Skip to main content

Existence theory and Ulam’s stabilities for switched coupled system of implicit impulsive fractional order Langevin equations

Abstract

In this work, a system of nonlinear, switched, coupled, implicit, impulsive Langevin equations with two Hilfer fractional derivatives is introduced. The suitable conditions and results are established to discuss existence, uniqueness, and Ulam-type stability results of the mentioned model, with the help of nonlinear functional analysis techniques and Banach’s fixed-point theorem. Furthermore, we examine our results with the help of example.

1 Introduction

One of the most representative field in mathematical sciences is stability analysis, which has many types, but the most interesting and important type is Ulam–Hyers (UH) stability. UH stability problem was identified by Ulam [35] and Hyers [14] solved the UH stability problem partially for Banach spaces case. Rassias generalized this concept [22] in 1978 and it was named as UH–Rassias (UHR) stability. Numerous papers have been published representing UH and UHR stability concepts, and the reader is referred to see [28, 31, 36, 4346, 48].

Obloza seems to have been the first to study the UH stability of linear differential equations (DEs) \(f'(\wp )+g(\wp )f(\wp )-r(\wp ) = 0\) (see [19, 20]). After that, Alsina and Ger [7] investigated that if a differentiable \(f:(a, b)\rightarrow \mathbb{R}\) satisfies \(|f'(\wp )-f(\wp )|\leq \varepsilon \), then there exists \(f_{0}:(a, b)\rightarrow \mathbb{R}\) such that \(f_{0}'(\wp )=f_{0}(\wp )\) and \(|f(\wp )-f_{0}(\wp )|\leq 3\varepsilon \) for all \(\wp \in (a,b)\) and this work was generalized by Takahasi et al. [32]. For further detail, see [26, 28, 31, 45, 46, 48].

Fractional differential equations (FDEs) of integer order are the classical DEs generalized form. The calculus of fractional derivatives is presently a created region and has numerous applications in electromagnetics, physical sciences, electrochemistry, medicine, porous media, economics etc. Progressively, FDEs have very essential role in signal processing, control, defence, optics, viscoelasticity, astronomy, electrical circuits, statistical physics, etc. The main theoretical tools for this area’s qualitative analysis and interconnection, as well as the distinction between classical, integral models, and FDEs are provided by some interesting articles [1, 4, 15, 21, 27, 33, 34, 40].

The Langevin FDEs is one of the most useful and essential subjects in electrical engineering, chemistry, and physics. The Langevin equation (LE), formulated by Langevin, has proven to be an effective tool for describing physical phenomena’s evolution under vacillating circumstances. For complex media systems, LE with ordinary derivative does not give the right dynamics description. Various LEs generalizations have been suggested for the description of fractal medium dynamical processes. Generalized LE is one of such generalization, which associates the fractal and memory properties with immoderate memory kernel into the LE. Further achievable generalization needs replacing ordinary derivative with a fractional derivative in the LE to form fractional LE, see [3, 12, 17, 18, 23] for more details.

The use of impulses with DEs is very well incorporated in mathematical modeling. In our day to day life, a wide range of phenomena and procedures exists that are defined knowing that at some instances these phenomena undergo immediate system changes. Also these procedures are exhibited for temporary disruptions, a process called impulsive effects in the system. DEs together with impulses have been keenly observed by many authors, e.g., the reader can see the contribution [9, 11, 16, 25, 37, 42, 44, 47].

Nowadays, the existence along with uniqueness and different types of UH stability of implicit nonlinear FDEs with fractional Caputo derivative have considerable attention, see [8, 10, 29, 31, 39, 41]. Wang et al. [38], studied generalized Ulam–Hyers–Rassias stability of FDE:

$$ \textstyle\begin{cases} {{}^{c}}{D}_{0,\xi}^{\alpha }x(\xi )=f(\xi ,x(\xi )), \quad \xi \in (\xi _{\ell},s_{\ell}], \ell =0,1,2,3,4,\dots ,m, 0< \alpha < 1, \\ x(\xi )=g_{\ell}(\xi ,x(\xi )),\quad \xi \in (\varsigma _{i-1},\xi _{ \ell}], \ell =1,2,3,4,5,\dots ,m. \end{cases} $$

Zada et al. [43], studied existence along with uniqueness of solutions by utilizing Diaz Margolis’s fixed-point theorem and established different kinds of UH stability for a class of implicit nonlinear FDE with nonlinear integral boundary conditions and noninstantaneous integral impulses:

$$ \textstyle\begin{cases} {{}^{c}}{D}_{0,\xi}^{\alpha }x(\xi )=f(\xi ,x(\xi ), {{}^{c}}{D}_{0, \xi}^{\alpha }x(\xi )), \\ \quad \xi \in (\xi _{\ell},s_{\ell}], \ell =0,1,2,3,4, \dots ,m, 0< \alpha < 1, \xi \in (0,1], \\ x(\xi )=I_{s_{i-1},\xi _{\ell}}^{\alpha}(\xi _{\ell}(\xi ,x(\xi ))),\quad \xi \in (s_{i-1},\xi _{\ell}], \ell =1,2,3,4,\dots ,m, \\ x(0)=\frac{1}{\Gamma{(\alpha )}}\int _{0}^{T}(T-\varrho )^{\alpha -1} \eta (\varrho ,x(\varrho ))\,d\varrho . \end{cases} $$

Ali et al. [6] presented the existence as well as uniqueness of solutions and various types of Ulam stabilities for a coupled nonlinear systems of implicit FDEs containing Caputo derivative by using Banach contraction principle and Leray–Schauder of cone type,

$$ \textstyle\begin{cases} {{}^{c}}{D}^{\nu}x(\xi )-f(\xi ,y(\xi ),{{}^{c}}{D}^{\nu}x( \xi ))=0,\quad \nu \in (2,3], \xi \in J, \\ {{}^{c}}{D}^{\mu}y(\xi )-f(\xi ,x(\xi ),{{}^{c}}{D}^{\nu}y(\xi ))=0, \quad \mu \in (2,3], \xi \in J, \\ \acute{x}(\xi )|_{\xi =0}=\acute{\acute{x}}(\xi )|_{\xi =0}, \qquad x(\xi )|_{\xi =1}=\lambda x(\eta ),\quad \lambda , \eta \in (0,1), \\ \acute{y}(\xi )|_{\xi =0}=\acute{\acute{y}}(\xi )|_{\xi =0}, \qquad y(\xi )|_{\xi =1}=\lambda y(\eta ), \quad \lambda , \eta \in (0,1). \end{cases} $$

Omar et al. [30], study the existence as well as uniqueness of solutions of anti–periodic boundary problem of switched coupled system of nonlinear implicit Langevin equations with two fractional derivatives and then, by using Banach’s fixed-point theorem, UH type are also discussed.

$$ \textstyle\begin{cases} \textstyle\begin{cases} \mathcal{D}^{\Omega _{1}}(\mathcal{D}^{\Psi _{1}}+{\kappa _{1}}) u(w) = f_{1}(w,v(w),\mathcal{D}^{\Omega _{1}}u(w)),\quad 0\leq w\leq 1, 0< \Psi _{1}\leq 1, 1< \Omega _{1} \leq 2, \\ w(0)+ w(1)=0,\qquad \mathcal{D}^{\Psi _{1}} w(0) + \mathcal{D}^{\Psi _{1}} w(1)=0,\qquad \mathbb{D}^{2\Psi _{1}} w(0)+\mathbb{D}^{2\Psi _{1}} w(1) =0, \end{cases}\displaystyle \\ \textstyle\begin{cases} \mathcal{D}^{\Omega _{2}}(\mathcal{D}^{\Psi _{2}}+{\kappa _{2}}) u(w) = f_{2}(w,u(w),\mathcal{D}^{\Omega _{2}}v(w)),\quad 0\leq w\leq 1, 0< \Psi _{2}\leq 1, 1< \Omega _{2} \leq 2, \\ w(0)+ w(1)=0,\qquad \mathcal{D}^{\Psi _{2}} w(0) + \mathcal{D}^{\Psi _{2}} w(1)=0,\qquad \mathbb{D}^{2\Psi _{2}} w(0)+\mathbb{D}^{2\Psi _{2}} w(1) =0, \end{cases}\displaystyle \end{cases} $$

where \(\mathcal{D}^{\Psi _{1}}\), \(\mathcal{D}^{\Psi _{2}}\), \(\mathcal{D}^{ \Omega _{1}}\), \(\mathcal{D}^{\Omega _{2}}\) represent the Caputo fractional derivative of order \(\Psi _{1}\), \(\Psi _{2}\), \(\Omega _{1}\), \(\Omega _{2}\) respectively \(f_{1},f_{2}:[0,1]\times \mathfrak{R}\times \mathfrak{R}\rightarrow \mathfrak{R}\) are continuous functions and \(\kappa _{1}\), \(\kappa _{2}\) are real numbers. Furthermore, \(\mathbb{D}^{2\Psi _{1}}\), \(\mathbb{D}^{2\Psi _{2}}\) are the sequential fractional derivatives:

$$ \textstyle\begin{cases} \mathbb{D}^{\Psi _{1}} u = \mathcal{D}^{\Psi _{1}} u, \\ \mathbb{D}^{k\Psi _{1}} u=\mathbb{D}^{\Psi}_{1} \mathbb{D}^{(k-1) \Psi _{1}}u, \quad k=2,3,\dots, \\ \mathbb{D}^{\Psi _{2}} u = \mathcal{D}^{\Psi _{2}} u, \\ \mathbb{D}^{k\Psi _{1}} u=\mathbb{D}^{\Psi}_{1} \mathbb{D}^{(k-1) \Psi _{2}}u, \quad k=2,3,\dots . \end{cases} $$

This paper is about the study of a system of switched, coupled, implicit, nonlinear, impulsive LEs with four Hilfer fractional derivatives (HFDs) of the form:

$$ \textstyle\begin{cases} \textstyle\begin{cases} D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+\lambda )x(\xi )=f_{1}(\xi ,y(\xi ),D^{\alpha _{1},\gamma _{1}}x(\xi )), \\ \quad \xi \in J=[0,T], 0< \alpha _{1},\alpha _{2}< 1, 0\leq \gamma _{1}\leq 1, \\ \Delta x(\xi _{\ell})=I_{\ell}(x(\xi _{\ell})),\quad {\ell}=1,2,3,4,5,\dots ,m, \\ I^{1-\gamma _{1}}x(0)=x_{0}, \qquad \eta _{1}=(\alpha _{1}+\alpha _{2})(1-\gamma _{1})+\gamma _{1}, \end{cases}\displaystyle \\ \textstyle\begin{cases} D^{\beta _{1},\gamma _{2}}(D^{\beta _{2},\gamma _{2}}+\lambda )y(\xi )=f_{2}(\xi ,x(\xi ),D^{\beta _{1},\gamma _{2}}y(\xi )), \\ \quad \xi \in J=[0,T], 0< \beta _{1},\beta _{2}< 1, 0\leq \gamma _{2}\leq 1, \\ \Delta y(\xi _{\ell})=I_{\ell}(y(\xi _{\ell})),\quad {\ell}=1,2,3,4,5,\dots ,m, \\ I^{1-\gamma _{2}}y(0)=y_{0}, \qquad \eta _{2}=(\beta _{1}+\beta _{2})(1-\gamma _{2})+\gamma _{2} , \end{cases}\displaystyle \end{cases} $$
(1.1)

where \(D^{\alpha _{1},\gamma _{1}}\), \(D^{\alpha _{2},\gamma _{1}}\), \(D^{\beta _{1},\gamma _{2}}\) and \(D^{\beta _{2},\gamma _{2}}\) represent four HFDs [15], of order \(\alpha _{1}\), \(\alpha _{2}\), \(\beta _{1}\) and \(\beta _{2}\) respectively, \(\lambda \in \mathbb{R}-0\), \(\gamma _{1}\), \(\gamma _{2}\) determine to the type of initial conditions used in the problem. Furthermore, \(f_{1},f_{2}:J\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R}\) are continuous and \(I_{\ell}:\mathbb{R}\rightarrow \mathbb{R}\) for all \({\ell}=1,2,3,4,5, \dots ,m\), represent impulsive nonlinear mapping, \(\Delta x(\xi _{\ell}) =x(\xi _{\ell}^{+})-x(\xi _{\ell}^{-})\) and \(\Delta y(\xi _{\ell}) =y(\xi _{\ell}^{+})-y(\xi _{\ell}^{-})\) where \(x(\xi _{\ell}^{+})\), \(x(\xi _{\ell}^{-})\), \(y(\xi _{\ell}^{+})\) and \(y(\xi _{\ell}^{-})\) represent the right and the left limits, respectively, at \(\xi =\xi _{\ell}\) for \({\ell}=1,2,3,4,5,\dots ,m\).

2 Preliminaries

The definitions of Riemman–Liouville (RL) fractional derivatives, Caputo fractional derivatives, Hilfer fractional derivatives (HFDs), fractional integrals, some useful lemmas, remarks and results are recalled from the preliminaries sections of [15, 21, 24].

3 Existence and uniqueness

Here, we investigate the existence and uniqueness of solutions for the proposed LE using two HFDs.

Theorem 3.1

Let \(f_{1} : J\times \mathbb{R}\times \mathbb{R} \rightarrow \mathbb{R}\) be a function such that \(f(\cdot , x(\cdot ),D^{\alpha _{1},\gamma _{1}}x(\cdot ))\in C_{1- \eta _{1}}[0, T]\) for all \(x\in C_{1-\eta _{1}}[0, T]\). Then the function \(x\in C_{1-\eta _{1}}[0, T]\) is equivalent to

$$ x(\xi )= \textstyle\begin{cases} \frac{x_{0} }{\Gamma (\gamma _{1})}\xi ^{\gamma _{1}-1}+ \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{0}^{\xi}(\xi - \varrho )^{\alpha _{1}+\alpha _{2}-1}f_{1}(\varrho ,y(\varrho ),D^{ \alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {}- \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi}(\xi -\varrho )^{ \alpha _{1}-1}x(\varrho )\,d\varrho ,\quad \xi \in J_{0} , \\ \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{1}^{\gamma _{1}-1}+ \int _{ \xi _{1}}^{\xi} \frac{(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1}( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {} + \int _{0}^{\xi _{1}} \frac{(\xi _{1}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} f_{1}(\varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {} -\frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi _{1}}(\xi _{1}- \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho \\ \quad {}- \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{1}}^{\xi}(\xi - \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho +I_{1}(x(\xi _{1})), \quad \xi \in J_{1} , \\ \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{m}^{\gamma _{1}-1}+\sum_{i=1}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1}( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {} - \sum_{\ell =1}^{m}\frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{i-1}}^{ \xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho \\ \quad {} +\sum_{{\ell =1}}^{m} I_{\ell}(x(\xi _{\ell})), \quad \xi \in J_{ \ell}, {\ell}=1,2,3,4,5,\dots ,m \end{cases} $$
(3.1)

satisfies

$$ \textstyle\begin{cases} D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+ \lambda )x(\xi )=f(\xi ,y(\xi ),D^{\alpha _{1},\gamma _{1}}x(\xi )), \\ \quad \xi \in J=[0,T], 0< \alpha _{1},\alpha _{2}< 1, 0\leq \gamma _{1} \leq 1, \\ \Delta x(\xi _{\ell})=I_{\ell}(x(\xi _{\ell})),\quad {\ell}=1,2,3,4,5, \dots ,m, \\ I^{1-\gamma _{1}}x(0)=x_{0}, \qquad \eta _{1}=(\alpha _{1}+\alpha _{2})(1- \gamma _{1})+\gamma _{1}. \end{cases} $$
(3.2)

Proof

Let x satisfy (3.2). Then for any \(\xi \in J_{0}\), there exists \(c\in {\mathbb{R}}\) such that

$$\begin{aligned} \begin{aligned} x(\xi )& = c+ \int _{0}^{\xi} \frac{(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} f_{1}\bigl(\varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr) \,d\varrho \\ &\quad {}-\frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{\xi}(\xi - \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho . \end{aligned} \end{aligned}$$
(3.3)

By \(I^{1-\gamma _{1}}x(0)=x_{0}\), Eq. (3.3) implies

$$\begin{aligned} \begin{aligned} x(\xi )&=\frac{x_{0} }{\Gamma (\gamma _{1})}\xi ^{\gamma _{1}-1}+ \int _{0}^{\xi} \frac{(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1} \bigl( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr)\,d\varrho \\ &\quad {}- \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{\xi}(\xi -\varrho )^{ \alpha _{1}-1}x( \varrho )\,d\varrho ,\quad \xi \in J_{0}. \end{aligned} \end{aligned}$$

Similarly, for \(\xi \in J_{1}\), there exists \(d_{1}\in {\mathbb{R}}\) such that

$$\begin{aligned} \begin{aligned} x(\xi )& = d_{1}+\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{ \xi _{1}}^{\xi}(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}f_{1} \bigl( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr)\,d\varrho \\ &\quad {} - \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{1}}^{\xi}(\xi - \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho . \end{aligned} \end{aligned}$$

Using the condition, we get

$$\begin{aligned}& \begin{aligned} x\bigl(\xi _{1}^{-}\bigr)&= \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{1}^{\gamma _{1}-1}+ \int _{0}^{\xi _{1}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1} \bigl( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr)\,d\varrho \\ &\quad {}- \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{\xi _{1}}(\xi _{\ell}- \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho ,\end{aligned} \\& x\bigl(\xi _{1}^{+}\bigr)=d_{1}. \end{aligned}$$

In view of

$$\begin{aligned} \Delta x(\xi _{1})=x\bigl(\xi _{1}^{+} \bigr)-x\bigl(\xi _{1}^{-}\bigr)=I_{1} \bigl(x(\xi _{1})\bigr), \end{aligned}$$

we get

$$\begin{aligned}& \begin{aligned} x\bigl(\xi _{1}^{+}\bigr)-x\bigl(\xi _{1}^{-}\bigr)&=d_{1}- \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{1}^{\gamma _{1}-1}- \int _{0}^{ \xi _{1}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1} \bigl( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr)\,d\varrho \\ &\quad {}+ \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{\xi _{1}}(\xi _{\ell}- \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho , \end{aligned} \\& \begin{aligned} I_{1}\bigl(x(\xi _{1})\bigr)&=d_{1}- \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{1}^{ \gamma _{1}-1}- \int _{0}^{\xi _{1}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1} \bigl( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr)\,d\varrho \\ &\quad {}+ \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{\xi _{1}}(\xi _{\ell}- \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho ,\end{aligned} \\& \begin{aligned} d_{1}&=\frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{1}^{\gamma _{1}-1}+ \int _{0}^{\xi _{1}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1} \bigl( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr)\,d\varrho \\ &\quad {}- \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{\xi _{1}}(\xi _{\ell}- \varrho )^{\gamma _{1}-1}x(\varrho )\,d\varrho +I_{1}\bigl(x(\xi _{1})\bigr).\end{aligned} \end{aligned}$$

For \(d_{1}\) value, we have

$$\begin{aligned} x(\xi )& = \int _{\xi _{1}}^{\xi} \frac{(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} f_{1}\bigl(\varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}y(\varrho )\bigr) \,d\varrho \\ &\quad {}+ \int _{0}^{\xi _{1}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} f_{1}\bigl(\varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr) \,d\varrho \\ &\quad{} - \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{\xi _{1}}(\xi _{ \ell}-\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho - \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{1}}^{\xi}(\xi - \varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho + \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{1}^{\gamma _{1}-1} \\ &\quad {}+I_{1}\bigl(x( \xi _{1})\bigr). \end{aligned}$$

In a similar fashion for \(\xi \in J_{\ell}\), we have

$$\begin{aligned} x(\xi )& = \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{\ell}^{\gamma _{1}-1}+ \sum_{{\ell =1}}^{m}\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}f_{1}\bigl( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho )\bigr)\,d\varrho \\ &\quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{0}^{ \xi _{1}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho + \sum_{{\ell =1}}^{m} I_{\ell}\bigl(x(\xi _{\ell})\bigr). \end{aligned}$$

Conversely, let x satisfy (3.1). Then it is easy to prove that solution \(x(\xi )\) given by (3.1) satisfies (3.2) along with its impulsive and integral boundary conditions. □

From Theorem 3.1 the solution form of (1.1) is given by

$$ \textstyle\begin{cases} x(\xi )= \textstyle\begin{cases} \frac{x_{0} }{\Gamma (\gamma _{1})}\xi ^{\gamma _{1}-1}+\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{0}^{\xi}(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}f_{1}(\varrho ,y(\varrho ), D^{\alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {}-\frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi}(\xi -\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho , \quad \xi \in J_{0}, \\ \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{1}^{\gamma _{1}-1}+ \int _{\xi _{1}}^{\xi}\frac{(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1}(\varrho ,y(\varrho ),D^{\alpha _{1}, \gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {}+\int _{0}^{\xi _{1}}\frac{(\xi _{1}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} f_{1}(\varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {}-\frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi _{1}}(\xi _{1}-\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho -\frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{1}}^{\xi}(\xi -\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho \\ \quad {} +I_{1}(x(\xi _{1})), \quad \xi \in J_{1} , \\ \frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{\ell}^{\gamma _{1}-1}+\sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}}\frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1}(\varrho ,y(\varrho ),D^{\alpha _{1}, \gamma _{1}}x(\varrho ))\,d\varrho \\ \quad {}-\sum_{{\ell =1}}^{m}\frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho \\ \quad {}+\sum_{{\ell =1}}^{m} I_{\ell}(x(\xi _{\ell})),\quad \xi \in J_{\ell}, {\ell} =1,2,3,4,5,\dots ,m, \end{cases}\displaystyle \\ y(\xi )= \textstyle\begin{cases} \frac{y_{0} }{\Gamma \gamma _{2}}\xi ^{\gamma _{2}-1}+\frac{1}{\Gamma (\beta _{1}+\beta _{2})} \int _{0}^{\xi}(\xi -\varrho )^{\beta _{1}+\beta _{2}-1}f_{2}(\varrho ,x(\varrho ), D^{\beta _{1},\gamma _{2}}y(\varrho ))\,d\varrho \\ \quad {}-\frac{\lambda}{\Gamma{\beta _{1}}}\int _{0}^{\xi}(\xi -\varrho )^{\beta _{1}-1}y(\varrho )\,d\varrho , \quad \xi \in J_{0} , \\ \frac{y_{0}}{\Gamma \gamma _{2}}\xi _{1}^{\gamma _{2}-1}+ \int _{\xi _{1}}^{\xi}\frac{(\xi -\varrho )^{\beta _{1}+\beta _{2}-1}}{\Gamma (\beta _{1}+\beta _{2})}f_{2}(\varrho ,x(\varrho ),D^{\beta _{1},\gamma _{2}}y(\varrho ))\,d\varrho \\ \quad {}+\int _{0}^{\xi _{1}}\frac{(\xi _{1}-\varrho )^{\beta _{1}+\beta _{2}-1}}{\Gamma (\beta _{1}+\beta _{2})} f_{2}(\varrho ,x(\varrho ),D^{\beta _{1},\gamma _{2}}y(\varrho ))\,d\varrho \\ \quad {}-\frac{\lambda}{\Gamma{\beta _{1}}}\int _{0}^{\xi _{1}}(\xi _{1}-\varrho )^{\beta _{1}-1}y(\varrho )\,d\varrho -\frac{\lambda}{\Gamma{\beta _{1}}}\int _{\xi _{1}}^{\xi}(\xi -\varrho )^{\beta _{1}-1}y(\varrho )\,d\varrho \\ \quad {}+I_{1}(y(\xi _{1})),\quad \xi \in J_{1}, \\ \frac{y_{0}}{\Gamma \gamma _{2}}\xi _{\ell}^{\gamma _{2}-1}+\sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}}\frac{(\xi _{\ell}-\varrho )^{\beta _{1}+\beta _{2}-1}}{\Gamma (\beta _{1}+\beta _{2})}f_{2}(\varrho ,x(\varrho ),D^{\beta _{1},\gamma _{2}}y(\varrho )) \,d\varrho \\ \quad {}-\sum_{{\ell =1}}^{m}\frac{\lambda}{\Gamma{\beta _{1}}} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\beta _{1}-1}y(\varrho )\,d\varrho \\ \quad {}+\sum_{{\ell =1}}^{m} I_{\ell}(y(\xi _{\ell})),\quad \xi \in J_{\ell}, {\ell} =1,2,3,4,5,\dots ,m. \end{cases}\displaystyle \end{cases} $$
(3.4)

Consider some assumptions as follows:

\((H_{1})\):

\(f_{1}\in C(J\times \mathbb{R}\times \mathbb{R},\mathbb{R})\) is continuous.

\((H_{2})\):
  • \(0< L_{f_{1}}<1\) and \(0< L_{g_{1}}<1\) such that

    \(|f_{1}(\omega ,\mu ,m)-f_{1}(\omega ,\nu ,n) |\leq L_{f_{1}}| \mu -\nu |+L_{g_{1}}|m-n|\), for each \(\omega \in J\) and all \(\mu , \nu , m, n\in \mathbb{R}\).

  • \(0< L_{f_{2}}<1\) and \(0< L_{g_{2}}<1\) such that

    \(|f_{2}(\omega ,\mu ,m)-f_{2}(\omega ,\nu ,n) |\leq L_{f_{2}}| \mu -\nu |+L_{g_{2}}|m-n|\), for each \(\omega \in J\) and all \(\mu , \nu , m, n\in \mathbb{R}\).

\((H_{3})\):

\(\exists \L _{k}>0\) such that

\(|I_{\ell}(\mu )-I_{\ell}(\nu ) |\leq \L _{k}|\mu -\nu |\), for each \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\), and for all \(\mu ,\nu \in \mathbb{R}\).

\((H_{4})\):

For \(\varphi _{x}\in C(J,\mathbb{R}_{+})\), there exists \(c_{\varphi }> 0\) such that

$$ \int _{0}^{\xi }\bigl(\varphi (s)\bigr)\,ds \leq c_{\varphi}\varphi _{x}( \xi )\quad \text{for each } \xi \in J. $$

Theorem 3.2

Let \((H_{1})\)\((H_{3})\) hold. If

$$\begin{aligned} \begin{aligned} &\frac{m L_{f_{1}} (T)^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{m\lambda L_{f_{1}} (T)^{\alpha _{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}} + \frac{m L_{f_{2}} (T)^{\beta _{1}+\beta _{2}}}{(1-L_{g_{2}})\Gamma (\beta _{1}+\beta _{2}+1)} \\ &\quad {}- \frac{m\lambda L_{f_{2}} (T)^{\beta _{1}}}{(1-L_{g_{2}})\Gamma{\beta _{1}+1}}+2m \L _{k}< 1 \end{aligned} \end{aligned}$$
(3.5)

then (1.1) has a unique solution x in \(C_{1-\eta _{1}} [a,b]\).

Proof

Define \({N}:C_{1-\eta _{1}} [a,b]\rightarrow C_{1-\eta _{1}} [a,b]\) by

$$ \textstyle\begin{cases} ({Nx})(\xi )=\frac{x_{0} }{\Gamma (\gamma _{1})}\xi ^{ \gamma _{1}-1}+ \int _{0}^{\xi} \frac{(\xi -\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1}( \varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \hphantom{({Nx})(\xi )={}}{}- \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi}(\xi -\varrho )^{ \alpha _{1}-1}x(\varrho )\,d\varrho , \quad \xi \in J_{0}, \\ ({Nx})(\xi )=\frac{x_{0}}{\Gamma (\gamma _{1})}\xi _{m}^{\gamma _{1}-1}+ \sum_{{\ell =1}}^{m}\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})}\int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1} f_{1}(\varrho ,y(\varrho ),D^{\alpha _{1},\gamma _{1}}x(\varrho ))\,d\varrho \\ \hphantom{({Nx})(\xi )={}}{} -\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}x(\varrho )\,d\varrho \\ \hphantom{({Nx})(\xi )={}}{}+\sum_{{ \ell =1}}^{m} I_{\ell}(x(\xi _{\ell})), \quad \xi \in J_{m} , m=1,2, \dots ,q. \end{cases} $$

For any \(x,y\in C_{1-\eta _{1}} [a,b]\) and \(\xi \in J_{\ell}\), consider

$$\begin{aligned} \begin{aligned} &\bigl\vert (Nx) (\xi )-(N\bar{x}) (\xi ) \bigr\vert \\ &\quad \leq \sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert x(\varrho )-\bar{x}(\varrho ) \bigr\vert \,d\varrho \\ &\quad \quad {} -\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x( \varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho +\sum_{{\ell =1}}^{m} \bigl\vert I_{\ell}\bigl(x( \xi _{\ell})\bigr)-I_{\ell}\bigl( \bar{x}(\xi _{\ell})\bigr) \bigr\vert \\ &\quad \leq \sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert x(\varrho )-\bar{x}(\varrho ) \bigr\vert \,d\varrho \\ &\quad \quad {} -\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x( \varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho +\L _{k}\sum_{{\ell =1}}^{m} \bigl\vert x( \xi )-\bar{x}(\xi ) \bigr\vert , \end{aligned} \end{aligned}$$
(3.6)

where

$$\begin{aligned}& x(\xi ):=f_{1}\bigl(\xi ,y(\xi ),D^{\alpha _{1},\gamma _{1}}x(\xi ) \bigr)=f_{1}\bigl( \xi ,y(\xi ),x(\xi )\bigr),\\& \bar{x}(\xi ):=f_{1}\bigl(\xi ,\bar{y}(\xi ),D^{\alpha _{1},\gamma _{1}} \bar{x}(\xi )\bigr)=f_{1}\bigl(\xi ,\bar{y}(\xi ),\bar{x}(\xi ) \bigr),\\& \begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert & = \bigl\vert f_{1}\bigl(\xi ,y(\xi ),x(\xi )\bigr)-f_{1}\bigl(\xi , \bar{y}(\xi ),\bar{x}(\xi )\bigr) \bigr\vert \\ & \leq L_{f_{1}} \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert +L_{g_{1}} \bigl\vert x(\xi )-\bar{x}( \xi ) \bigr\vert . \end{aligned} \end{aligned}$$

This further gives

$$\begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq \frac{L_{f_{1}}}{1-L_{g_{1}}} \bigl\vert y(\xi )- \bar{y}(\xi ) \bigr\vert , \end{aligned}$$
(3.7)

and similarly

$$\begin{aligned} \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert \leq \frac{L_{f_{2}}}{1-L_{g_{2}}} \bigl\vert x(\xi )- \bar{x}(\xi ) \bigr\vert . \end{aligned}$$

Putting (3.7) in (3.6), we obtain

$$\begin{aligned} \begin{aligned} &\bigl\vert (Nx) (\xi )-(N\bar{x}) (\xi ) \bigr\vert \\ &\quad \leq \sum _{{\ell =1}}^{m} \frac{L_{f_{1}}}{(1-L_{g_{1}}){\Gamma (\alpha _{1}+\alpha _{2})}} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1} \bigl\vert y(\varrho )-\bar{y}(\varrho ) \bigr\vert \,d \varrho \\ &\quad \quad {} -\sum_{{\ell =1}}^{m} \frac{\lambda L_{f_{1}}}{(1-L_{g_{1}})\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert y( \varrho )-\bar{y}(\varrho ) \bigr\vert \,d \varrho + \frac{L_{f_{1}}\L _{k}}{1-L_{g_{1}}}\sum_{{\ell =1}}^{m} \bigl\vert y(\varrho )- \bar{y}(\varrho ) \bigr\vert \\ &\quad \leq \biggl( \frac{m L_{f_{1}} (\xi _{\ell}-\xi _{i-1})^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{m\lambda L_{f_{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}(\xi _{ \ell}-\xi _{i-1})^{\alpha _{1}} +m\L _{k} \biggr) \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert \\ &\quad \leq \biggl( \frac{m L_{f_{1}} (T)^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} -\frac{m\lambda L_{f_{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}(T)^{ \alpha _{1}} +m\L _{k} \biggr) \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert . \end{aligned} \end{aligned}$$
(3.8)

In a similar fashion, we can get

$$ \begin{aligned} &\bigl\vert (Ny) (\xi )-(N\bar{y}) (\xi ) \bigr\vert \\ &\quad \leq \biggl( \frac{m L_{f_{2}} (T)^{\beta _{1}+\beta _{2}}}{(1-L_{g_{2}})\Gamma (\beta _{1}+\beta _{2}+1)} -\frac{m\lambda L_{f_{2}}}{(1-L_{g_{2}})\Gamma{\beta _{1}+1}}(T)^{ \beta _{1}} +m\L _{k} \biggr) \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert . \end{aligned} $$
(3.9)

Therefore from (3.8) and (3.9), we get

$$\begin{aligned} &\bigl\vert {N}(x,y)-{N} (\bar{x},\bar{y}) \bigr\vert \\ &\quad \leq \biggl( \frac{m L_{f_{1}} (T)^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} -\frac{m\lambda L_{f_{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}(T)^{ \alpha _{1}} +2m\L _{k} \\ &\quad \quad{} + \frac{m L_{f_{2}} (T)^{\beta _{1}+\beta _{2}}}{(1-L_{g_{2}})\Gamma (\beta _{1}+\beta _{2}+1)} -\frac{m\lambda L_{f_{2}}}{(1-L_{g_{2}})\Gamma{\beta _{1}+1}}(T)^{ \beta _{1}} \biggr) \bigl\vert (x,y)-(\bar{x},\bar{y}) \bigr\vert . \end{aligned}$$

Now since

$$\begin{aligned} &\frac{m L_{f_{1}} (T)^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{m\lambda L_{f_{1}} (T)^{\alpha _{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}} + \frac{m L_{f_{2}} (T)^{\beta _{1}+\beta _{2}}}{(1-L_{g_{2}})\Gamma (\beta _{1}+\beta _{2}+1)} \\ &\quad {}- \frac{m\lambda L_{f_{2}} (T)^{\beta _{1}}}{(1-L_{g_{2}})\Gamma{\beta _{1}+1}}+2m \L _{k}< 1, \end{aligned}$$

\((x,y)\) is a contraction and according to Banach’s contraction theorem its only fixed point is the only solution of (1.1). □

4 UH stability analysis

Let \(\varepsilon _{x}, \varepsilon _{y} > 0\), \(\psi _{x}, \psi _{y}\geq 0\) and \(\varphi : J \rightarrow \mathbb{R}^{+}\) be a continuous function. Consider

$$\begin{aligned}& \textstyle\begin{cases} \textstyle\begin{cases} { \vert D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+ \lambda )x(\xi )-f(\xi ,y(\xi ),x(\xi )) \vert \leq \varepsilon _{x}, \quad \xi \in J_{\ell}, \ell =1,2,3,4,5,\dots ,q,} \\ { \vert \Delta x(\xi _{\ell})-I_{\ell}(x(\xi _{\ell})) \vert \leq \varepsilon _{x}, \quad {\ell}=1,2,3,4,5,\dots ,m,} \end{cases}\displaystyle \\ \textstyle\begin{cases} { \vert D^{\beta _{1},\gamma _{2}}(D^{\beta _{2},\gamma _{2}}+\lambda )y( \xi )-f(\xi ,x(\xi ),y(\xi )) \vert \leq \varepsilon _{y}, \quad \xi \in J_{ \ell}, {\ell}=1,2,3,4,5,\dots ,q,} \\ { \vert \Delta y(\xi _{\ell})-I_{\ell}(y(\xi _{\ell})) \vert \leq \varepsilon _{y},\quad {\ell}=1,2,3,4,5,\dots ,m,} \end{cases}\displaystyle \end{cases}\displaystyle \end{aligned}$$
(4.1)
$$\begin{aligned}& \textstyle\begin{cases} \textstyle\begin{cases} \vert D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+ \lambda )x(\xi )-f(\xi ,y(\xi ),x(\xi )) \vert \leq \varphi _{x}(\xi ) , \\ \quad \xi \in J_{\ell} , {\ell}=1,2,3,4,5,\dots ,q , \\ { \vert \Delta x(\xi _{\ell})-I_{\ell}(x(\xi _{\ell})) \vert \leq \psi _{x} , \quad {\ell}=1,2,3,4,5,\dots ,m ,} \end{cases}\displaystyle \\ \textstyle\begin{cases} \vert D^{\beta _{1},\gamma _{2}}(D^{\beta _{2},\gamma _{2}}+\lambda )y( \xi )-f(\xi ,x(\xi ),y(\xi )) \vert \leq \varphi _{y}(\xi ) , \\ \quad \xi \in J_{ \ell} , {\ell}=1,2,3,4,5,\dots ,q , \\ { \vert \Delta y(\xi _{\ell})-I_{\ell}(y(\xi _{\ell})) \vert \leq \psi _{y} , \quad {\ell}=1,2,3,4,5,\dots ,m ,} \end{cases}\displaystyle \end{cases}\displaystyle \end{aligned}$$
(4.2)

and

$$ \textstyle\begin{cases} \textstyle\begin{cases} \vert D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+ \lambda )x(\xi )-f(\xi ,y(\xi ),x(\xi )) \vert \leq \varepsilon _{x} \varphi _{x}(\xi ) , \\ \quad \xi \in J_{\ell} , \quad {\ell}=1,2,3,4,5, \dots ,q , \\ { \vert \Delta x(\xi _{\ell})-I_{\ell}(x(\xi _{\ell})) \vert \leq \varepsilon _{x}\psi _{x} , {\ell}=1,2,3,4,5,\dots ,m ,} \end{cases}\displaystyle \\ \textstyle\begin{cases} \vert D^{\beta _{1},\gamma _{2}}(D^{\beta _{2},\gamma _{2}}+\lambda )y( \xi )-f(\xi ,x(\xi ),y(\xi )) \vert \leq \varepsilon _{y}\varphi _{y}(\xi ) , \\ \quad \xi \in J_{\ell} , {\ell}=1,2,3,4,5,\dots ,q , \\ { \vert \Delta y(\xi _{\ell})-I_{\ell}(y(\xi _{\ell})) \vert \leq \varepsilon _{y}\psi _{y} , \quad {\ell}=1,2,3,4,5,\dots ,m .} \end{cases}\displaystyle \end{cases} $$
(4.3)

Definition 4.1

(1.1) is called UH stable if there exists \(C_{f,i,q,\sigma}>0\) such that for each \(\varepsilon >0\) and for each solution \((x,y)\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\) of (4.1), there exists a solution \((\bar{x},\bar{y})\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\) of (1.1) such that

$$\begin{aligned} \bigl\Vert (x,y) (\xi )-(\bar{x},\bar{y}) (\xi ) \bigr\Vert \leq C_{f,i,q,\sigma} \varepsilon , \quad \xi \in J. \end{aligned}$$
(4.4)

Definition 4.2

(1.1) is called generalized UH stable if there exists \(\phi _{f,i,q,\sigma}\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\), \(\phi _{f,i,q,\sigma}(0)=0\) such that for each \(\varepsilon >0\) and for each solution \((x,y)\in C_{1-\gamma [0,T]}\) of (4.1), there exists a solution \((\bar{x},\bar{y})\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\) of (1.1) such that

$$\begin{aligned} \bigl\Vert (x,y) (\xi )-(\bar{x},\bar{y}) (\xi ) \bigr\Vert \leq \phi _{f,i,q,\sigma} \varepsilon , \quad \xi \in J. \end{aligned}$$
(4.5)

Remark 4.3

Definition 4.1 implies Definition 4.2.

Definition 4.4

(1.1) is called UHR stable with respect to \((\varphi , \psi )\) if there exists \(C_{f,i,q,\sigma , \varphi}>0\) such that for each \(\varepsilon >0\) and for each solution \((x,y)\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\) of (4.3), there is a solution \((\bar{x},\bar{y})\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\) of (1.1) such that

$$\begin{aligned} \bigl\Vert (x,y) (\xi )-(\bar{x},\bar{y}) (\xi ) \bigr\Vert \leq C_{f,i,q,\sigma , \varphi} \varepsilon \bigl(\varphi (\xi )+\psi \bigr) \varepsilon , \quad \xi \in J. \end{aligned}$$
(4.6)

Definition 4.5

(1.1) is called generalized UHR stable with respect to \((\varphi , \psi )\) if there exists \(C_{f,i,q,\sigma , \varphi}>0\) such that for each \(\varepsilon >0\) and for each solution \((x,y)\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\) of (4.2), there is a solution \((\bar{x},\bar{y})\in C_{1-{\eta _{1}}} [0,T]\times C_{1-{\eta _{1}}} [0,T]\) of (1.1) such that

$$\begin{aligned} \bigl\Vert (x,y) (\xi )-(\bar{x},\bar{y}) (\xi ) \bigr\Vert \leq C_{f,i,q,\sigma , \varphi} \bigl(\varphi (\xi )+\psi \bigr) \varepsilon , \quad \xi \in J. \end{aligned}$$
(4.7)

Remark 4.6

Definition 4.4 implies Definition 4.5.

Remark 4.7

\(x, y\in C_{1-{\eta _{1}}} [0,T]\) satisfy (4.1) if and only if there exist \(g\in C_{1-{\eta _{1}}} [0,T]\) and a sequence \(g_{\ell}, {\ell}=1,2,3,4,5,\dots ,m\), depending on g, such that

  1. (a)
    • \(|g_{x}(\xi )|\leq \epsilon _{x}\), \(|g_{\ell}|\leq \epsilon _{x}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\),

    • \(|g_{y}(\xi )|\leq \epsilon _{y}(\xi )\), \(|g_{\ell}|\leq \epsilon _{y}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\),

  2. (b)
    • \(D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+\lambda )x( \xi )=f(\xi ,y(\xi ),x(\xi ))+g_{x}(\xi )\), \(\xi \in J_{\ell}\), \({ \ell}=1,2,3,4,5,\dots ,m\),

    • \(D^{\beta _{1},\gamma _{2}}(D^{\beta _{2},\gamma _{2}}+\lambda )y( \xi )=f(\xi ,x(\xi ),y(\xi ))+g_{y}(\xi )\), \(\xi \in J_{\ell}\), \({ \ell}=1,2,3,4,5,\dots ,m\),

  3. (c)
    • \(\Delta x(\xi _{\ell})=I_{\ell}(x(\xi _{\ell}))+g_{\ell}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\),

    • \(\Delta y(\xi _{\ell})=I_{\ell}(y(\xi _{\ell}))+g_{\ell}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\).

Remark 4.8

\(x, y\in C_{1-{\eta _{1}}} [0,T]\) satisfy (4.2) if and only if there exist \(g\in C_{1-{\eta _{1}}} [0,T]\) and a sequence \(g_{\ell}, {\ell}=1,2,3,4,5,\dots ,m\), depending on g, such that

  1. (a)
    • \(|g_{x}(\xi )|\leq \varphi _{x}(\xi )\), \(|g_{\ell}|\leq \psi _{x}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\),

    • \(|g_{y}(\xi )|\leq \varphi _{y}(\xi )\), \(|g_{\ell}|\leq \psi _{y}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\),

  2. (b)
    • \(D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+\lambda )x( \xi )=f(\xi ,y(\xi ),x(\xi ))+g_{x}(\xi )\), \(\xi \in J_{\ell}\), \({ \ell}=1,2,3,4,5,\dots ,m\),

    • \(D^{\beta _{1},\gamma _{2}}(D^{\beta _{2},\gamma _{2}}+\lambda )y( \xi )=f(\xi ,x(\xi ),y(\xi ))+g_{y}(\xi )\), \(\xi \in J_{\ell}\), \({ \ell}=1,2,3,4,5,\dots ,m\),

  3. (c)
    • \(\Delta x(\xi _{\ell})=I_{\ell}(x(\xi _{\ell}))+g_{\ell}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\),

    • \(\Delta y(\xi _{\ell})=I_{\ell}(y(\xi _{\ell}))+g_{\ell}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\).

Remark 4.9

\(x, y\in C_{1-{\eta _{1}}} [0,T]\) satisfy (4.2) if and only if there exist \(g\in C_{1-{\eta _{1}}} [0,T]\) and a sequence \(g_{\ell}, {\ell}=1,2,3,4,5,\dots ,m\), depending on g, such that

  1. (a)
    • \(|g_{x}(\xi )|\leq \epsilon _{x}\varphi _{x}(\xi )\), \(|g_{\ell}|\leq \epsilon _{x}\psi _{x}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5, \dots ,m\),

    • \(|g_{y}(\xi )|\leq \epsilon _{y}\varphi _{y}(\xi )\), \(|g_{\ell}|\leq \epsilon _{y}\psi _{y}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5, \dots ,m\),

  2. (b)
    • \(D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+\lambda )x( \xi )=f(\xi ,y(\xi ),x(\xi ))+g_{x}(\xi )\), \(\xi \in J_{\ell}\), \({ \ell}=1,2,3,4,5,\dots ,m\),

    • \(D^{\beta _{1},\gamma _{2}}(D^{\beta _{2},\gamma _{2}}+\lambda )y( \xi )=f(\xi ,x(\xi ),y(\xi ))+g_{y}(\xi )\), \(\xi \in J_{\ell}\), \({ \ell}=1,2,3,4,5,\dots ,m\),

  3. (c)
    • \(\Delta x(\xi _{\ell})=I_{\ell}(x(\xi _{\ell}))+g_{\ell}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\),

    • \(\Delta y(\xi _{\ell})=I_{\ell}(y(\xi _{\ell}))+g_{\ell}\), \(\xi \in J_{\ell}\), \({\ell}=1,2,3,4,5,\dots ,m\).

Theorem 4.10

If \((H_{1})\)\((H_{3})\) and (3.5) hold, then (1.1) is UH stable and consequently generalized UH stable.

Proof

Let \(\bar{x}\in C_{1-\eta _{1}} [a,b]\) satisfy (4.1) and let x be the only solution of

$$ \textstyle\begin{cases} D^{\alpha _{1},\gamma _{1}}(D^{\alpha _{2},\gamma _{1}}+ \lambda )x(\xi )=f_{1}(\xi ,y(\xi ),D^{\alpha _{1},\gamma _{1}}x(\xi )), \\ \quad \xi \in J=[0,T], 0< \alpha _{1},\alpha _{2}< 1, 0\leq \gamma _{1} \leq 1, \\ \Delta x(\xi _{\ell})=I_{\ell}(x(\xi _{\ell})),\quad {\ell}=1,2,3,4,5, \dots ,m, \\ I^{1-\gamma _{1}}x(0)=x_{0}, \qquad \eta _{1}=(\alpha _{1}+\alpha _{2})(1- \gamma _{1})+\gamma _{1}. \end{cases} $$

By Theorem 3.1, we have for each \(\xi \in J_{\ell}\)

$$\begin{aligned} x(\xi )& = \frac{x_{0}}{\Gamma{\gamma _{1}}}\xi _{m}^{{\gamma _{1}}-1}+ \sum_{{\ell =1}}^{m}\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}f_{1}\bigl( \varrho ,y(\varrho ),D^{\alpha _{1},{\gamma _{1}}}x(\varrho )\bigr)\,d\varrho \\ &\quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}x( \varrho )\,d\varrho +\sum_{{\ell =1}}^{m} I_{\ell}\bigl(x(\xi _{\ell})\bigr) , \\ &\quad \xi \in J_{\ell}, {\ell}=1,2,3,4,5,\dots ,m. \end{aligned}$$

Since satisfies (4.1), by Remark 4.7, we get

$$ \textstyle\begin{cases} D^{\alpha _{1},{\gamma _{1}}}(D^{\alpha _{2},{\gamma _{1}}}+ \lambda )\bar{x}(\xi )=f_{1}(\xi ,\bar{y}(\xi ),D^{\alpha _{1},{ \gamma _{1}}}\bar{x}(\xi ))+g_{\ell}, \\ \quad \xi \in J=[0,T], 0< \alpha _{1}, \alpha _{2}< 1, 0\leq \gamma _{1}\leq 1, \\ \Delta \bar{x}(\xi _{\ell})=I_{\ell}(\bar{x}(\xi _{\ell}))+g_{ \ell}, \quad {\ell}=1,2,3,4,5,\dots ,m, \\ I^{1-{\gamma _{1}}}\bar{x}(0)=\bar{x}_{0}, \qquad {\eta _{1}}=( \alpha _{1}+\alpha _{2})(1-{\gamma _{1}})+{\gamma _{1}}. \end{cases} $$
(4.8)

Obviously the solution of (4.8) is

$$ \bar{x}(\xi )= \textstyle\begin{cases} \frac{\bar{x}_{0} }{\Gamma{\gamma _{1}}}\xi ^{{\gamma _{1}}-1}+ \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})}\int _{0}^{\xi}(\xi - \varrho ) ^{\alpha _{1}+\alpha _{2}-1}f_{1}(\varrho ,\bar{y}(\varrho ),D^{ \alpha _{1},{\gamma _{1}}}\bar{x}(\varrho ))\,d\varrho \\ \quad {} - \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi}(\xi -\varrho )^{ \alpha _{1}-1}\bar{x}(\varrho )\,d\varrho \\ \quad {} +\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})}\int _{0}^{\xi}(\xi - \varrho )^{\alpha _{1}+\alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho - \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi}(\xi -\varrho )^{ \alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho , \quad \xi \in J_{0}, \\ \frac{\bar{x}_{0}}{\Gamma{\gamma _{1}}}\xi _{m}^{{\gamma _{1}}-1}+ \sum_{{\ell =1}}^{m}\int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1}( \varrho ,\bar{y}(\varrho ),D^{\alpha _{1},{\gamma _{1}}}\bar{x}( \varrho ))\,d\varrho \\ \quad {}-\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}\bar{x}(\varrho )\,d\varrho \\ \quad {} +\sum_{{\ell =1}}^{m}\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho \\ \quad {} -\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho \\ \quad {} +\sum_{{\ell =1}}^{m} I_{\ell}(\bar{x}(\xi _{\ell}))+\sum_{{\ell =1}}^{m} g_{\ell},\quad \xi \in J_{\ell}, {\ell}=1,2,3,4,5,\dots ,m. \end{cases} $$

Therefore, for each \(\xi \in J_{\ell}\), we have the following

$$\begin{aligned} &\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \\ &\quad \leq \sum _{{\ell =1}}^{m} \int _{\xi _{i-1}}^{ \xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert f_{1}\bigl(\varrho ,y(\varrho ),D^{\alpha _{1},{\gamma _{1}}}x(\varrho ) \bigr)-f_{1}\bigl( \varrho ,\bar{y}(\varrho ),D^{\alpha _{1},{\gamma _{1}}} \bar{x}( \varrho )\bigr) \bigr\vert \,d\varrho \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x( \varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho \\ &\quad \quad {}+\sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{ \ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}g_{\ell}( \varrho )\,d\varrho \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{ \ell}(\varrho )\,d\varrho +\sum _{{\ell =1}}^{m} \bigl\vert I_{\ell} \bigl(x(\xi _{\ell})\bigr)-I_{ \ell}\bigl(\bar{x}(\xi _{\ell})\bigr) \bigr\vert +\sum_{{\ell =1}}^{m} g_{\ell} \\ &\quad \leq \sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert \bigl(x(\varrho )-\bar{x}(\varrho )\bigr) \bigr\vert \,d\varrho \\ &\quad \quad {}-\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x(\varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho \\ &\quad \quad{} + \sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho \\ &\quad \quad {}-\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho \\ &\quad \quad{} + \L _{k}\sum_{{\ell =1}}^{m} \bigl\vert x(\xi )-y(\xi ) \bigr\vert +\sum_{{\ell =1}}^{m} g_{\ell}, \end{aligned}$$

where

$$\begin{aligned}& x(\xi ):=f_{1}\bigl(\xi ,y(\xi ),D^{\alpha _{1},{\gamma _{1}}}x(\xi ) \bigr)=f_{1}\bigl( \xi ,y(\xi ),x(\xi )\bigr),\\& \bar{x}(\xi ):=f_{1}\bigl(\xi ,\bar{y}(\xi ),D^{\alpha _{1},{\gamma _{1}}} \bar{x}(\xi )\bigr)=f_{1}\bigl(\xi ,\bar{y}(\xi ),\bar{x}(\xi ) \bigr),\\& \begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert & = \bigl\vert f_{1}\bigl(\xi ,y(\xi ),x(\xi )\bigr)-f_{1}\bigl(\xi , \bar{y}(\xi ),\bar{x}(\xi )\bigr) \bigr\vert \\ & \leq L_{f_{1}} \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert +L_{g_{1}} \bigl\vert x(\xi )-\bar{x}( \xi ) \bigr\vert . \end{aligned} \end{aligned}$$

This further gives

$$\begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq \frac{L_{f_{1}}}{1-L_{g_{1}}} \bigl\vert y(\xi )- \bar{y}(\xi ) \bigr\vert , \end{aligned}$$
(4.9)

and similarly

$$ \begin{aligned} &\bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert \leq \frac{L_{f_{2}}}{1-L_{g_{2}}} \bigl\vert x(\xi )- \bar{x}(\xi ) \bigr\vert , \\ &\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq \sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert \bigl(x(\varrho )-\bar{x}(\varrho )\bigr) \bigr\vert \,d\varrho \\ &\hphantom{\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq{}}{}-\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x( \varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho \\ &\hphantom{\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq{}}{} +\sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}g_{ \ell}(\varrho )\,d\varrho \\ &\hphantom{\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq{}}{}-\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho \\ &\hphantom{\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq{}}{} + \L _{k}\sum_{{\ell =1}}^{m} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert +\sum _{{ \ell =1}}^{m} g_{\ell}. \end{aligned} $$
(4.10)

Putting (4.9) in (4.10), we obtain

$$\begin{aligned} &\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \\ &\quad \leq \sum _{{\ell =1}}^{m} \frac{L_{f_{1}}}{(1-L_{g_{1}}) {\Gamma (\alpha _{1}+\alpha _{2})}} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1} \bigl\vert y(\varrho )-\bar{y}(\varrho ) \bigr\vert \,d \varrho \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda L_{f_{1}}}{\Gamma ({\alpha _{1}})(1-L_{g_{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert y( \varrho )-\bar{y}(\varrho ) \bigr\vert \,d \varrho + \frac{m\L _{k} L_{f_{1}}}{1-L_{g_{1}}} \bigl\vert y(\varrho )-\bar{y}(\varrho ) \bigr\vert \\ &\quad \quad{} + \sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho \\ &\quad \quad {}-\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho + \sum _{{\ell =1}}^{m} g_{\ell} \\ &\quad \leq \sum_{{\ell =1}}^{m} \frac{L_{f_{1}}C_{x}}{(1-L_{g_{1}}) {\Gamma (\alpha _{1}+\alpha _{2})}} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1} \bigl\vert \varphi _{x}(\varrho ) \bigr\vert \,d\varrho \\ &\quad \quad {}-\sum_{{\ell =1}}^{m} \frac{C_{x}\lambda L_{f_{1}}}{\Gamma ({\alpha _{1}})(1-L_{g_{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert \varphi _{x}(\varrho ) \bigr\vert \,d\varrho \\ &\quad \quad{} + \frac{m\L _{k} L_{f_{1}}\psi}{1-L_{g_{1}}} +\sum_{{\ell =1}}^{m} \frac{\epsilon}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{ \xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}\,d\varrho \\ &\quad \quad {}-\sum_{{\ell =1}}^{m} \frac{\lambda \epsilon}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{ \xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}\,d\varrho +m \epsilon \\ &\quad \leq \sum_{{\ell =1}}^{m} \frac{L_{f_{1}}C_{x}}{(1-L_{g_{1}}) {\Gamma (\alpha _{1}+\alpha _{2})}} \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1} \,d\varrho \biggr) \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}} \bigl\vert \varphi _{x}(\varrho ) \bigr\vert \,d\varrho \biggr) \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{C_{x}\lambda L_{f_{1}}}{\Gamma ({\alpha _{1}})(1-L_{g_{1}})} \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \,d\varrho \biggr) \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}} \bigl\vert \varphi _{x}( \varrho ) \bigr\vert \,d\varrho \biggr) + \frac{m\L _{k} L_{f_{1}}\psi}{1-L_{g_{1}}} \\ &\quad \quad{} + \sum_{{\ell =1}}^{m} \frac{\epsilon}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{ \xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}\,d\varrho -\sum_{{\ell =1}}^{m} \frac{\lambda \epsilon}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{ \xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}\,d\varrho +m \epsilon \\ &\quad \leq \frac{mL_{f_{1}}C_{x} (T)^{\alpha _{1}+\alpha _{2}+1}}{(1-L_{g_{1}}) \Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{mC_{x}\lambda L_{f_{1}}(T)^{\alpha _{1}+1}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}+ \frac{m\L _{k} L_{f_{1}}\psi}{1-L_{g_{1}}} \\ &\quad \quad {}+ \frac{m\varepsilon (T)^{\alpha _{1}+\alpha _{2}}}{\Gamma (\alpha _{1}+\alpha _{2}+1)} -\frac{m\varepsilon \lambda (T)^{\alpha _{1}}}{\Gamma{\alpha _{1}+1}} +m \varepsilon , \end{aligned}$$

which implies that

$$\begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert & \leq \varepsilon \biggl( \frac{mL_{f_{1}}C_{x} (T)^{\alpha _{1}+\alpha _{2}+1}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{mC_{x}\lambda L_{f_{1}}(T)^{\alpha _{1}+1}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}+ \frac{m\L _{k} L_{f_{1}}\psi}{1-L_{g_{1}}} \\ &\quad{} + \frac{m}{\Gamma (\alpha _{1}+\alpha _{2}+1)}(T)^{\alpha _{1}+ \alpha _{2}} -\frac{m\lambda}{\Gamma{\alpha _{1}+1}}(T)^{\alpha _{1}} +m \biggr). \end{aligned}$$

Thus

$$\begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq \varepsilon C_{f_{1},g_{1},\alpha _{1}, \alpha _{2}}, \end{aligned}$$
(4.11)

where

$$\begin{aligned} C_{f_{1},g_{1},\alpha _{1},\alpha _{2}}&= \frac{mL_{f_{1}}C_{x} (T)^{\alpha _{1}+\alpha _{2}+1}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{mC_{x}\lambda L_{f_{1}}(T)^{\alpha _{1}+1}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}+ \frac{m\L _{k} L_{f_{1}}\psi}{1-L_{g_{1}}} \\ &\quad {}+ \frac{m(T)^{\alpha _{1}+\alpha _{2}}}{\Gamma (\alpha _{1}+\alpha _{2}+1)} -\frac{m\lambda (T)^{\alpha _{1}}}{\Gamma{\alpha _{1}+1}}+m. \end{aligned}$$

In a similar fashion, we can get

$$\begin{aligned} \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert \leq \varepsilon C_{f_{2},g_{2},\beta _{1}, \beta _{2}}, \end{aligned}$$
(4.12)

where

$$\begin{aligned} C_{f_{2},g_{2},\beta _{1},\beta _{2}}&= \frac{mL_{f_{2}}C_{y} (T)^{\beta _{1}+\beta _{2}+1}}{(1-L_{g_{2}})\Gamma (\beta _{1}+\beta _{2}+1)} - \frac{mC_{y}\lambda L_{f_{2}}(T)^{\beta _{1}+1}}{(1-L_{g_{2}})\Gamma{\beta _{1}+1}} + \frac{m\L _{k} L_{f_{2}}\psi}{1-L_{g_{2}}} \\ &\quad {} + \frac{m(T)^{\beta _{1}+\beta _{2}}}{\Gamma (\beta _{1}+\beta _{2}+1)} - \frac{m\lambda (T)^{\beta _{1}}}{\Gamma{\beta _{1}+1}}+m. \end{aligned}$$

Therefore, from (4.12) and (4.11), we get

$$\begin{aligned} \bigl\vert (x,y)-(\bar{x},\bar{y}) \bigr\vert & \leq \varepsilon C_{f_{1},g_{1},\alpha _{1}, \alpha _{2}}+\varepsilon C_{f_{2},g_{2},\beta _{1},\beta _{2}} \\ & \leq \varepsilon C_{f,g,\alpha _{1},\alpha _{2},\beta _{1},\beta _{2}}. \end{aligned}$$

So Eq. (1.1) is UH stable and if we set \(\phi (\varepsilon )=\varepsilon C_{f,g,\beta _{1},\beta _{2},\alpha _{1}, \alpha _{2}}\), \(\phi (0)=0\), then Eq. (1.1) is generalized UH stable. □

Theorem 4.11

If \((H_{1})\)\((H_{4})\) and (3.5) hold, then (1.1) is UHR stable with respect to \((\varphi ,\psi )\), consequently, generalized UHR stable.

Proof

Let \(\bar{x}\in C_{1-{\gamma _{1}}} [a,b]\) satisfy (4.1) and let x be the only solution of

$$ \textstyle\begin{cases} D^{\alpha _{1},{\gamma _{1}}}(D^{\alpha _{2},{\gamma _{1}}}+ \lambda )x(\xi )=f_{1}(\xi ,y(\xi ),D^{\alpha _{1},{\gamma _{1}}}x( \xi )), \\ \quad \xi \in J=[0,T], 0< \alpha _{1},\alpha _{2}< 1, 0\leq \gamma _{1}\leq 1, \\ \Delta x(\xi _{\ell})=I_{\ell}(x(\xi _{\ell})), \quad {\ell}=1,2,3,4,5, \dots ,m, \\ I^{1-{\gamma _{1}}}x(0)=x_{0}, \qquad {\eta _{1}}=(\alpha _{1}+ \alpha _{2})(1-{\gamma _{1}})+{\gamma _{1}}. \end{cases} $$

By Theorem 3.1, we have for each \(\xi \in J_{\ell}\)

$$\begin{aligned} x(\xi )& = \frac{x_{0}}{\Gamma{\gamma _{1}}}\xi _{m}^{{\gamma _{1}}-1}+ \sum_{{\ell =1}}^{m}\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}f_{1}\bigl( \varrho ,y(\varrho ),D^{\alpha _{1},{\gamma _{1}}}x(\varrho )\bigr)\,d\varrho \\ &\quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}x( \varrho )\,d\varrho +\sum_{{\ell =1}}^{m} I_{\ell}\bigl(x(\xi _{\ell})\bigr), \\ & \quad \xi \in J_{\ell}, {\ell}=1,2,3,4,5,\dots ,m. \end{aligned}$$

Since satisfies (4.1), by Remark 4.7, we get

$$ \textstyle\begin{cases} D^{\alpha _{1},{\gamma _{1}}}(D^{\alpha _{2},{\gamma _{1}}}+ \lambda )\bar{x}(\xi )=f_{1}(\xi ,\bar{y}(\xi ),D^{\alpha _{1},{ \gamma _{1}}}\bar{x}(\xi ))+g_{\ell}, \\ \quad \xi \in J=[0,T], 0< \alpha _{1}, \alpha _{2}< 1, 0\leq \gamma _{1}\leq 1, \\ \Delta \bar{x}(\xi _{\ell})=I_{\ell}(\bar{x}(\xi _{\ell}))+g_{ \ell}, \quad {\ell}=1,2,3,4,5,\dots ,m, \\ I^{1-{\gamma _{1}}}\bar{x}(0)=\bar{x}_{0}, \qquad {\eta _{1}}=( \alpha _{1}+\alpha _{2})(1-{\gamma _{1}})+{\gamma _{1}}. \end{cases} $$
(4.13)

Obviously the solution of (4.13) is

$$ \bar{x}(\xi )= \textstyle\begin{cases} \frac{\bar{x}_{0} }{\Gamma{\gamma _{1}}}\xi ^{{\gamma _{1}}-1}+ \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})}\int _{0}^{\xi}(\xi - \varrho ) ^{\alpha _{1}+\alpha _{2}-1}f_{1}(\varrho ,\bar{y}(\varrho ),D^{ \alpha _{1},{\gamma _{1}}}\bar{x}(\varrho ))\,d\varrho \\ \quad {} - \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi}(\xi -\varrho )^{ \alpha _{1}-1}\bar{x}(\varrho )\,d\varrho \\ \quad {} +\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})}\int _{0}^{\xi}(\xi - \varrho )^{\alpha _{1}+\alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho - \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{0}^{\xi}(\xi -\varrho )^{ \alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho ,\quad \xi \in J_{0} , \\ \frac{\bar{x}_{0}}{\Gamma{\gamma _{1}}}\xi _{m}^{{\gamma _{1}}-1}+ \sum_{{\ell =1}}^{m}\int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})}f_{1}( \varrho ,\bar{y}(\varrho ),D^{\alpha _{1},{\gamma _{1}}}\bar{x}( \varrho ))\,d\varrho \\ \quad {}-\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}\bar{x}(\varrho )\,d\varrho \\ \quad {} +\sum_{{\ell =1}}^{m}\frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho \\ \quad {}-\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})}\int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho \\ \quad {} +\sum_{{\ell =1}}^{m} I_{\ell}(\bar{x}(\xi _{\ell}))+\sum_{{\ell =1}}^{m} g_{\ell}, \quad \xi \in J_{\ell}, {\ell}=1,2,3,4,5,\dots ,m. \end{cases} $$

Therefore, for each \(\xi \in J_{\ell}\), we have the following

$$\begin{aligned} &\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \\ &\quad \leq \sum _{{\ell =1}}^{m} \int _{\xi _{i-1}}^{ \xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert f_{1}\bigl(\varrho ,y(\varrho ),D^{\alpha _{1},{\gamma _{1}}}x(\varrho ) \bigr)-f_{1}\bigl( \varrho ,\bar{y}(\varrho ),D^{\alpha _{1},{\gamma _{1}}} \bar{x}( \varrho )\bigr) \bigr\vert \,d\varrho \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x( \varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho \\ &\quad \quad {}+\sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{ \ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}g_{\ell}( \varrho )\,d\varrho \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{ \ell}(\varrho )\,d\varrho +\sum _{{\ell =1}}^{m} \bigl\vert I_{\ell} \bigl(x(\xi _{\ell})\bigr)-I_{ \ell}\bigl(\bar{x}(\xi _{\ell})\bigr) \bigr\vert +\sum_{{\ell =1}}^{m} g_{\ell} \\ &\quad \leq \sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert \bigl(x(\varrho )-\bar{x}(\varrho )\bigr) \bigr\vert \,d\varrho \\ &\quad \quad {}-\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x(\varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho \\ &\quad \quad{} + \sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho \\ &\quad \quad {} -\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho \\ &\quad \quad{} + \L _{k}\sum_{{\ell =1}}^{m} \bigl\vert x(\xi )-y(\xi ) \bigr\vert +\sum_{{\ell =1}}^{m} g_{\ell}, \end{aligned}$$

where

$$\begin{aligned}& x(\xi ):=f_{1}\bigl(\xi ,y(\xi ),D^{\alpha _{1},{\gamma _{1}}}x(\xi ) \bigr)=f_{1}\bigl( \xi ,y(\xi ),x(\xi )\bigr),\\& \bar{x}(\xi ):=f_{1}\bigl(\xi ,\bar{y}(\xi ),D^{\alpha _{1},{\gamma _{1}}} \bar{x}(\xi )\bigr)=f_{1}\bigl(\xi ,\bar{y}(\xi ),\bar{x}(\xi ) \bigr),\\& \begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert & = \bigl\vert f_{1}\bigl(\xi ,y(\xi ),x(\xi )\bigr)-f_{1}\bigl(\xi , \bar{y}(\xi ),\bar{x}(\xi )\bigr) \bigr\vert \\ & \leq L_{f_{1}} \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert +L_{g_{1}} \bigl\vert x(\xi )-\bar{x}( \xi ) \bigr\vert . \end{aligned} \end{aligned}$$

This further gives

$$\begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq \frac{L_{f_{1}}}{1-L_{g_{1}}} \bigl\vert y(\xi )- \bar{y}(\xi ) \bigr\vert \end{aligned}$$
(4.14)

and similarly

$$\begin{aligned}& \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert \leq \frac{L_{f_{2}}}{1-L_{g_{2}}} \bigl\vert x(\xi )- \bar{x}(\xi ) \bigr\vert , \\& \begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert & \leq \sum_{{\ell =1}}^{m} \int _{\xi _{i-1}}^{\xi _{\ell}} \frac{(\xi _{\ell}-\varrho )^{\alpha _{1} +\alpha _{2}-1}}{\Gamma (\alpha _{1}+\alpha _{2})} \bigl\vert \bigl(x(\varrho )-\bar{x}(\varrho )\bigr) \bigr\vert \,d\varrho \\ &\quad {}-\sum_{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert x( \varrho )-\bar{x}(\varrho ) \bigr\vert \,d \varrho \\ &\quad {} +\sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}g_{ \ell}(\varrho )\,d\varrho \\ &\quad {}-\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho \\ &\quad{} + \L _{k}\sum_{{\ell =1}}^{m} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert +\sum _{{ \ell =1}}^{m} g_{\ell}. \end{aligned} \end{aligned}$$
(4.15)

Putting (4.14) in (4.15), we obtain

$$\begin{aligned} &\bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \\ &\quad \leq \sum _{{\ell =1}}^{m} \frac{L_{f_{1}}}{(1-L_{g_{1}}) {\Gamma (\alpha _{1}+\alpha _{2})}} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1} \bigl\vert y(\varrho )-\bar{y}(\varrho ) \bigr\vert \,d \varrho \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{\lambda L_{f_{1}}}{\Gamma ({\alpha _{1}})(1-L_{g_{1}})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \bigl\vert y( \varrho )-\bar{y}(\varrho ) \bigr\vert \,d \varrho + \frac{m\L _{k} L_{f_{1}}}{1-L_{g_{1}}} \bigl\vert y(\varrho )-\bar{y}(\varrho ) \bigr\vert \\ &\quad \quad{} + \sum_{{\ell =1}}^{m} \frac{1}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1}g_{\ell}(\varrho )\,d\varrho \\ &\quad \quad{} -\sum _{{\ell =1}}^{m} \frac{\lambda}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{\xi _{\ell}}( \xi _{\ell}-\varrho )^{\alpha _{1}-1}g_{\ell}(\varrho )\,d\varrho + \sum _{{\ell =1}}^{m} g_{\ell} \\ &\quad \leq \sum_{{\ell =1}}^{m} \frac{L_{f_{1}}C_{x}}{(1-L_{g_{1}}) {\Gamma (\alpha _{1}+\alpha _{2})}} \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+ \alpha _{2}-1} \,d\varrho \biggr) \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}} \bigl\vert \varphi _{x}(\varrho ) \bigr\vert \,d\varrho \biggr) \\ &\quad \quad{} - \sum_{{\ell =1}}^{m} \frac{C_{x}\lambda L_{f_{1}}}{\Gamma ({\alpha _{1}})(1-L_{g_{1}})} \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1} \,d\varrho \biggr) \biggl( \int _{\xi _{i-1}}^{\xi _{\ell}} \bigl\vert \varphi _{x}( \varrho ) \bigr\vert \,d\varrho \biggr) + \frac{m\L _{k} L_{f_{1}}\psi}{1-L_{g_{1}}} \\ &\quad \quad{} + \sum_{{\ell =1}}^{m} \frac{\varphi _{x}(\xi )}{\Gamma (\alpha _{1}+\alpha _{2})} \int _{ \xi _{i-1}}^{\xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}+\alpha _{2}-1}\,d\varrho \\ &\quad \quad{}-\sum_{{\ell =1}}^{m} \frac{\lambda \varphi _{x}(\xi )}{\Gamma ({\alpha _{1}})} \int _{\xi _{i-1}}^{ \xi _{\ell}}(\xi _{\ell}-\varrho )^{\alpha _{1}-1}\,d\varrho +m\varphi _{x}( \xi ) \\ &\quad \leq \frac{mL_{f_{1}}C_{x} C_{\varphi }(T)^{\alpha _{1}+\alpha _{2}}\varphi _{x}(\xi )}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{mC_{x} C_{\varphi}\lambda L_{f_{1}}(T)^{\alpha _{1}}\varphi _{x}(\xi )}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}+ \frac{m\L _{k} L_{f_{1}}\psi}{1-L_{g_{1}}} \\ &\quad \quad{} + \frac{m\varphi _{x}(\xi )}{\Gamma (\alpha _{1}+\alpha _{2}+1)}(T)^{ \alpha _{1}+\alpha _{2}} - \frac{m\varphi _{x}(\xi )\lambda}{\Gamma{\alpha _{1}+1}}(T)^{\alpha _{1}} +m\varphi _{x}(\xi ), \end{aligned}$$

which implies that

$$\begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert & \leq \biggl( \frac{mL_{f_{1}}C_{x} C_{\varphi }(T)^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{mC_{x} C_{\varphi}\lambda L_{f_{1}}(T)^{\alpha _{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}+ \frac{m\L _{k} L_{f_{1}}}{1-L_{g_{1}}} \\ &\quad{} + \frac{m}{\Gamma (\alpha _{1}+\alpha _{2}+1)}(T)^{\alpha _{1}+ \alpha _{2}} -\frac{m\lambda}{\Gamma{\alpha _{1}+1}}(T)^{\alpha _{1}} +m \biggr) \bigl(\varphi _{x}(\xi )+\psi \bigr). \end{aligned}$$

Thus

$$\begin{aligned} \bigl\vert x(\xi )-\bar{x}(\xi ) \bigr\vert \leq C_{f_{1},g_{2},\alpha _{1},\alpha _{2}} \bigl(\varphi _{x}(\xi )+\psi \bigr), \end{aligned}$$
(4.16)

where

$$\begin{aligned} C_{f,g,\alpha _{1},\alpha _{2}}&= \frac{mL_{f_{1}}C_{x} C_{\varphi }(T)^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{mC_{x} C_{\varphi}\lambda L_{f_{1}}(T)^{\alpha _{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}}+ \frac{m\L _{k} L_{f_{1}}}{1-L_{g_{1}}} \\ &\quad {}+ \frac{m(T)^{\alpha _{1}+\alpha _{2}}}{\Gamma (\alpha _{1}+\alpha _{2}+1)} -\frac{m\lambda (T)^{\alpha _{1}}}{\Gamma{\alpha _{1}+1}}+m. \end{aligned}$$

In a similar fashion, we can get

$$\begin{aligned} \bigl\vert y(\xi )-\bar{y}(\xi ) \bigr\vert \leq C_{f_{2},g_{2},\alpha _{1},\beta _{2}} \bigl(\varphi _{x}(\xi )+\psi \bigr), \end{aligned}$$
(4.17)

where

$$\begin{aligned} C_{f_{2},g_{2},\beta _{1},\beta _{2}}&= \frac{mL_{f_{1}}C_{x} C_{\varphi }(T)^{\beta _{1}+\beta _{2}}}{(1-L_{g_{1}})\Gamma (\beta _{1}+\beta _{2}+1)} - \frac{mC_{x} C_{\varphi}\lambda L_{f_{1}}(T)^{\beta _{1}}}{(1-L_{g_{1}})\Gamma{\beta _{1}+1}}+ \frac{m\L _{k} L_{f_{1}}}{1-L_{g_{1}}} \\ &\quad {}+ \frac{m(T)^{\beta _{1}+\beta _{2}}}{\Gamma (\beta _{1}+\beta _{2}+1)} - \frac{m\lambda (T)^{\beta _{1}}}{\Gamma{\beta _{1}+1}}+m. \end{aligned}$$

Therefore from (4.12) and (4.11), we get

$$\begin{aligned} \bigl\vert (x,y)-(\bar{x},\bar{y}) \bigr\vert & \leq C_{f_{1},g_{1},\alpha _{1},\alpha _{2}} \bigl(\varphi _{x}(\xi )+\psi \bigr)+ C_{f_{2},g_{2},\beta _{1},\beta _{2}} \bigl( \varphi _{x}(\xi )+\psi \bigr) \\ & \leq \varepsilon C_{f,g,\alpha _{1},\alpha _{2},\beta _{1},\beta _{2}} \bigl(\varphi _{x}(\xi )+ \psi \bigr). \end{aligned}$$

Hence (1.1) is UHR stable and is obviously generalized UHR stable. □

Example 4.12

$$ \textstyle\begin{cases} \textstyle\begin{cases} D^{(\frac{1}{2},\frac{1}{2})}(D^{(\frac{1}{3},\frac{1}{2})}+\frac{1}{2})x(\xi )=\frac{ \vert y(\xi )+D^{(\frac{1}{2},\frac{1}{2})}x(\xi ) \vert }{8+e^{\xi}+\xi ^{2}}, \\ \quad \xi \in J=[0,1], 0< \frac{1}{2},\frac{1}{3}< 1, 0\leq \frac{1}{2}\leq 1, \\ I_{\ell} x(\frac{1}{2})=\frac{x \vert (\frac{1}{2}) \vert }{70+ \vert x(\frac{1}{2}) \vert }, \\ I^{1-\gamma}x(0)=0, \qquad {\eta _{1}}=(\alpha _{1}+\alpha _{2})(1-{\gamma _{1}})+{\gamma _{1}}, \end{cases}\displaystyle \\ \textstyle\begin{cases} D^{(\frac{1}{3},\frac{1}{3})}(D^{(\frac{1}{4},\frac{1}{2})}+\frac{1}{2})y(\xi )=\frac{ \vert x(\xi )+D^{(\frac{1}{2},\frac{1}{2})}y(\xi ) \vert }{8+e^{\xi}+\xi ^{2}} , \\ \quad \xi \in J=[0,1], 0< \frac{1}{3},\frac{1}{4}< 1, 0\leq \frac{1}{3}\leq 1, \\ I_{\ell} y(\frac{1}{2})=\frac{y \vert (\frac{1}{2}) \vert }{70+ \vert y(\frac{1}{2}) \vert }, \\ I^{1-{\gamma _{1}}}y(0)=0, \qquad {\eta _{1}}=(\beta _{1}+\beta _{2})(1-{\gamma _{2}})+{\gamma _{2}} . \end{cases}\displaystyle \end{cases} $$
(4.18)

Let \(J_{0}=[0,\frac{1}{2}]\), \(J_{1}=[\frac{1}{2},1]\) \(\alpha _{1}= \frac{1}{2}\), \(\alpha _{2}=\frac{1}{3}\), \(\beta _{1}=\frac{1}{3}\), \(\beta _{2}=\frac{1}{3}\), \(\lambda =\lambda _{\varphi}=\frac{1}{2}\), \(L_{f_{1}}=L_{f_{2}}= \L _{k}=\frac{1}{90e^{2}}\), \(L_{g_{1}}=L_{g_{2}}=\frac{1}{9.0e^{-}2}\) and \(m=T=1\). Then, obviously

$$\begin{aligned}& \frac{m L_{f_{1}} (T)^{\alpha _{1}+\alpha _{2}}}{(1-L_{g_{1}})\Gamma (\alpha _{1}+\alpha _{2}+1)} - \frac{m\lambda L_{f_{1}} (T)^{\alpha _{1}}}{(1-L_{g_{1}})\Gamma{\alpha _{1}+1}} + \frac{m L_{f_{2}} (T)^{\beta _{1}+\beta _{2}}}{(1-L_{g_{2}})\Gamma (\beta _{1}+\beta _{2}+1)} \\& \quad{} - \frac{m\lambda L_{f_{2}} (T)^{\beta _{1}}}{(1-L_{g_{2}})\Gamma{\beta _{1}+1}}+2m \L _{k}< 1. \end{aligned}$$

Thus, by Theorem 3.2, (4.18) has a unique solution. Furthermore, the conditions of Theorem 4.10 are satisfied, so the solution of (4.18) is UH stable and generalized UH stable. Furthermore, it can be easily verified that the conditions of Theorem 4.11 hold and thus (4.18) is UHR stable and consequently generalized UHR stable.

5 Conclusion

In this article, switched coupled system of implicit impulsive LEs with four HFDs is considered. Some assumptions are made to avoid the hurdles, to examine the existence and uniqueness, and to discuss different types of UH stability of our considered model, using Banach fixed-point theorem. The main aim of the authors is that these qualitative properties can be examined and established in the future on some impulsive real-world systems arising in mathematical models of the brain.

Availability of data and materials

Not applicable.

References

  1. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear FDEs and inclusions. Acta Appl. Math. 109, 973–1033 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmad, B., Nieto, J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ahmad, B., Nieto, J.J., Alsaedi, A., El-Shahed, M.: A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 13(2), 599–602 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alam, M., Shah, D.: Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives. Chaos Solitons Fractals 150, 111122 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ali, Z., Rabiei, F., Shah, K.: On Ulam’s type stability for a class of impulsive fractional differential equations with nonlinear integral boundary conditions. J. Nonlinear Sci. Appl. 10, 4760–4775 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ali, Z., Zada, A., Shah, K.: On Ulam’s stability for a coupled systems of nonlinear implicit FDEs. Bull. Malays. Math. Sci. Soc. 42, 2681–2699 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alsina, C., Ger, R.: On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 2, 373–380 (1998)

    MathSciNet  MATH  Google Scholar 

  8. Bai, Z.: On positive solutions of a non-local fractional boundary value problem. Nonlinear Anal., Theory Methods Appl. 72(2), 916–924 (2010)

    Article  MATH  Google Scholar 

  9. Baleanu, D., Khan, H., Jafari, H., Khan, R.A., Alipure, M.: On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Adv. Differ. Equ. 2015, Paper No. 318 (2015). https://doi.org/10.1186/s13662-015-0651-z.

    Article  MathSciNet  MATH  Google Scholar 

  10. Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems with nonlinear FDEs. Appl. Anal. 87(7), 851–863 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Benchohra, M., Seba, D.: Impulsive FDEs in Banach spaces. Electron. J. Qual. Theory Differ. Equ. 2009, Paper No. 8 (2009)

    MATH  Google Scholar 

  12. Fa, K.S.: Generalized LE with fractional derivative and long-time correlation function. Phys. Rev. E 73(6), Art. ID 061104 (2006)

    Article  Google Scholar 

  13. Hu, Z.G., Liu, W.B., Chen, T.Y.: Existence of solutions for a coupled system of fractional differential equations at resonance. Bound. Value Probl. 2012, Paper No. 98 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27, 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equation. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  16. Kosmatov, N.: Initial value problems of fractional order with fractional impulsive conditions. Results Math. 63, 1289–1310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lim, S.C., Li, M., Teo, L.P.: Langevin equation with two fractional orders. Phys. Lett. A 372(42), 6309–6320 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mainardi, F., Pironi, P.: The fractional Langevin equation: Brownian motion revisited. Extr. Math. 11(1), 140–154 (1996)

    MathSciNet  Google Scholar 

  19. Obloza, M.: Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 13, 259–270 (1993)

    MathSciNet  MATH  Google Scholar 

  20. Obloza, M.: Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 14, 3141–3146 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  22. Rassias, T.M.: On the stability of linear mappings in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rizwan, R.: Existence theory and stability snalysis of fractional Langevin equation. Int. J. Nonlinear Sci. Numer. Simul. 20(7–8), 833–848 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rizwan, R., Lee, J.R., Park, C., Zada, A.: Qualitative analysis of nonlinear impulse Langevin equation with helfer fractional order derivatives. AIMS Math. 7(4), 6204–6217 (2022)

    Article  MathSciNet  Google Scholar 

  25. Rizwan, R., Zada, A.: Nonlinear impulsive Langevin equation with mixed derivatives. Math. Methods Appl. Sci. 43(1), 427–442 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rizwan, R., Zada, A., Ahmad, M., Shah, S.O., Waheed, H.: Existence theory and stability analysis of switched coupled system of nonlinear implicit impulsive LEs with mixed derivatives. Math. Methods Appl. Sci. 44(11), 8963–8985 (2021). https://doi.org/10.1002/mma.7324

    Article  MathSciNet  MATH  Google Scholar 

  27. Rizwan, R., Zada, A., Wang, X.: Stability analysis of non linear implicit fractional Langevin equation with non-instantaneous impulses. Adv. Differ. Equ. 2019, Paper No. 85 (2019)

    Article  MATH  Google Scholar 

  28. Rus, I.A.: Ulam stability of ordinary differential equations. Stud. Univ. Babeş–Bolyai, Math. 54, 125–133 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Shah, R., Zada, A.: A fixed point approach to the stability of a nonlinear Volterra integro diferential equation with delay. Hacet. J. Math. Stat. 47(3), 615–623 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Shah, S.O., Rizwan, R., Xia, Y., Zada, A.: Existence, uniqueness and stability analysis of fractional Langevin equations with anti-periodic boundary conditions. Math. Methods Appl. Sci., 1–21 (2023). https://doi.org/10.1002/mma.9539

    Article  MathSciNet  Google Scholar 

  31. Shah, S.O., Zada, A., Hamza, A.E.: Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales. Qual. Theory Dyn. Syst. 18(3), 825–840 (2019). https://doi.org/10.1007/s12346-019-00315-x

    Article  MathSciNet  MATH  Google Scholar 

  32. Takahasi, S.E., Miura, T., Miyajima, S.: On the Hyers-Ulam stability of the Banach space-valued differential equation \(f'=\lambda f\). Bull. Korean Math. Soc. 39, 309–315 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, S., Zada, A., Faisal, S., El-Sheikh, M.M.A., Li, T.: Stability of higher-order nonlinear impulsive differential equations. J. Nonlinear Sci. Appl. 9, 4713–4721 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)

    Google Scholar 

  35. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1968)

    MATH  Google Scholar 

  36. Wang, J., Feckan, M., Zhou, Y.: Ulam’s type stability of impulsive ordinary differential equation. J. Math. Anal. Appl. 35, 258–264 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, J., Zhou, Y., Feckan, M.: Nonlinear impulsive problems for FDEs and Ulam stability. Comput. Math. Appl. 64, 3389–3405 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J., Zhou, Y., Lin, Z.: On a new class of impulsive FDEs. Appl. Math. Comput. 242, 649–657 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X., Rizwan, R., Lee, J.R., Zada, A., Shah, S.O.: Existence, uniqueness and Ulam’s stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Math. 6(5), 4915–4929 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  40. You, J., Han, Z.: Analysis of fractional hybrid differential equations with impulses in partially ordered Banach algebras. Nonlinear Anal., Model. Control 26, 1071–1086 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  41. You, J., Sun, S.: On impulsive coupled hybrid fractional differential systems in Banach algebras. J. Appl. Math. Comput. 62, 189–205 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zada, A., Ali, S.: Stability analysis of multi-point boundary value problem for sequential FDEs with non-instantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. 19(7), 763–774 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zada, A., Ali, S., Li, Y.: Ulam-type stability for a class of implicit fractional differential equations with non-instantaneous integral impulses and boundary condition. Adv. Differ. Equ. 2017, Paper No. 317 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zada, A., Ali, W., Farina, S.: Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Methods Appl. Sci. 40(15), 5502–5514 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zada, A., Ali, W., Park, C.: Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall–Bellman–Bihari’s type. Appl. Math. Comput. 350, 60–65 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zada, A., Rizwan, R., Xu, J., Fu, Z.: On implicit impulsive Langevin equation involving mixed order derivatives. Adv. Differ. Equ. 2019, Paper No. 489 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zada, A., Shah, S.O.: Hyers–Ulam stability of first-order non-linear delay dierential equations with fractional integrable impulses. Hacet. J. Math. Stat. 47(5), 1196–1205 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Zada, A., Shah, S.O., Shah, R.: Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput. 271, 512–518 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally and significantly in writing this paper. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Choonkil Park or Siriluk Paokanta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizwan, R., Liu, F., Zheng, Z. et al. Existence theory and Ulam’s stabilities for switched coupled system of implicit impulsive fractional order Langevin equations. Bound Value Probl 2023, 115 (2023). https://doi.org/10.1186/s13661-023-01785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01785-4

Mathematics Subject Classification

Keywords