- Research
- Open Access
- Published:
An elliptic problem of the Prandtl–Batchelor type with a singularity
Boundary Value Problems volume 2023, Article number: 63 (2023)
Abstract
We establish the existence of at least two solutions of the Prandtl–Batchelor like elliptic problem driven by a power nonlinearity and a singular term. The associated energy functional is nondifferentiable, and hence the usual variational techniques do not work. We shall use a novel approach in tackling the associated energy functional by a sequence of \(C^{1}\) functionals and a cutoff function. Our main tools are fundamental elliptic regularity theory and the mountain pass theorem.
1 Introduction
We consider the following class of sublinear elliptic free boundary problems:
Here, \(\Omega \subset \mathbb{R}^{N}\) is a bounded domain, \(N\geq 2\), \(0<\gamma <1\), the boundary ∂Ω has \(C^{2,a}\) regularity, \(G(u)=\partial \{u:u>1\}\), \(\alpha , \beta >0\) are parameters, and χ is an indicator function. Furthermore, \(\nabla u^{\pm}\) are the limits of ∇u from the sets \(\{u:u>1\}\) and \(\{u:u\leq 1\}^{\circ}\) respectively, and \((u-1)_{+}=\max \{u-1,0\}\). The nonlinear term f is a locally Hölder continuous function \(f:\Omega \times \mathbb{R}\rightarrow [0,\infty )\) that satisfies the following conditions for all \(x\in \Omega \), \(t>0\):
We shall prove the existence of two distinct nontrivial solutions of (1.1) for a sufficiently large α.
The case when \(f(x,t)=1\), \(\beta =0\) is the well-known Prandtl–Batchelor problem, where the region \(\{u:u>1\}\) represents the vortex patch bounded by the vortex line \(\{u:u=1\}\) in a steady state fluid flow for \(N=2\) (cf. Batchelor [4, 5]). This case has been studied by several authors, e.g., Caflisch [8], Elcrat and Miller [10], Acker [1], and Jerison and Perera [14]. We drew our motivation for studying the present problem in this paper from perera [18]. The problem studied by Perera [18] is the case when \(\beta =0\) in problem (1.1).
The nonlinearity f includes the sublinear case of \(f(x,t)=t^{p-1}\). Jerison and Perera [14] considered problem (1.1) with \(\beta =0\) for \(2< p<\infty \) if \(N=2\), and \(2< p\leq 2^{*}=\frac {2N}{N-2}\) if \(N\ge 3\). This problem has its application in the study of plasma that is confined in a magnetic field. The region there \(\{u:u>1\}\) represents the plasma, and the boundary of the plasma is modeled by the free boundary (cf. Caffarelli and Friedman [6], Friedman and Liu [11], and Temam [19]).
Elliptic problems driven by a singular term have, of late, been of great interest. However, we shall discuss only the seminal work of Lazer and McKenna [16] from 1991 that opened a new door for the researchers in elliptic and parabolic PDEs. The problem considered in [16] was as follows:
where \(p>0\) is a \(C^{a}(\bar{\Omega})\) function, \(\gamma >0\), Ω is a bounded domain with a smooth boundary ∂Ω of \(C^{2+a}\) regularity (\(0< a<1\)), and \(N\geq 1\). The authors in [16] proved that problem (1.3) has a unique solution \(u\in C^{2,a}(\Omega )\cap C(\bar{\Omega})\) such that \(u>0\) in Ω. Another noteworthy work addressing the singularity driven elliptic problem is due to Giacomoni et al. [12]. Jerison and Perera [14] obtained a mountain pass solution of this problem for the superlinear subcritical case. Yang and Perera [20] addressed the problem for the critical case. Recently, Choudhuri and Repovš [9] established the existence of a solution for a semilinear elliptic PDE with a free boundary condition on a stratified Lie group. Furthermore, those readers looking to expand their knowledge on the techniques and trends of the topics in analysis of elliptic PDEs may refer to Papageorgiou et al. [17].
We shall prove that a solution of problem (1.1) is Lipschitz continuous of class \(H_{0}^{1}(\Omega )\cap C^{2}(\bar{\Omega}\setminus G(u))\) and is a classical solution on \(\Omega \setminus G(u)\). This solution vanishes on ∂Ω continuously and satisfies the free boundary condition in the following sense:
\(\text{for all} \psi \in C_{0}^{1}(\Omega ,\mathbb{R}^{N})\) that are supported a.e. on \(\{u:u\neq 1\}\). Here n̂ is the outward drawn normal to \(\{u:1-\epsilon ^{-}< u<1+\epsilon ^{+}\}\) and dS is the surface element.
The novelty of this work, which separates it from the work of Perera [18], lies in the efficient handling of the singular term that disallows the associated energy functional to be \(C^{1}\) at \(u=0\). This difficulty is the reason why one cannot directly apply the results from the variational set up. To handle this situation, we shall define a cut-off function.
Remark 1.1
Note that \(\int _{\Omega}|\nabla u|^{2}\,dx\) will be often denoted by \(\|u\|^{2}\), where \(\|\cdot \|\) is the norm of an element in the Sobolev space \(H_{0}^{1}(\Omega )\).
We begin by defining a weak solution of problem (1.1).
Definition 1.1
A function \(u\in H_{0}^{1}(\Omega )\), \(u>0\) a.e. in Ω is said to be a weak solution of problem (1.1) if it satisfies the following:
We define the associated energy functional to problem (1.1) as follows:
where \(F(x,t)=\int _{0}^{t}f(x,t)\,dt\), \(t\geq 0\).
The functional E fails to be of \(C^{1}\) class due to the term \(\int _{\Omega}(u^{+})^{1-\gamma}\,dx\). Moreover, it is nondifferentiable due to the term \(\int _{\Omega}\chi _{\{u>1\}}(x)\,dx\). We shall first tackle the singular term by defining a cut-off function \(\phi _{\beta}\) as follows:
Here \(u_{\beta}\) is a solution of the following problem:
The existence of \(u_{\beta}\) can be guaranteed by Lazer and McKenna [16]. Moreover, a solution of problem (1.7) is a subsolution of (1.1) (refer to Lemma 6.1 in Sect. 6). Note that we call (1.7) a singular problem. We denote \(\Phi _{\beta}(u)=\int _{0}^{u}\phi _{\beta}(t)\,dt\).
Furthermore, the functional E is nondifferentiable, and hence we approximate it by \(C^{1}\) functionals. This technique is adopted from the work of Jerison and Pererra [14]. Working along similar lines, we now define a smooth function \(h:\mathbb{R}\rightarrow [0,2]\) as follows:
and \(\int _{0}^{1}h(t)\,dt=1\). We let \(H(t)=\int _{0}^{t}h(t)\,dt\). Clearly, H is a smooth and nondecreasing function such that
We further define for \(\delta >0\)
Define
The functional \(E_{\delta}\) is of \(C^{1}\) class. The main result of this paper is the following theorem.
Theorem 1.1
Let conditions \((f_{1})-(f_{2})\) hold. Then there exist \(\Lambda , \beta _{*}>0\) such that for all \(\alpha >\Lambda \), \(0<\beta <\beta _{*}\) problem (1.1) has two Lipschitz continuous solutions, say \(u_{1},u_{2}\in H_{0}^{1}(\Omega )\cap C^{2}(\bar{\Omega}\setminus G(u))\), satisfying (1.1) classically in \(\bar{\Omega}\setminus G(u)\). These solutions also satisfy the free boundary condition in the generalized sense and vanish continuously on ∂Ω. Furthermore,
-
1.
\(E(u_{1})<-|\Omega |\leq -|\{u:u=1\}|<E(u_{2})\), where \(|\cdot |\) denotes the Lebesgue measure in \(\mathbb{R}^{N}\), hence \(u_{1}\), \(u_{2}\) are nontrivial solutions.
-
2.
\(0< u_{2}\leq u_{1}\) and the regions \(\{u_{1}:u_{1}<1\}\subset \{u_{2}:u_{2}<1\}\) are connected where ∂Ω is connected. The sets \(\{u_{2}>1\}\subset \{u_{1}>1\}\) are nonempty.
-
3.
\(u_{1}\) is a minimizer of E (but \(u_{2}\) is not).
The paper is organized as follows. In Sect. 2 we introduce the key preliminary facts. In Sect. 3 we prove a convergence lemma. In Sect. 4 we prove a free boundary condition. In Sect. 5 we prove two auxiliary lemmas. In Sect. 6 we prove a result on positive Radon measure. Finally, in Sect. 7 we prove the main theorem.
2 Preliminaries
An important result that will be used to pass to the limit in the proof of Lemma 3.1 is the following theorem due to Caffarelli et al. [7, Theorem 5.1].
Lemma 2.1
Let u be a Lipschitz continuous function on the unit ball \(B_{1}(0)\subset \mathbb{R}^{N}\) satisfying the distributional inequalities
for constants \(A>0\), \(0<\delta \leq 1\), H is a continuous function obeying \(H(t)=o(t^{2})\) as \(t\to \infty \). Then there exists a constant \(C>0\) depending on N, A and \(\int _{{B_{1}}(0)}u^{2}\,dx\), but not on δ, such that
The following are the Palais–Smale condition and the mountain pass theorem.
Definition 2.1
(cf. Kesavan [15, Definition \(5.5.1\)])
Let V be a Banach space and \(J:V\rightarrow \mathbb{R}\) be a \(C^{1}\)-functional. Then J is said to satisfy the Palais–Smale \((PS)\) condition if the following holds: Whenever \((u_{n})\) is a sequence in V such that \((J(u_{n}))\) is bounded and \((J'(u_{n}))\rightarrow 0\) strongly in \(V^{*}\) (the dual space), then \((u_{n})\) has a strongly convergent subsequence in V.
Lemma 2.2
(cf. Alt and Caffarelli [3, Theorem 2.1])
Let J be a \(C^{1}\)-functional defined on a Banach space V. Assume that J satisfies the \((PS)\)-condition and that there exists an open set \(U\subset V\), \(v_{0}\in U\), and \(v_{1}\in X\setminus \bar{U}\) such that
Then J has a critical point at the level
where \(\Gamma =\{\psi \in C([0,1]):\psi (0)=v_{0},\psi (1)=v_{1}\}\) is the class of paths in V joining \(v_{0}\) and \(v_{1}\).
Before we prove Lemma 3.1, we would like to give an a priori estimate of the parameter β.
3 Convergence lemma
We denote the first eigenvalue of \((-\Delta )\) by \(\alpha _{1}\) and the first eigenvector by \(\varphi _{1} \) (for an existence of \(\alpha _{1}\), \(\varphi _{1}\), refer to Kesavan [15]). Fix α to, say, \(\alpha _{0}\) and let β be any positive real number. On testing problem (1.1) with \(\varphi _{1}\), the following weak formulation has to hold if u is a weak solution of problem (1.1). Thus
So there exists \(\beta _{*}>0\), which depends on the chosen fixed α, such that \(\beta _{*}t^{-\gamma}+\alpha f(x,(t-1)_{+})>\alpha _{1} t\) for all \(t>0\). This is a contradiction to (3.1). Therefore, \(0<\beta <\beta _{*}\).
Lemma 3.1
Let conditions \((f_{1})-(f_{2})\) hold, \(\delta _{j}\rightarrow 0\) (\(\delta _{j}>0\)) as \(j\rightarrow \infty \), and let \(u_{j}\) be a critical point of \(E_{\delta _{j}}\). If \((u_{j})\) is bounded in \(H_{0}^{1}(\Omega )\cap L^{\infty}(\Omega )\), then there exists a Lipschitz continuous function u on Ω̄ such that \(u\in H_{0}^{1}(\Omega )\cap C^{2}(\bar{\Omega}\setminus G(u))\) and a subsequence such that
-
(i)
\(u_{j}\rightarrow u\) uniformly over Ω̄,
-
(ii)
\(u_{j}\rightarrow u\) locally in \(C^{1}(\bar{\Omega}\setminus \{u=1\})\),
-
(iii)
\(u_{j}\rightarrow u\) strongly in \(H_{0}^{1}(\Omega )\),
-
(iv)
\(E(u)\leq \lim \inf E_{\delta _{j}}(u_{j})\leq \lim \sup E_{\delta _{j}}(u_{j}) \leq E(u)+|\{u:u=1\}|\), i.e., u is a nontrivial function if \(\lim \inf E_{\delta _{j}}(u_{j})<0\) or \(\lim \sup E_{\delta _{j}}(u_{j})>0\).
Furthermore, u satisfies
classically in \(\Omega \setminus G(u)\), the free boundary condition is satisfied in the generalized sense and u vanishes continuously on ∂Ω. If u is nontrivial, then \(u>0\) in Ω, the region \(\{u:u<1\}\) is connected, and the region \(\{u:u>1\}\) is nonempty.
Proof of Lemma 3.1
Let \(0<\delta _{j}<1\). Consider the following problem:
The nature of the problem being a sublinear one and driven by a singularity allows us to conclude by an iterative technique that the sequence \((u_{j})\) is bounded in \(L^{\infty}(\Omega )\). Therefore, there exists \(C_{0}\) such that \(0\leq f_{\delta _{j}}(x,(u_{j}-1)_{+})\leq C_{0}\). Let \(\varphi _{0}\) be a solution of the following problem:
Now, since \(h\geq 0\), we have that \(-\Delta u_{j}\leq \alpha C_{0}+\beta u_{\beta}^{-\gamma}=-\Delta \varphi _{0}\) in Ω. Therefore by the maximum principle,
From the argument used in the proof of Lemma 6.1, together with \(\beta _{*}>0\) and large \(\Lambda >0\), we conclude that \(u_{j}>u_{\beta}\) in Ω for all \(\beta \in (0,\beta _{*})\). Since \(\{u_{j}:u_{j}\geq 1\}\subset \{\varphi _{0}:\varphi _{0}\geq 1\}\), hence \(\varphi _{0}\) gives a uniform lower bound, say \(d_{0}\), on the distance from the set \(\{u_{j}:u_{j}\geq 1\}\) to ∂Ω. Furthermore, \(u_{j}\) is a positive function satisfying the singular problem in a \(d_{0}\)-neighborhood of ∂Ω. Thus \((u_{j})\) is bounded with respect to the \(C^{2,a}\) norm. Therefore, it has a convergent subsequence in the \(C^{2}\)-norm in a \(\frac {d_{0}}{2}\) neighborhood of the boundary ∂Ω. Obviously, \(0\leq h\leq 2\chi _{(-1,1)}\) and hence
By Lazer and McKenna [16], for any subset K of Ω that is relatively compact in it, i.e., \(K\Subset \Omega \), we have that \(u_{\beta}\geq C_{K}\) for some \(C_{K}>0\). Therefore
Since \((u_{j})\) is bounded in \(L^{2}(\Omega )\) and by Lemma 2.1, it follows that there exists \(A>0\) such that
for suitable \(r>0\) such that \(B_{r}(0)\subset \Omega \). Therefore, \((u_{j})\) is uniformly Lipschitz continuous on the compact subsets of Ω such that its distance from the boundary ∂Ω is at least \(\frac{d_{0}}{2}\) units.
Thus, by the Ascoli–Arzela theorem applied to \((u_{j})\), we have a subsequence, still denoted the same, such that it converges uniformly to a Lipschitz continuous function u in Ω with zero boundary values and with strong convergence in \(C^{2}\) on a \(\frac{d_{0}}{2}\)-neighborhood of ∂Ω. By the Eberlein–Šmulian theorem, we can conclude that \(u_{j}\rightharpoonup u\) in \(H_{0}^{1}(\Omega )\).
We now prove that u satisfies the following equation:
in the set \(\{u\neq 1\}\). This will include the cases (i) \(0< u_{\beta}<1<u\), (ii) \(1< u_{\beta}< u\), (iii) \(0< u_{\beta}< u<1\). The cases (i)–(iii) do not pose any real mathematical obstacle. Let \(\varphi \in C_{0}^{\infty}(\{u>1\})\). Then \(u\geq 1+2\delta \) on the support of φ for some \(\delta >0\). Using the convergence of \(u_{j}\) to u uniformly on Ω, we have \(|u_{j}-u|<\delta \) for any sufficiently large \(j,\delta _{j}<\delta \). So \(u_{j}\geq 1+\delta _{j}\) on the support of φ. Testing (3.1) with φ yields
On passing to the limit \(j\rightarrow \infty \), we get
To arrive at (3.9), we have used the weak convergence of \(u_{j}\) to u in \(H_{0}^{1}(\Omega )\) and the uniform convergence of the same in Ω. Hence u is a weak solution of \(-\Delta u=\alpha f(x,u-1)+\beta u^{-\gamma}\) in \(\{u>1\}\). Since f, u are continuous and Lipschitz continuous respectively, we conclude by the Schauder estimates that it is also a classical solution of \(-\Delta u=\alpha f(x,u-1)+\beta u^{-\gamma}\) in \(\{u:u>1\}\). Similarly, on choosing \(\varphi \in C_{0}^{\infty}(\{u:u<1\})\), one can find a \(\delta >0\) such that \(u\leq 1-2\delta \). Therefore, \(u_{j}<1-\delta \). Using the arguments as in (3.8) and (3.9), we find that u satisfies \(-\Delta u=\beta u^{-\gamma}\) in the set \(\{u:u<1\}\).
Let us now see what is the nature of u in the set \(\{u:u\leq 1\}^{\circ}\). On testing (3.1) with any nonnegative function, passing to the the limit \(j\rightarrow \infty \), and using the fact that \(h\geq 0\), \(H\leq 1\), we can show that u satisfies
in the distributional sense. Also, we see that u satisfies \(-\Delta u=\beta u^{-\gamma}\) in the set \(\{u:u<1\}\). Furthermore, \(\mu =\Delta u+\beta u^{-\gamma}\) is a positive Radon measure supported on \(\Omega \cap \partial \{u:u<1\}\) (refer to Lemma 6.2 in Sect. 6). From (3.10), the positivity of the Radon measure μ and the usage of Section 9.4 in Gilbarg and Trudinger [13], we conclude that \(u\in W_{\mathrm{loc}}^{2,p}(\{u:u\leq 1\}^{\circ})\), \(1< p<\infty \). Thus μ is supported on \(\Omega \cap \partial \{u:u<1\}\cap \partial \{u:u>1\}\) and u satisfies \(-\Delta u=\beta u^{-\gamma}\) in the set \(\{u:u\leq 1\}^{\circ}\).
To prove (ii), we show that \(u_{j}\rightarrow u\) locally in \(C^{1}(\Omega \setminus \{u:u=1\})\). Note that we have already proved that \(u_{j}\rightarrow u\) in the \(C^{2}\) norm in a neighborhood of ∂Ω of Ω̄. Suppose that \(M\subset \subset \{u:u>1\}\). In this set M we have \(u\geq 1+2\delta \) for some \(\delta >0\). Thus, for sufficiently large j with \(\delta _{j}<\delta \), we have \(|u_{j}-u|<\delta \) in Ω, and hence \(u_{j}\geq 1+\delta _{j}\) in M. From (3.2) we derive that
Clearly, \(f(x,u_{j}-1)\rightarrow f(x,u-1)\) in \(L^{p}(\Omega )\) for \(1< p<\infty \) because f is a locally Hölder continuous function and \(u_{j}\rightarrow u\) uniformly in Ω. Our analysis says something stronger. Since \(-\Delta u=\alpha f(x,u-1)\) in M, we have that \(u_{j}\rightarrow u\) in \(W^{2,p}(M)\). By the embedding \(W^{2,p}(M)\hookrightarrow C^{1}(M)\) for \(p>2\), we have that \(u_{j}\rightarrow u\) in \(C^{1}(M)\). This shows that \(u_{j}\rightarrow u\) in \(C^{1}(\{u>1\})\). Working along similar lines we can also show that \(u_{j}\rightarrow u\) in \(C^{1}(\{u:u<1\})\).
We shall now prove (iii). Since \(u_{j}\rightharpoonup u\) in \(H_{0}^{1}(\Omega )\), we know that by the weak lower semicontinuity of the norm \(\|\cdot \|\),
It suffices to prove that \(\lim \sup \|u_{j}\|\leq \|u\|\). To achieve this, we multiply (3.2) with \(u_{j}-1\) and then integrate by parts. We shall also use the fact that \(th (\frac{t}{\delta _{j}} )\geq 0\) for any t. This gives
as \(j\rightarrow \infty \). Here, n̂ is the outward drawn normal to ∂Ω. We saw earlier that u is a weak solution to \(-\Delta u=\alpha f(x,u-1)+\beta u^{-\gamma}\) in \(\{u:u>1\}\). Let \(0<\delta <1\). We test this equation with the function \(\varphi =(u-1-\delta )_{+}\) and get
Integrating \((u-1-\delta )_{-}\Delta u=\beta u^{-\gamma}(u-1-\delta )_{-}\) over Ω yields
On adding (3.12) and (3.13) and passing to the limit \(\delta \rightarrow 0\), we get
Note that we have used \(\int _{\{u:u=1\}}|\nabla u|^{2}\,dx=0\). Invoking (3.14) and (3.11), we get
This proves (iii).
We shall now prove (iv). Consider
Since \(u_{j}\rightarrow u\) in \(H_{0}^{1}(\Omega )\) and \(H (\frac{u_{j}-1}{\delta _{j}} )\chi _{\{u\neq 1\}}\), \(F_{\delta _{j}}(x,(u_{j}-1)_{+})\) are bounded and converge pointwise to \(\chi _{\{u:u>1\}}\) and \(F(x,(u-1)_{+})\), respectively, it follows that the first integral in (3.16) converges to \(E(u)\). Moreover,
This proves (iv). □
4 Free boundary condition
We shall now show that u satisfies the free boundary condition in the generalized sense (refer to condition (1.4)). We choose \(\vec{\varphi}\in C_{0}^{1}(\Omega ,\mathbb{R}^{N})\) such that \(u\neq 1\) a.e. on the support of φ⃗. Multiplying \(\nabla u_{j}\cdot \vec{\varphi}\) to (3.2) and integrating over the set \(\{u:1-\epsilon ^{-}< u<1+\epsilon ^{+}\}\) gives
The term on the left-hand side of (4.1) can be expressed as follows:
Using this, we integrate by parts to obtain
By using (ii), the integral on the left of equation (4.3) converges to
Equation (4.4) is further equal to
This is because \(\hat{n}=\pm \frac {\nabla u}{|\nabla u|}\) on the set \(\{u:u=1+\epsilon ^{\pm}\}\cup \{u:u=1-\epsilon ^{\pm}\}\). By using (iii), the first integral on the right-hand side of (4.3) converges to
whereas the second integral of (4.3) is bounded by
for some constant \(C>0\). The last two integrals (4.6)–(4.7) vanish as \(\epsilon ^{\pm}\rightarrow 0\) since \(|\text{supp}(\vec{\varphi})\cap \{u:u=1\}|=0\). Therefore we first let \(j\rightarrow \infty \) and then we let \(\epsilon ^{\pm}\rightarrow 0\) in (4.3) to prove that u satisfies the free boundary condition.
Using \((f_{1})\),
Clearly, since \(1< p<2\), we have that \(E_{\delta}\) is bounded from below and coercive. Thus \(E_{\delta}\) satisfies the \((PS)\) condition (see Definition 2.1). It is easy to see that every \((PS)\) sequence is bounded by coercivity and hence contains a convergent subsequence by a standard argument—we extract weakly convergent subsequence and show that this weak limit is the strong limit of, possibly, a different subsequence. Let us show that \(E_{\delta}\) has a minimizer, say, \(u_{1}^{\delta}\). By \((f_{2})\), we have \(F(x,t)>0\) for all \(x\in \Omega \) and \(t>0\). Thus, for any \(u\in H_{0}^{1}(\Omega )\) with \(u>1\) on a set of positive measure, we have
Therefore, \(E(u)\rightarrow -\infty \) as \(\alpha \rightarrow \infty \). Thus, there exists \(\Lambda >0\) such that for all \(\alpha >\Lambda \) we have
Set
5 Auxiliary lemmas
We shall now establish the existence of the first solution of problem (1.1), which also is a minimizer for the functional E. Let us begin with the following lemma.
Lemma 5.1
For all \(\alpha >\Lambda \), \(0<\beta <\beta _{*}\), \(\delta <\delta _{0}(\alpha )\), the functional \(E_{\delta}\) has a minimizer \(u_{1}^{\delta}>0\) that satisfies
Proof
Since \(E_{\delta}\) is bounded below and satisfies the \((PS)\) condition, it possesses a minimizer \(u_{1}^{\delta}\). Also, since \(H (\frac{t-1}{\delta} )\leq \chi _{(1,\infty )}(t)\) for all t, we have
Further, for \(\delta <\delta _{0}(\alpha )\) we obtain (5.1). Since \(E_{\delta}(u_{1}^{\delta})<0=E_{\delta}(0)\), this implies that \(u_{1}^{\delta}\) is a nontrivial solution of problem (3.2). This solution is positive since it is a minimizer. □
We shall now prove that the functional \(E_{\delta}\) has a second nontrivial critical point, say \(u_{2}^{\delta}\).
Lemma 5.2
For any \(\alpha >\Lambda \) and \(0<\beta <\beta _{*}\), there exists a constant \(c_{3}(\alpha )\) such that for all \(\delta <\delta _{0}(\alpha )\) the functional \(E_{\delta}\) has a second critical point \(0< u_{2}^{\delta}\leq u_{1}^{\delta}\) that obeys
Furthermore, \(\emptyset \neq \{u_{2}^{\delta}:u_{2}^{\delta}>1\}\subset \{u_{1}^{ \delta}:u_{1}^{\delta}>1\}\).
Proof
Choose some \(\delta <\delta _{0}(\alpha )\). Consider
Further, we set
The functional \(\tilde{E}_{\delta}\) is of \(C^{1}\) class and its critical points coincide with the weak solutions of the following problem:
By the elliptic (Schauder) regularity, a weak solution of (5.3) is also a classical solution. Also, by the maximum principle, we have that \(u\leq u_{1}^{\delta}\). Thus u is a weak solution of problem (3.3) and hence is a critical point of \(\tilde{E}_{\delta}\) with \(\tilde{E}_{\delta}(u)=E_{\delta}(u)\). We shall now show that \(\tilde{E}_{\delta}\) has a critical point, say \(u_{2}^{\delta}\), that satisfies
This enables us to conclude that \(E_{\delta}(u_{2}^{\delta})=\tilde{E}_{\delta}(u_{2}^{\delta})>0>E_{ \delta}(u_{1}^{\delta})\), which in turn will imply that \(u_{2}^{\delta}>0\) and different from \(u_{1}^{\delta}\).
By the mountain pass theorem (see Lemma 2.2), the functional \(\tilde{E_{\delta}}\) that is coercive (owing to its sublinear nature) satisfies the \((PS)\) condition. Clearly, for any \(t\leq 1\), we have
and
By \((f_{1})\), we get
for all t with \(q>2\) if \(N=2\) and \(2< q\leq \frac{2N}{N-2}\) if \(N\geq 3\). We observe that
By the embedding result \(H_{0}^{1}(\Omega )\hookrightarrow L^{q}(\Omega )\) for \(q>2\), the integral in (5.5) is positive if \(\|u\|=r\), i.e., when \(u\in \partial B_{r}(0)\) for sufficiently small \(r>0\), where \(B_{r}(0)=\{u\in H_{0}^{1}(\Omega ):\|u\|< r\}\). Furthermore, since \(\tilde{E}_{\delta}(u_{1}^{\delta})=E_{\delta}(u_{1}^{\delta})<0= \tilde{E}_{\delta}(0)\), we choose \(r<\|u_{1}^{\delta}\|\), and then applying the mountain pass theorem (Lemma 2.2), we get a critical point \(u_{2}^{\delta}\) of \(\tilde{E}_{\delta}\) with
where \(\Gamma =\{\psi \in C([0,1],H_{0}^{1}(\Omega )):\psi (0)=0,\psi (1)=u_{1}^{ \delta}\}\) is the class of paths joining 0 and \(u_{1}^{\delta}\). For the path \(\psi _{0}(t)=tu_{1}^{\delta}\), \(t\in [0,1]\), we have
since \(H_{\delta}(x,t)\) is nondecreasing in t and \(\tilde{F}_{\delta}(x,t)\geq 0\) for all t by condition \((f_{2})\). Since
it follows by (5.7) and (5.8) that
□
6 Positive Radon measure
We shall now prove two more results that will be needed in the last section.
Lemma 6.1
Let \(0<\beta <\beta _{*}\). Then a solution of the problem
say \(u_{\beta}\), satisfies \({u}_{\beta}< u\) a.e. in Ω, where u is a solution of problem (1.1).
Proof
Let \(u\in H_{0}^{1}(\Omega )\) be a positive solution of problem (1.1) and \(u_{\beta}>0\) be a solution of problem (6.1). For any \(0<\beta <\beta _{*}\), define a weak solution \(u_{\beta}\) of problem (6.1) as follows:
By the Schauder estimates, we have \(u\in C^{2,a}(\Omega )\), and by Lazer and McKenna [16] we have \(u_{\beta}\in C^{2,a}(\Omega )\cap C(\bar{\Omega})\). We shall show that \(u\geq {u}_{\beta}\) a.e. in Ω. We let \(\tilde{\Omega}=\{x\in \Omega :u(x)<{u}_{\beta}(x)\}\). Thus, from the weak formulations satisfied by u, \({u}_{\beta}\) and testing with the function \(\varphi =(u_{\beta}-u)_{+}\), we have
Thus, \(\|(u_{\beta}-u)_{+}\|=0\) and hence \(|\tilde{\Omega}|=0\). However, since the functions u, \(u_{\beta}\) are continuous, it follows that \(\tilde{\Omega}=\emptyset \). Hence, by (6.3), we obtain \(u\geq \underline{u}_{\beta}\) in Ω.
Let \(W=\{x\in \Omega :u(x)=u_{\beta}(x)\}\). Since W is a measurable set, it follows that for any \(\eta >0\) there exists a closed subset V of W such that \(|W\setminus V|<\eta \). Further assume that \(|W|>0\). We now define a test function \(\varphi \in C_{c}^{1}(\mathbb{R}^{N})\) such that
Since u is a weak solution to (1.1), we have
This is a contradiction. Therefore, \(|W|=0\), which implies that \(W=\emptyset \). Hence, \(u>u_{\beta}\) in Ω. □
Lemma 6.2
Function u is in \(H_{\mathrm{loc}}^{1,2}(\Omega )\) and the Radon measure \(\mu =\Delta u+\beta u^{-\gamma}\) is nonnegative and supported on \(\Omega \cap \{u:u<1\}\) for \(\beta \in (0,\beta _{*})\).
Proof
We follow the proof due to Alt and Caffarelli [2]. Choose \(\delta >0\), \(\beta \in (0,\beta _{*})\), and a test function \(\varphi ^{2}\chi _{\{u:u<1-\delta \}}\), where \(\varphi \in C_{0}^{\infty}(\Omega )\). Therefore,
By an application of integration by parts to the second term of (6.6), we get
On passing to the limit \(\delta \rightarrow 0\), we conclude that \(u\in H_{\mathrm{loc}}^{1,2}(\Omega )\).
Furthermore, for nonnegative \(\zeta \in C_{0}^{\infty}(\Omega )\), we have
On passing to the limit \(\delta \rightarrow 0\), we obtain \(\Delta (u-1)_{-}\geq 0\) in the distributional sense, and hence there exists a Radon measure μ (say) such that \(\mu =\Delta (u-1)_{-}\geq 0\). □
7 Proof of the main theorem
Finally, we are in a position to prove Theorem 1.1.
Proof of Theorem 1.1
Choose \(\alpha >\lambda \) and a sequence \(\delta _{j}\rightarrow 0\) such that \(\delta _{j}<\delta _{0}(\alpha )\). For each j, Lemma 5.1 gives a minimizer \(u_{1}^{\delta}>0\) of \(E_{\delta _{j}}\) that obeys
Further, by Lemma 5.2, we can guarantee the existence of the second critical point \(0< u_{2}^{\delta}\leq u_{1}^{\delta _{j}}\) such that
The next step is to show that \((u_{1}^{\delta _{j}})\), \((u_{2}^{\delta _{j}})\) are bounded in \(H_{0}^{1}(\Omega )\cap L^{\infty}(\Omega )\). We shall then apply Lemma 3.1.
Since \(H\geq 0\) and
for all t by \((f_{1})\), it follows that
Since \(E_{\delta _{j}}(u_{1}^{\delta})<0\) by (7.1) and \(p<2\), we have that \((u_{1}^{\delta _{j}})\) is bounded in \(H_{0}^{1}(\Omega )\).
Since \(f_{\delta}(x,(t-1)_{+})=f_{\delta}(x,0)=0\) for any \(t\leq 1\) and
whenever \(t>1\) by \((f_{1})\), we get
However, when \(u_{1}^{\delta _{j}}<1\),
in which case \(u_{1}^{\delta _{j}}=u_{\beta}|_{\{u_{1}^{\delta _{j}}<1\}}\). □
The sublinearity of (7.5) together with the boundedness of \((u_{1}^{\delta _{j}})\) in \(H_{0}^{1}(\Omega )\) implies by the Moser iteration method that \((u_{1}^{\delta _{j}})\) in \(L^{\infty}(\Omega )\). By a similar argument, \((u_{2}^{\delta _{j}})\) is also bounded in \(L^{\infty}(\Omega )\) since \(0< u_{1}^{\delta _{j}}\leq u_{2}^{\delta _{j}}\) in Ω. On renaming the subsequence of \((\delta _{j})\), the sequences \((u_{1}^{\delta _{j}})\), \((u_{2}^{\delta _{j}})\) converge uniformly to a Lipschitz continuous functions, say \(u_{1},u_{2}\in H_{0}^{1}(\Omega )\cap C^{2}(\bar{\Omega}\setminus G(u))\) respectively, of problem (1.1) that satisfies
classically in the region \(\Omega \setminus G(u)\), the free boundary condition in the generalized sense and furthermore continuously vanishes on ∂Ω. We also have that
and
Using (7.6) in combination with (7.1) and (4.10) yields
Therefore,
Similarly, combining (7.7) with (7.2) yields
Thus,
So, from (7.8) and (7.9) we can conclude that \(u_{1}\), \(u_{2}\) are distinct and nontrivial solutions of problem (1.1). Here \(u_{1}\) is a minimizer, whereas \(u_{2}\) is not. Also, since \(u_{2}^{\delta _{j}}\leq u_{1}^{\delta _{j}}\) for each j, we have \(u_{2}\leq u_{1}\). Since \(u_{2}\) is a nontrivial solution, it follows that \(0< u_{2}\leq u_{1}\) and the sets \(\{u_{1}:u_{1}<1\}\subset \{u_{2}:u_{2}<1\}\) are connected if ∂Ω is connected. Moreover, the sets \(\{u_{2}:u_{2}>1\}\subset \{u_{1}:u_{1}>1\}\) are nonempty.
Availability of data and materials
Not applicable. Moreover, all of the material is owned by the authors and/or no permissions are required.
References
Acker, A.: On the existence of convex classical solutions to a generalized Prandtl-Batchelor free boundary problem. Z. Angew. Math. Phys. 49(1), 1–30 (1998)
Alt, H.W., Caffarelli, L.A.: Existence and regularity for a minimum problem with free boundary. J. Reine Angew. Math. 325, 105–144 (1981)
Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)
Batchelor, G.K.: On steady state laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177–190 (1956)
Batchelor, G.K.: A proposal concerning laminar wakes behind bluff bodies at large Reynolds number. J. Fluid Mech. 1, 388–398 (1956)
Caffarelli, L.A., Friedman, A.: Asymptotic estimates for the plasma problem. Duke Math. J. 47(3), 705–742 (1980)
Caffarelli, L.A., Jerison, D., Kenig, C.E.: Some new monotonicity theorems with applications to free boundary problems. Ann. Math. (2) 155(2), 369–404 (2002)
Caflisch, R.E.: Mathematical analysis of vortex dynamics. In: Mathematical Aspects of Vortex Dynamics, Leesburg, VA, 1988, pp. 1–24. SIAM, Philadelphia (1989)
Choudhuri, D., Repovš, D.D.: On semilinear equations with free boundary conditions on stratified Lie groups. J. Math. Anal. Appl. 518(1), 126677 (2022)
Elcrat, A.R., Miller, K.G.: Variational formulas on Lipschitz domains. Trans. Am. Math. Soc. 347(7), 2669–2678 (1995)
Friedman, A., Liu, Y.: A free boundary problem arising in magnetohydrodynamic system. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 22(3), 375–448 (1995)
Giacomoni, J., Schindler, I., Takáč, P.: Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 6(1), 117–158 (2007)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin Heidelberg (2001)
Jerison, D., Perera, K.: A multiplicity result for the Prandtl-Batchelor free boundary problem (2020). arXiv:2003.05921v1
Kesavan, S.: Topics in Functional Analysis and Applications. New Age International, Delhi (2003)
Lazer, A.C., McKenna, P.J.: On a singular nonlinear elliptic boundary-value problem. Proc. Am. Math. Soc. 111(3), 721–730 (1991)
Papageorgiou, N.S., Vetro, C., Vetro, F.: Existence and multiplicity of solutions for resonant-superlinear problems. Complex Var. Elliptic Equ. (2022). https://doi.org/10.1080/17476933.2023.2164888
Perera, K.: On a class of elliptic free boundary problems with multiple solutions. Nonlinear Differ. Equ. Appl. 28, 36 (2021). https://doi.org/10.1007/s00030-021-00699-3
Temam, R.: A non-linear eigenvalue problem: the shape at equilibrium of a confined plasma. Arch. Ration. Mech. Anal. 60(1), 51073 (1975)
Yang, Y., Perera, K.: Existence and nondegeneracy of ground states in critical free boundary problems. Nonlinear Anal. 180, 75–93 (2019)
Funding
The first author (DC) has received funding from the National Board for Higher Mathematics (NBHM), Department of Atomic Energy (DAE) India, [02011/47/2021/NBHM(R.P.)/R&D II/2615]. The second author (DDR) has received funding from the Slovenian Research Agency grants P1-0292, J1-4031, J1-4001, N1-0278, N1-0114, and N1-0083.
Author information
Authors and Affiliations
Contributions
The authors DC and DDR have contributed equally to the study of the problem and have written the main manuscript text. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Choudhuri, D., Repovš, D.D. An elliptic problem of the Prandtl–Batchelor type with a singularity. Bound Value Probl 2023, 63 (2023). https://doi.org/10.1186/s13661-023-01747-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01747-w
MSC
- 35R35
- 35Q35
- 35J20
- 46E35
Keywords
- Elliptic free boundary problems
- Mountain pass theorem
- Singularity