 Research
 Open access
 Published:
Affine periodic solutions for some stochastic differential equations
Boundary Value Problems volumeÂ 2023, ArticleÂ number:Â 70 (2023)
Abstract
In this paper, we are study the problem of affine periodicity of solutions in distribution for some nonlinear stochastic differential equation with exponentially stable. We prove the existence and uniqueness of stochastic affine periodic solutions in distribution via the Banach fixedpoint theorem.
1 Introduction
In this paper, we consider the following stochastic differential equation
where \(t\in \mathbb{R}\), \(A(t)\) is a linear operator, \(A(t+T)=QA(t)Q^{1}\), whose corresponding semigroup has exponential stability. The drift coefficient \(f: \mathbb{R}\times {\mathbb{R}^{d}}\to {\mathbb{R}^{d}}\) and diffusion coefficient \(g: \mathbb{R}\times {\mathbb{R}^{d}}\to {\mathbb{R}^{d\times m}}\) are continuous with the following \((Q,T)\)affine periodicity
for some invertible matrix \(Q\in GL(n)\), and positive constant \(T>0\), \(\{W(t)\}\) is a twosided standard mdimensional Brownian motion.
The existence of periodic solutions for differential equations has been investigated by many mathematicians [1, 6, 11, 12]. The theory of stochastic differential equations has been well developed. Recently, Kolmogorov [8] studied the definition of recurrence for stochastic processes. Liu et al. [2, 9, 10] studied the existence of almost periodic solutions and almost automorphic solutions in distribution for stochastic differential equations. Chen et al. [3, 7] obtained the existence of periodic solutions in the sense of distribution for stochastic differential equations. Jiang et al. [7] obtained smooth Wongâ€“Zakai approximations and periodic solutions in distribution of dissipative stochastic differential equations. However, some natural phenomena such as spiral waves, rotation motions in the body from mechanics, and spiral lines in geometry often exhibit symmetry besides time periodicity. Li et al. [4, 13, 14] introduced another special kind of recurrence, affine periodicity, which contains several special cases, such as periodicity, antiperiodicity, rotation periodicity, and quasiperiodicity.
Motivated by these works, in this paper, we obtain the existence and uniqueness of affine periodic solutions for equation (1.1) in the sense of distribution via Banachâ€™s fixedpoint theorem, exponential stability, and stochastic analysis techniques.
2 Preliminary
Throughout this paper, we assume that \((\Omega ,\mathcal{F},\mathbf{P})\) is a probability space, the space \({\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d})\) stands for the space of all \({\mathbb{R}}^{d}\)valued random variables X such that
Then, \(\mathcal{L}^{2}(\mathbf{P}, {\mathbb{R}}^{d})\) is a Hilbert space equipped with the norm
Let us recall the definitions of affine periodic functions and affine periodic solution in distribution to be studied in this paper, see [7].
Definition 2.1
A continuous function \(f: {\mathbb{R}}\times {\mathbb{R}^{d}}\to{\mathbb{R}^{d}}\) is called \((Q,T)\) affine periodic if for some invertible matrix \(Q\in GL(n)\) and periodic \(T>0\),
Definition 2.2
The solution \(X(t)\) of the system (1.1) is said to be a \((Q,T)\)affine periodic solution in distribution if the following conditions hold:

(i)
Stochastic process \(X(t)\) is \((Q,T)\)affine periodic in distribution, namely,
$$ X(t+T)=QX(t). $$ 
(ii)
There exists a stochastic process \(W_{1}\), which has the same distribution as W, such that \(Q^{1}X(t+T)\) is a solution of the stochastic differential equation
$$ dY(t)=f\bigl(t,Y(t)\bigr)\,dt +g\bigl(t,Y(t)\bigr)\,dW _{1}(t). $$(2.1)
We recall the definition of exponential stability for stochastic differential equations, seeÂ [5].
Definition 2.3
A semigroup of operators \(\{U(t)\}_{t\geq 0}\) is said to be exponentially stable, if there are positive numbers \(K>0\), \(\omega >0\) such that
for all \(t\geq 0\).
For later use, we recall the definition of a mild solution, see [5]. We set \(\mathcal{F}_{t}=\sigma \{W(u):u\leq t\}\).
Definition 2.4
An \(\mathcal{F}_{t}\)adapted stochastic process \(\{X(t)\}_{t\in \mathbb{R}}\) is said to be a mild solution of (1.1) if it satisfies the stochastic integral equation
for all \(t\geq a\), \(a\in \mathbb{R}\).
3 Main results and proof
Now, we can state our main result, which is a result of the existence and uniqueness of \((Q,T)\)affine periodic solutions in distribution for the stochastic differential equation (1.1).
Theorem 3.1
Assume that \(A(t)\), \(f(t, x)\), and \(g(t, x)\) are \((Q, T)\)affine periodic functions satisfying the following assumptions:

(H1)
The semigroup \(\{U(t)\}_{t\geq 0}\) generated by \(A(t)\) is exponentially stable.

(H2)
The drift coefficient f and diffusion coefficient g satisfy the Lipschitz conditions in X, that is, for all \(X\in {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d})\) and \(t\in \mathbb{R}\),
$$ \mathbf{E} \bigl\Vert f(t, X_{1})f(t, X_{2}) \bigr\Vert ^{2}\vee \mathbf{E} \bigl\Vert g(t, X_{1})g(t, X_{2}) \bigr\Vert ^{2}\leq L\mathbf{E} \Vert X_{1}X_{2} \Vert ^{2}, $$(3.1)where \(L>0\) is a constant such that
$$ \frac{2K^{2}L}{w^{2}}+\frac{K^{2}L}{w}< 1. $$
Then, there exists the unique \({\mathcal{L}}^{2}\)bounded \((Q, T)\)affine periodic solution in distribution of (1.1).
Proof
Since the semigroup \(\{U(t)\}_{t\leq 0}\) is exponentially stable, if \(X(t)\) is \({\mathcal{L}}^{2}\)bounded, the \(X(t)\) is a mild solution of (1.1) if and only if it satisfies the integral equation
We set \(r\to \infty \) in the above integral equation, by the exponentially stability of \(U(t)\), we obtain that \(X(t)\) satisfies the stochastic integral equation
Let \(s=\sigma +T\) and \(\widetilde{W}(\sigma ):=W(s)W(T)\). \(\widetilde{W}(\sigma )\) coincides with the law of \(W(s)\). Thus,
Then, \(X(t)\) is \((Q,T)\)affine periodic in distribution. Furthermore, \((Q^{1}X(t+T), \widetilde{W})\) is also a solution of (2.1) with \(W_{1}=\widetilde{W}\). By DefinitionÂ 2.2, then \(X(t)\) is a \((Q, T)\)affine periodic solution in distribution of (1.1).
Let \(C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d}))\) be the space of all bounded \({\mathcal{L}}^{2}\)continuous affine periodic functions from \(\mathbb{R}\to {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d})\) equipped with norm \(\y(t)\_{\infty}=\sup_{s\in \mathbb{R}}\y(t)\_{2}\). Define an operator \(\mathcal{S}\) on \(C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d}))\) by
Now, we verify that operator \(\mathcal{S}\) maps \(C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d}))\) into itself. Let us consider the nonlinear operators \(\mathcal{S}_{1}Y\) and \(\mathcal{S}_{2}Y\) on \(C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d}))\) given by
respectively. As \(f(t,x(t))\) and \(g(t,x(t))\) are \((Q,T)\)affine periodic, then we know that \(S_{1}Y\) and \(S_{2}Y\) are \((Q,T)\)affine periodic. That is, the operator S maps \(C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d}))\) into itself.
Next, we prove \(\mathcal{S}\) is a contraction mapping on \(C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d}))\).
For \(Y_{1}, Y_{2}\in C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, { \mathbb{R}}^{d}))\) and \(t\in \mathbb{R}\), we have
By the Cauchyâ€“Schwarz inequality, we have the following estimate
By the ItÃ´ isometry property, we have the other terms as follows
Then, for each \(t\in \mathbb{R}\),
that is,
with \(\eta =\frac{2K^{2}L}{w^{2}}+\frac{K^{2}L}{w}\), according to
By (3.2) and (3.3), for each \(t\in \mathbb{R}\),
Thus,
By the assumption (H2)
it follows that \(\mathcal{S}\) is a contraction mapping on \(C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, {\mathbb{R}}^{d}))\). By the Banach fixedpoint theorem, there exists a unique solution \(y^{*}\in C_{RP}(\mathbb{R}, {\mathcal{L}}^{2}(\mathbf{P}, { \mathbb{R}}^{d}))\) such that \(\mathcal{S}y^{*}=y^{*}\), which is the unique \((Q, T)\)affine periodic solution of (1.1).â€ƒâ–¡
Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Burton, T.A.: Stability and Periodic Solutions of Ordinary and FunctionalDifferential Equations. Academic Press, San Diego (1985)
Cao, Y., Yang, Q., Huang, Z.: Existence and exponential stability of almost automorphic mild solutions for stochastic functional differential equations. Stochastics 83(03), 259â€“275 (2011)
Chen, F., Han, Y., Li, Y., Yang, X.: Periodic solutions of FokkerPlanck equations. J. Differ. Equ. 263, 285â€“298 (2017)
Cheng, C., Huang, F., Li, Y.: Affineperiodic solutions and pseudo affineperiodic solutions for differential equations with exponential dichotomy and exponential trichotomy. J. Appl. Anal. Comput. 6(4), 950â€“967 (2016)
Fu, M., Liu, Z.: Squaremean almost automorphic solutions for some stochastic differential equations. Proc. Am. Math. Soc. 138, 3689â€“3701 (2010)
Hale, J.K.: Ordinary Differential Equations, 2nd edn. Krieger, New York (1980)
Jiang, X., Li, Y.: WongZakai approximations and periodic solutions in distribution of dissipative stochastic differential equations. J. Differ. Equ. 274, 652â€“765 (2021)
Kolmogorov, A.: Zur Theorie der Markoffschen Ketten. Math. Ann. 112(1), 155â€“160 (1936)
Liu, Z., Sun, K.: Almost automorphic solutions for stochastic differential equations driven by LÃ©vy noise. J. Funct. Anal. 226(3), 1115â€“1149 (2014)
Liu, Z., Wang, W.: Favard separation method for almost periodic stochastic differential equations. J. Differ. Equ. 260, 8109â€“8136 (2016)
Mawhin, J.: Periodic solutions of differential and difference systems with pendulumtype nonlinearities: variational approaches. In: Differential and Difference Equations with Applications. Springer Proc. Math. Stat., vol.Â 47, pp.Â 83â€“98. Springer, New York (2013)
PoincarÃ©, H.: Les MÃ©thodes Nouvelles de la MÃ©canique CÃ©leste, vol.Â I. GauthierVillars, Paris (1892)
Wang, H., Yang, X., Li, Y., Li, X.: LaSalle type stationary oscillation theorems for affineperiodic systems. Discrete Contin. Dyn. Syst., Ser. B 22(7), 2907â€“2921 (2017)
Xu, F., Yang, X., Li, Y., Liu, M.: Existence of affineperiodic solutions to Newton affineperiodic systems. J. Dyn. Control Syst. 25, 437â€“455 (2019)
Acknowledgements
The authors are grateful to the anonymous referees for their valuable suggestions and comments.
Funding
This work was supported by the Project of Science and Technology Development of Jilin Province (YDZJ202201ZYTS309) and the National Natural Science Foundation of China (grant No. 12001224).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this paper. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisherâ€™s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articleâ€™s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articleâ€™s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Guo, R., Wang, H. Affine periodic solutions for some stochastic differential equations. Bound Value Probl 2023, 70 (2023). https://doi.org/10.1186/s13661023017596
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661023017596