsup_{t\rightarrow \infty } \prod_{l=1}^{2} \Biggl[ \prod_{l_{1}=1}^{2} \int _{\varphi _{l}(t)}^{t} b_{l_{1}}(u) { \mathrm{e}}^{ \int _{\sigma _{l_{1}}(u)}^{\varphi _{l_{1}}(t)} \Lambda _{1}(u_{1}) \,du_{1}} \,du \Biggr]^{\frac{1}{m}} < 0.246< \frac{1}{4} \Biggl( 1-\prod_{l=1}^{2} Q(\eta _{l}) \Biggr). \end{aligned}$$

Consequently, condition (1.10) with \(\ell =1\) fails for all \(\beta \in [0, \frac{1.43}{\mathrm{e}} ]\).

Moreover, we have

$$\begin{aligned} \Phi _{0}(t)=2 \Biggl(\prod_{l=1}^{2} b_{l}(t) \Biggr)^{\frac{1}{2}} \leq 2 \sqrt{\frac{\beta}{2 {\mathrm{e}}}} \end{aligned}$$

and

$$\begin{aligned} \Phi _{1}(t)= {}&\sum_{l=1}^{2} b_{l}(t) \Biggl[ 1+2 \Biggl( \prod_{r=1}^{2} \int _{\varphi _{l}(t)}^{t} b_{r}(u){ \mathrm{e}}^{\int _{\sigma _{r}(u)}^{t} \Phi _{0}(u_{1}) \,du_{1}} \,du \Biggr)^{\frac{1}{2}} \Biggr] \\ \leq{}& \frac{1}{2 {\mathrm{e}}} \biggl[ 1+2 \biggl( \int _{t-0.2}^{t} \frac{1}{2 {\mathrm{e}}}{ \mathrm{e}}^{\int _{u-0.2}^{t} \Phi _{0}(u_{1}) \,du_{1}} \,du \int _{t-0.2}^{t} \beta{\mathrm{e}}^{\int _{u-1.0001}^{t} \Phi _{0}(u_{1}) \,du_{1}} \,du \biggr)^{\frac{1}{2}} \biggr] \\ &{}+\beta \biggl[ 1+2 \biggl( \int _{t-1.0001}^{t} \frac{1}{2 {\mathrm{e}}}{ \mathrm{e}}^{\int _{u-0.2}^{t} \Phi _{0}(u_{1}) \,du_{1}} \,du \int _{t-1.0001}^{t} \beta{\mathrm{e}}^{\int _{u-1.0001}^{t} \Phi _{0}(u_{1}) \,du_{1}} \,du \biggr)^{ \frac{1}{2}} \biggr]\\ < {}&\frac{7.1}{\mathrm{e}} \end{aligned}$$

for all \(\beta \in [0, \frac{2.23}{ {\mathrm{e}}}]\). Consequently,

$$\begin{aligned} &\limsup_{t\rightarrow \infty } \prod_{l=1}^{2} \Biggl[ \prod_{l_{1}=1}^{2} \int _{\varphi _{l}(t)}^{t} b_{l_{1}}(u) { \mathrm{e}}^{ \int _{\sigma _{l_{1}}(u)}^{\varphi _{l_{1}}(t)} \Phi _{1}(u_{1}) \,du_{1}} \,du \Biggr]^{\frac{1}{2}}\\ &\quad< \limsup _{t\rightarrow \infty } \prod_{l=1}^{2} \Biggl[ \prod_{l_{1}=1}^{2} \int _{\varphi _{l}(t)}^{t} b_{l_{1}}(u) { \mathrm{e}}^{ \int _{\sigma _{l_{1}}(u)}^{\varphi _{l_{1}}(t)} \frac{7.1}{\mathrm{e}} \,du_{1}} \,du \Biggr]^{\frac{1}{2}} \\ &\quad< 0.249< \frac{1}{4} \Biggl( 1-\prod_{r=1}^{2} Q(\eta _{r}) \Biggr) \end{aligned}$$

for all \(\beta \in [0, \frac{2.23}{ {\mathrm{e}}}]\). This means that condition (1.9) with \(\ell =1\) and \(\beta \in [0, \frac{2.23}{ {\mathrm{e}}}]\) is not satisfied. Similarly, condition (1.3) is not satisfied for all \(\beta \in [0, \frac{2.294}{{\mathrm{e}}}]\), and condition (1.7) with \(i=4\) is not satisfied for all \(\beta \in [0, \frac{3}{{\mathrm{e}}}]\).

Next, we show that Eq. (2.24) is oscillatory for all \(\beta \in [\frac{1.3735}{{\mathrm{e}}}, \frac{1.384}{{\mathrm{e}}}]\). Indeed,

$$\begin{aligned} b_{1}(t) = \frac{1}{2 {\mathrm{e}}}\quad \text{and} \quad b_{2}(t) = \beta \quad \text{for }t\in [c_{k}+\delta, c_{k}+3.0001+\delta ] \text{ and all }k\in \mathbb{N}. \end{aligned}$$

From this and (2.25) the parameters of Corollary 2.1 can be chosen as follows:

$$\begin{aligned} q_{1}=\frac{1}{2{\mathrm{e}}},\qquad q_{2}=\beta,\qquad \mu _{1}=0.1,\qquad \mu _{2}= \mu ^{*}=1. \end{aligned}$$

Let

$$\begin{aligned} I_{2}(\beta )= \frac{D_{1,2}D_{2,1}}{ (1-D_{1,1} ) (1-D_{2,2} ) }, \end{aligned}$$

where \(D_{l,k}\), \(l,k=1,2\), are defined as in Corollary 2.1. Then

$$\begin{aligned} I_{2}(\beta )={ \frac {\beta ( {{\mathrm{e}}^{ 0.1 B}}-1 ) ( { {\mathrm{e}}^{B}}-1 ) }{ ( 1+2B{\mathrm{e}}-{\mathrm{e}}^{ 0.1 B} ) (1+ B-\beta{{\mathrm{e}}^{B}} )} }>1.09 \quad\text{for all } \beta \in \biggl[\frac{1.3735}{{\mathrm{e}}}, \frac{1.384}{{\mathrm{e}}} \biggr], \end{aligned}$$

where \(B=\frac{1}{2{\mathrm{e}}-0.1}+\frac{\beta}{1-\beta}\). Hence condition (2.18) is satisfied, and Corollary 2.1 implies that Eq. (2.24) is oscillatory for all \(\beta \in [\frac{1.3735}{{\mathrm{e}}}, \frac{1.384}{{\mathrm{e}}}]\).

Availability of data and materials

Not applicable.

References

  1. Agarwal, R.P., Berezansky, L., Braverman, E., Domoshnitsky, A.: Non-Oscillation Theory of Functional Differential Equations with Applications. Springer, New York (2012)

    MATH  Google Scholar 

  2. Agarwal, R.P., Grace, S.R., O’Regan, D.: Oscillation Theory for Difference and Functional Differential Equations. Springer, Berlin (2013)

    MATH  Google Scholar 

  3. Akca, H., Chatzarakis, G.E., Stavroulakis, I.P.: An oscillation criterion for delay differential equations with several non-monotone arguments. Appl. Math. Lett. 59, 101–108 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Attia, E.R., Benekas, V., El-Morshedy, H.A., Stavroulakis, I.P.: Oscillation of first order linear differential equations with several non-monotone delays. Open Math. 16, 83–94 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Attia, E.R., El-Morshedy, H.A.: Improved oscillation criteria for first order differential equations with several non-monotone delays. Mediterr. J. Math. 156, 1–16 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Attia, E.R., El-Morshedy, H.A., Stavroulakis, I.P.: Oscillation criteria for first order differential equations with non-monotone delays. Symmetry 12, 718 (2020)

    Google Scholar 

  7. Bereketoglu, H., Karakoc, F., Oztepe, G.S., Stavroulakis, I.P.: Oscillation of first order differential equations with several non-monotone retarded arguments. Georgian Math. J. 27, 341–350 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Braverman, E., Chatzarakis, G.E., Stavroulakis, I.P.: Iterative oscillation tests for differential equations with several non-monotone arguments. Adv. Differ. Equ. 2016, Article ID 87 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Braverman, E., Karpuz, B.: On oscillation of differential and difference equations with non-monotone delays. Appl. Math. Comput. 218, 3880–3887 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Chatzarakis, G.E., Jadlovská, I.: Explicit criteria for the oscillation of differential equations with several arguments. Dyn. Syst. Appl. 28, 217–242 (2019)

    Google Scholar 

  11. Chatzarakis, G.E., Li, T.: Oscillation criteria for delay and advanced differential equations with nonmonotone arguments. Complexity 2018, 1–18 (2018)

    MATH  Google Scholar 

  12. Chatzarakis, G.E., Péics, H.: Differential equations with several non-monotone arguments: an oscillation result. Appl. Math. Lett. 68, 20–26 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Chatzarakis, G.E., Purnaras, I.K., Stavroulakis, I.P.: Oscillations of deviating difference equations with non-monotone arguments. J. Differ. Equ. Appl. 23, 1354–1377 (2017)

    MATH  Google Scholar 

  14. Chiu, K.S., Li, T.: Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 292, 2153–2164 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Dix, J.G.: Improved oscillation criteria for first-order delay differential equations with variable delay. Electron. J. Differ. Equ. 2021, Article ID 32 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Džurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden–Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293, 910–922 (2020)

    MathSciNet  MATH  Google Scholar 

  17. El-Morshedy, H.A., Attia, E.R.: New oscillation criterion for delay differential equations with non-monotone arguments. Appl. Math. Lett. 54, 54–59 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Elbert, Á., Stavroulakis, I.P.: Oscillations of first order differential equations with deviating arguments. In: Recent Trends in Differential Equations, World Scientific Series in Applicable Analysis, vol. 1, pp. 163–178. World Scientific, Singapore (1992)

    MATH  Google Scholar 

  19. Erbe, L.H., Zhang, B.G.: Oscillation Theory for Functional Differential Equations. Dekker, New York (1995)

    Google Scholar 

  20. Garab, Á., Stavroulakis, I.P.: Oscillation criteria for first order linear delay differential equations with several variable delays. Appl. Math. Lett. 106, 106366 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht (1992)

    MATH  Google Scholar 

  22. Gyori, I., Ladas, G.: Oscillation Theory of Delay Differential Equations with Applications. Clarendon Press, Oxford (1991)

    MATH  Google Scholar 

  23. Hunt, B.R., Yorke, J.A.: When all solutions of \(x'(t)=-\sum q_{l}(t) x(t-T_{l}(t))\) oscillate. J. Differ. Equ. 53, 139–145 (1984)

    MATH  Google Scholar 

  24. Infante, G., Koplatadze, R., Stavroulakis, I.P.: Oscillation criteria for differential equations with several retarded arguments. Funkc. Ekvacioj 58, 347–364 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Koplatadze, R.G.: Specific properties of solutions of first order differential equations with several delay arguments. J. Contemp. Math. Anal. 50, 229–235 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Koplatadze, R.G., Chanturija, T.A.: On oscillatory and monotonic solutions of first order differential equations with deviating arguments. Differ. Uravn. 18, 1463–1465 (1982). (in Russian)

    Google Scholar 

  27. Ladas, G.: Sharp conditions for oscillations caused by delays. Appl. Anal. 9, 93–98 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Ladas, G., Lakshmikantham, V., Papadakis, L.S.: Oscillations of higher-order retarded differential equations generated by the retarded arguments. In: Delay and Functional Differential Equations and Their Applications. Academic Press, New York (1972)

    MATH  Google Scholar 

  29. Ladde, G.S.: Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti Accad. Naz. Lincei, Rend. Lincei, Sci. Fis. Nat. 63, 351–359 (1978)

    MathSciNet  MATH  Google Scholar 

  30. Li, T., Frassu, S., Viglialoro, G.: Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption. Z. Angew. Math. Phys. (2023, in press). https://doi.org/10.1007/s00033-023-01976-0

  31. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70, 1–18 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Li, T., Rogovchenko, Y.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105, 1–7 (2020)

    MathSciNet  MATH  Google Scholar 

  33. Moremedi, G.M., Jafari, H., Stavroulakis, I.P.: Oscillation criteria for differential equations with several non-monotone deviating arguments. J. Comput. Anal. Appl. 28, 136–151 (2020)

    Google Scholar 

  34. Myshkis, A.D.: Linear homogeneous differential equations of first order with deviating arguments. Usp. Mat. Nauk 5, 160–162 (1950). (Russian)

    MATH  Google Scholar 

  35. Sficas, Y.G., Stavroulakis, I.P.: Oscillation criteria for first-order delay equations. Bull. Lond. Math. Soc. 35, 239–246 (2003)

    MathSciNet  MATH  Google Scholar 

  36. Stavroulakis, I.P.: Oscillation criteria for delay and difference equations with non-monotone arguments. Appl. Math. Comput. 226, 661–672 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Tang, X.H.: Oscillation of first order delay differential equations with distributed delay. J. Math. Anal. Appl. 289, 367–378 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Tang, X.H., Shen, J.H.: Oscillations of delay differential equations with variable coefficients. J. Math. Anal. Appl. 217, 32–42 (1998)

    MathSciNet  MATH  Google Scholar 

  39. Tang, X.H., Yu, J.S.: Oscillation of first order delay differential equations. J. Math. Anal. Appl. 248, 247–259 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Tang, X.H., Yu, J.S., Wang, Z.C.: Comparison theorems for oscillations of first-order delay differential equations in the critical state. Kexue Tongbao 44, 26–31 (1999). (in Chinese)

    MathSciNet  Google Scholar 

  41. Yu, J.S., Tang, X.H.: Comparison theorems in delay differential equations in a critical state and applications. J. Lond. Math. Soc. 63, 188–204 (2001)

    MathSciNet  MATH  Google Scholar 

  42. Yu, J.S., Wang, Z.C., Zhang, B.G., Qian, X.Z.: Oscillations of differential equations with deviating arguments. Pan. Am. Math. J. 2, 59–78 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the anonymous reviewers for their constructive comments.

Funding

This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

Author information

Authors and Affiliations

Authors

Contributions

EA made the major analysis and the original draft preparation. HE revised the calculations, made corrections and provide several improvements. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hassan A. El-Morshedy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attia, E.R., El-Morshedy, H.A. New product-type oscillation criteria for first-order linear differential equations with several nonmonotone arguments. Bound Value Probl 2023, 80 (2023). https://doi.org/10.1186/s13661-023-01743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01743-0

MSC

Keywords