Initially, we establish an identity employing tempered fractional integrals. Subsequently, utilizing this particular identity, we derive new Milne-type inequalities with tempered fractional integrals.
Lemma 1
Consider \(\mathcal{F}:[\omega , \varsigma ] \rightarrow \mathbb{R}\) is an absolutely continuous function on the interval \((\omega , \varsigma )\) with \(\mathcal{F'} \in L_{1}[\omega , \varsigma ]\). In this case, the following equality is valid:
$$\begin{aligned} &\frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \\ &\quad = \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2} \curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \int _{0}^{1} \biggl(\curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr) \\ &\qquad{} \times \biggl[\mathcal{F'} \biggl( \biggl(\frac{1-\xi}{2} \biggr) \omega + \biggl(\frac{1+\xi}{2} \biggr)\varsigma \biggr)- \mathcal{F'} \biggl( \biggl(\frac{1+\xi}{2} \biggr)\omega + \biggl(\frac{1-\xi}{2} \biggr)\varsigma \biggr) \biggr]\,d\xi . \end{aligned}$$
(1)
Proof
Through the utilization of the integration by parts technique, we acquire
$$\begin{aligned} I_{1}& = \int _{0}^{1} \biggl(\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr) \biggl[ \mathcal{F'} \biggl( \biggl(\frac{1+\xi}{2} \biggr)\omega + \biggl( \frac{1-\xi}{2} \biggr)\varsigma \biggr) \biggr]\,d\xi \\ &=-\frac{2}{\varsigma -\omega} \biggl[ \biggl(\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3} \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr) \mathcal{F} \biggl( \biggl(\frac{1+\xi}{2} \biggr)\omega + \biggl( \frac{1-\xi}{2} \biggr)\varsigma \biggr)\bigg|_{0}^{1} \\ &\quad{} +\frac{2}{\varsigma -\omega} \int _{0}^{1}\xi ^{\alpha -1}e^{- \lambda (\frac{\varsigma -\omega}{2})\xi} \mathcal{F'} \biggl( \biggl( \frac{1+\xi}{2} \biggr)\omega + \biggl(\frac{1-\xi}{2} \biggr) \varsigma \biggr)\,d\xi \\ &=-\frac{2}{\varsigma -\omega} \biggl[ \biggl(\frac{4}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr)\mathcal{F}( \omega )+ \biggl( \frac{1}{3}\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr)\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr) \biggr] \\ &\quad{} + \frac{2^{\alpha +1}\Gamma (\alpha )}{(\varsigma -\omega )^{\alpha +1}} \mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr). \end{aligned}$$
(2)
By taking the same steps, we derive
$$\begin{aligned} I_{2}&=\frac{2}{\varsigma -\omega} \biggl[ \biggl( \frac{4}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr)\mathcal{F}( \varsigma )- \biggl(\frac{1}{3}\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr) \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr) \biggr] \\ &\quad{} - \frac{2^{\alpha +1}\Gamma (\alpha )}{(\varsigma -\omega )^{\alpha +1}} \mathcal{J}_{\varsigma -}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr). \end{aligned}$$
(3)
By (2) and (3), this yields
$$\begin{aligned} \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2}\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})}[I_{2}-I_{1}]&= \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\quad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr]. \end{aligned}$$
(4)
The proof of Lemma 1 is concluded. □
Theorem 1
Consider the conditions outlined in Lemma 1and the convexity of the function \(|\mathcal{F'}|\) on the interval \([\omega , \varsigma ]\), then, we attain the following Milne-type inequalities for tempered fractional integrals:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )- \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2} \curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \mathsf{\Omega _{1}}(\alpha , \lambda ) \bigl[ \bigl\vert \mathcal{F'}(\omega ) \bigr\vert + \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert \bigr], \end{aligned}$$
(5)
where
$$ \begin{aligned} &{\Omega _{1}}(\alpha , \lambda )= \int _{0}^{1} \biggl\vert \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}(\alpha , \xi )+ \frac{1}{3}\curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \,d\xi . \end{aligned} $$
Proof
By applying the absolute value in Lemma 1 and considering the convexity of \(|\mathcal{F'}|\), we acquire
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )- \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{}- \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2}\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \int _{0}^{1} \biggl\vert \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{} \times \biggl[ \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1-\xi}{2} \biggr)\omega + \biggl(\frac{1+\xi}{2} \biggr)\varsigma \biggr) \biggr\vert + \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1+\xi}{2} \biggr) \omega + \biggl(\frac{1-\xi}{2} \biggr)\varsigma \biggr) \biggr\vert \biggr]\,d\xi \\ &\quad \leq \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2}\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \int _{0}^{1} \biggl\vert \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{} \times \biggl[\frac{1+\xi}{2} \bigl\vert \mathcal{F'}( \omega ) \bigr\vert +\frac{1-\xi}{2} \bigl\vert \mathcal{F'}( \varsigma ) \bigr\vert +\frac{1-\xi}{2} \bigl\vert \mathcal{F'}( \omega ) \bigr\vert + \frac{1+\xi}{2} \bigl\vert \mathcal{F'}( \varsigma ) \bigr\vert \biggr]\,d\xi \\ &\quad = \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2} \curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \mathsf{\Omega _{1}}(\alpha , \lambda ) \bigl[ \bigl\vert \mathcal{F'}(\omega ) \bigr\vert + \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert \bigr]. \end{aligned}$$
(6)
Consequently, the proof is concluded. □
Remark 2
Assume \(\lambda =0\) in Theorem 1, we derive the subsequent Milne’s rule-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{2^{\alpha -1}\Gamma (\alpha +1)}{(\varsigma -\omega )^{\alpha}} \biggl[J_{\varsigma -}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+J_{\omega +}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{\alpha (\varsigma -\omega )}{4}\mathsf{\Omega _{1}}( \alpha , 0) \bigl[ \bigl\vert \mathcal{F'}(\omega ) \bigr\vert + \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert \bigr], \end{aligned}$$
which is defined in [9, Theorem 1].
Remark 3
When setting \(\lambda =0\) and \(\alpha =1\) in Theorem 1, we attain the subsequent Milne’s rule-type inequality:
$$\begin{aligned}& \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{1}{\varsigma -\omega} \int _{\omega}^{\varsigma}\mathcal{F}(\xi )\,d \xi \biggr\vert \\& \quad \leq \frac{5(\varsigma -\omega )}{24} \bigl( \bigl\vert \mathcal{F'}( \omega ) \bigr\vert + \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert \bigr), \end{aligned}$$
which is obtained in [7].
Theorem 2
Consider the conditions outlined in Lemma 1and the convexity of the function \(|\mathcal{F'}|^{q}, q>1\) on the interval \([\omega , \varsigma ]\). Then, we have the following Milne-type inequalities for tempered fractional integrals:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )- \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{\mathsf{\Phi _{1}^{p}}(\alpha , \lambda )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[ \biggl( \frac{3 \vert \mathcal{F'}(\omega ) \vert ^{q} + \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \frac{ \vert \mathcal{F'}(\omega ) \vert ^{q}+3 \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{\mathsf{4\Phi _{1}^{p}}(\alpha , \lambda )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \bigl[ \bigl\vert \mathcal{F'}(\omega ) \bigr\vert ^{q}+ \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \bigr]. \end{aligned}$$
(7)
Here, \(q^{-1}+p^{-1}=1\) and
$$\begin{aligned} &\mathsf{\Phi _{1}^{p}}(\alpha , \lambda )= \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}( \alpha , 1) \biggr\vert ^{p} \biggr)^{\frac{1}{p}}\,d\xi . \end{aligned}$$
Proof
By utilizing Hölder’s inequality in (6), this yields
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2} \curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert ^{p}\,d\xi \biggr)^{\frac{1}{p}} \\ &\qquad{} \times \biggl( \int _{0}^{1} \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1+\xi}{2} \biggr)\omega + \biggl(\frac{1-\xi}{2} \biggr) \varsigma \biggr) \biggr\vert ^{q}\,d\xi \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert ^{p}\,d\xi \biggr)^{ \frac{1}{p}} \\ &\qquad{} \times \biggl( \int _{0}^{1} \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1-\xi}{2} \biggr)\omega + \biggl(\frac{1+\xi}{2} \biggr) \varsigma \biggr) \biggr\vert ^{q}\,d\xi \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}$$
By utilizing the convexity of \(|\mathcal{F'}|^{q}\), we attain
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{(\varsigma -\omega )^{\alpha +1}}{2^{\alpha +2}\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert ^{p}\,d\xi \biggr)^{\frac{1}{p}} \\ &\qquad{} \times \biggl[ \biggl( \int _{0}^{1} \biggl[\frac{1+\xi}{2} \bigl\vert \mathcal{F'}(\omega ) \bigr\vert ^{q}+ \frac{1-\xi}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr]\,d\xi \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \int _{0}^{1} \biggl[ \frac{1-\xi}{2} \bigl\vert \mathcal{F'}(\omega ) \bigr\vert ^{q}+ \frac{1+\xi}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr]\,d\xi \biggr)^{\frac{1}{q}} \biggr] \biggr\} \\ &\quad = \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{\mathsf{\Phi _{1}^{p}}(\alpha , \lambda )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[ \biggl( \frac{3 \vert \mathcal{F'}(\omega ) \vert ^{q} + \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \frac{ \vert \mathcal{F'}(\omega ) \vert ^{q}+3 \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}} \biggr]. \end{aligned}$$
The first inequality of (7) is proved. For the proof of the second inequality, let \(\omega _{1}=\) \(3 \vert \mathcal{F}^{\prime} (\omega ) \vert ^{q}, \varsigma _{1}= \vert \mathcal{F}^{\prime} (\varsigma ) \vert ^{q}\), \(\omega _{2}= \vert \mathcal{F}^{\prime} (\omega ) \vert ^{q}\), and \(\varsigma _{2}=3 \vert \mathcal{F}^{\prime} (\varsigma _{2} ) \vert ^{q}\). Leveraging the provided information that
$$\begin{aligned} \sum_{\kappa =1}^{n} (\omega _{\kappa}+ \varsigma _{\kappa} )^{s} \leq \sum_{\kappa =1}^{n} \omega _{\kappa}^{s}+\sum_{ \kappa =1}^{n} \varsigma _{\kappa}^{s}, \quad 0 \leq s< 1 \end{aligned}$$
and \(1+3^{\frac{1}{q}} \leq 4\), the required result can be derived directly. With this, the proof of Theorem 2 is accomplished. □
Remark 4
Setting \(\lambda =0\) in Theorem 2, we obtain the subsequent Milne’s rule-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{2^{\alpha -1}\Gamma (\alpha +1)}{(\varsigma -\omega )^{\alpha}} \biggl[J_{\varsigma -}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+J_{\omega +}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{\alpha (\varsigma -\omega )}{4} \bigl( \mathsf{\Phi _{1}^{p}}( \alpha , 0) \bigr) \biggl[ \biggl( \frac{3 \vert \mathcal{F'}(\omega ) \vert ^{q} + \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}}+ \biggl( \frac{ \vert \mathcal{F'}(\omega ) \vert ^{q}+3 \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq \frac{\alpha (\varsigma -\omega )}{4}\bigl(\mathsf{4\Phi _{1}^{p}}( \alpha , 0)\bigr) \bigl[ \bigl\vert \mathcal{F'}(\omega ) \bigr\vert + \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert \bigr], \end{aligned}$$
which is presented by Budak et al. in [9, Theorem 2].
Remark 5
Assume \(\lambda =0\) and \(\alpha =1\) in Theorem 2, we deduce the subsequent Milne’s rule-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{1}{\varsigma -\omega} \int _{a}^{b}\mathcal{F}(\xi )\,d\xi \biggr\vert \\ &\quad \leq \frac{\varsigma -\omega}{12} \biggl(\frac{4^{p+1}-1}{3(p+1)} \biggr)^{\frac{1}{p}} \biggl[ \biggl( \frac{3 \vert \mathcal{F'}(\omega ) \vert ^{q} + \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}}+ \biggl( \frac{ \vert \mathcal{F'}(\omega ) \vert ^{q}+3 \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}} \biggr] \\ &\quad \leq \frac{\varsigma -\omega}{12} \biggl(\frac{4^{p+2}-4}{3(p+1)} \biggr)^{\frac{1}{p}} \bigl[ \bigl\vert \mathcal{F'}(\omega ) \bigr\vert + \bigl\vert \mathcal{F'}( \varsigma ) \bigr\vert \bigr], \end{aligned}$$
which is obtained in [9, Corollary 1].
Theorem 3
Consider the conditions outlined in Lemma 1and the convexity of the function \(|\mathcal{F'}|^{q}, q\geq 1\) on the interval \([\omega , \varsigma ]\). Then, we have the following Milne-type inequalities for tempered fractional integrals:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )- \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda ) )^{1-\frac{1}{q}}}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \biggl( \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda ) +\mathsf{\Omega _{2}}(\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}(\omega ) \bigr\vert ^{q} \\ &\qquad{} + \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda ) -\mathsf{\Omega _{2}}(\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda )-\mathsf{\Omega _{2}}(\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}( \omega ) \bigr\vert ^{q}+ \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda )+\mathsf{\Omega _{2}}(\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} , \end{aligned}$$
(8)
where \({\Omega _{1}}(\alpha , \lambda )\) is defined in Theorem 1, and
$$ \begin{aligned} &{\Omega _{2}}(\alpha , \lambda )= \int _{0}^{1} \xi \biggl\vert \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}(\alpha , \xi )+ \frac{1}{3}\curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \,d\xi . \end{aligned} $$
Proof
By employing the Power mean inequality in (6), we acquire
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{1}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \,d\xi \biggr)^{1-\frac{1}{q}} \\ &\qquad{} \times \biggl[ \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1+\xi}{2} \biggr)\omega + \biggl( \frac{1-\xi}{2} \biggr)\varsigma \biggr) \biggr\vert ^{q}\,d\xi \biggr)^{ \frac{1}{q}} \\ &\qquad{} + \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{}\times \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1-\xi}{2} \biggr)\omega + \biggl( \frac{1+\xi}{2} \biggr)\varsigma \biggr) \biggr\vert ^{q}\,d\xi \biggr)^{ \frac{1}{q}} \biggr] \biggr\} . \end{aligned}$$
Considering the convexity of \(|\mathcal{F'}|^{q}\) on the interval \([\omega , \varsigma ]\), we derive
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{1}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \,d\xi \biggr)^{1-\frac{1}{q}} \\ &\qquad{} \times \biggl[ \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{}\times \biggl( \frac{1+\xi}{2} \bigl\vert \mathcal{F'}( \omega ) \bigr\vert ^{q}+\frac{1-\xi}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)\,d\xi \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{}\times \biggl( \frac{1-\xi}{2} \bigl\vert \mathcal{F'}( \omega ) \bigr\vert ^{q}+\frac{1+\xi}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)\,d\xi \biggr)^{\frac{1}{q}} \biggr] \biggr\} \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda ) )^{1-\frac{1}{q}}}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \biggl( \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda ) +\mathsf{\Omega _{2}}(\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}(\omega ) \bigr\vert ^{q} \\ &\qquad{} + \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda ) -\mathsf{\Omega _{2}}(\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda )-\mathsf{\Omega _{2}} (\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}( \omega ) \bigr\vert ^{q}+ \frac{ (\mathsf{\Omega _{1}}(\alpha , \lambda ) +\mathsf{\Omega _{2}}(\alpha , \lambda ) )}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}$$
This concludes the proof. □
Remark 6
Taking \(\lambda =0\) in Theorem 3, we acquire the subsequent Milne’s rule-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{2^{\alpha -1}\Gamma (\alpha +1)}{(\varsigma -\omega )^{\alpha}} \biggl[J_{\varsigma -}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+J_{\omega +}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{\alpha (\varsigma -\omega )}{4} \bigl( \mathsf{\Omega _{1}}(\alpha , 0) \bigr)^{1-\frac{1}{q}} \biggl\{ \biggl( \frac{ (\mathsf{\Omega _{1}}(\alpha , 0) +\mathsf{\Omega _{2}}(\alpha , 0) )}{2} \bigl\vert \mathcal{F'}(\omega ) \bigr\vert ^{q} \\ &\qquad{} + \frac{ (\mathsf{\Omega _{1}}(\alpha , 0)-\mathsf{\Omega _{2}}(\alpha , 0) )}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \frac{ (\mathsf{\Omega _{1}}(\alpha , 0)-\mathsf{\Omega _{2}}(\alpha , 0) )}{2} \bigl\vert \mathcal{F'}( \omega ) \bigr\vert ^{q}+ \frac{ (\mathsf{\Omega _{1}}(\alpha , 0)+\mathsf{\Omega _{2}}(\alpha , 0) )}{2} \bigl\vert \mathcal{F'}(\varsigma ) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} \biggr\} , \end{aligned}$$
which is found in [9, Theorem 3].
Remark 7
If we take \(\lambda =0\) and \(\alpha =1\) in Theorem 3, we deduce the subsequent Milne’s rule-type inequality:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{1}{\varsigma -\omega} \int _{\omega}^{\varsigma}\mathcal{F}(\xi )\,d \xi \biggr\vert \\ &\quad \leq \frac{5(\varsigma -\omega )}{24} \biggl[ \biggl( \frac{4 \vert \mathcal{F'}(\omega ) \vert ^{q}+ \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{5} \biggr)^{\frac{1}{q}}+ \biggl( \frac{ \vert \mathcal{F'}(\omega ) \vert ^{q}+4 \vert \mathcal{F'}(\varsigma ) \vert ^{q}}{5} \biggr)^{\frac{1}{q}} \biggr], \end{aligned}$$
which is obtained in [7, Remark 3.2].
Theorem 4
Consider the conditions outlined in Lemma 1to hold. If there exist \(m, M\in \mathbb{R}\) such that \(m\leq \mathcal{F'}(\xi )\leq M\) for \(\xi \in [\omega , \varsigma ]\), then, we obtain the following Milne-type inequalities for tempered fractional integrals:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )- \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{\mathsf{\Omega _{1}}(\alpha , \lambda )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})}(M-m), \end{aligned}$$
(9)
where \({\Omega _{1}}(\alpha , \lambda )\) is defined as in Theorem 1.
Proof
From Lemma 1, it is easy to write
$$\begin{aligned} &\frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{1}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \int _{0}^{1} \biggl(\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr) \\ &\qquad{} \times \biggl[\mathcal{F'} \biggl( \biggl( \frac{1-\xi}{2} \biggr) \omega + \biggl(\frac{1+\xi}{2} \biggr)\varsigma \biggr)- \frac{m+M}{2} \biggr]\,d\xi \\ &\qquad{} + \int _{0}^{1} \biggl(\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr) \\ &\qquad{} \times \biggl[\frac{m+m}{2}-\mathcal{F'} \biggl( \biggl( \frac{1+\xi}{2} \biggr)\omega + \biggl(\frac{1-\xi}{2} \biggr) \varsigma \biggr) \biggr]\,d\xi \biggr\} . \end{aligned}$$
(10)
By employing the properties of modulus in equation (10), we can derive
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{1}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl\{ \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{} \times \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1-\xi}{2} \biggr) \omega + \biggl(\frac{1+\xi}{2} \biggr)\varsigma \biggr)- \frac{m+M}{2} \biggr\vert \,d\xi \\ &\qquad{} + \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{} \times \biggl\vert \frac{m+m}{2}-\mathcal{F'} \biggl( \biggl( \frac{1+\xi}{2} \biggr)\omega + \biggl(\frac{1-\xi}{2} \biggr) \varsigma \biggr) \biggr\vert \,d\xi \biggr\} . \end{aligned}$$
Based on the given assumption \(m\leq \mathcal{F'}(\xi )\leq M\) for \(\xi \in [\omega , \varsigma ]\), this yields
$$\begin{aligned} \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1-\xi}{2} \biggr)\omega + \biggl(\frac{1+\xi}{2} \biggr)\varsigma \biggr)-\frac{m+M}{2} \biggr\vert \leq \frac{M-m}{2} \end{aligned}$$
(11)
and
$$\begin{aligned} \biggl\vert \frac{m+m}{2}-\mathcal{F'} \biggl( \biggl(\frac{1+\xi}{2} \biggr) \omega + \biggl(\frac{1-\xi}{2} \biggr)\varsigma \biggr) \biggr\vert \leq \frac{M-m}{2}. \end{aligned}$$
(12)
With the utilization of inequalities (11) and (12), we achieve
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad {}- \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{1}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[ \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \,d\xi \biggr](M-m) \\ &\quad = \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{\mathsf{\Omega _{1}}(\alpha , \lambda )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})}(M-m). \end{aligned}$$
Hence, the proof is effectively concluded. □
Corollary 1
Under the conditions of Theorem 4, if there exist \(M\in \mathbb{R}^{+}\) such that \(|\mathcal{F'}(\xi )|\leq M\), for all \(\xi \in [\omega , \varsigma ]\), then we attain
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{\mathsf{\Omega _{1}}(\alpha , \lambda )}{\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})}M. \end{aligned}$$
Remark 8
If we set \(\lambda =0\), in Corollary 1, we have
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{2^{\alpha -1}\Gamma (\alpha +1)}{(\varsigma -\omega )^{\alpha}} \biggl[J_{\omega +}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+J_{\varsigma -}^{\alpha} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{\alpha (\varsigma -\omega )}{2}\mathsf{\Omega _{1}}( \alpha , 0)M, \end{aligned}$$
which is obtained in [9, Corollary 3].
Remark 9
Putting \(\lambda =0\) and \(\alpha =1\) in Corollary 1, this yields
$$\begin{aligned} \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{1}{\varsigma -\omega} \int _{\omega}^{\varsigma}\mathcal{F}(\xi )\,d \xi \biggr\vert \leq \frac{5(\varsigma -\omega )}{12}M, \end{aligned}$$
which was obtained by Alomari and Liu [3].
Remark 10
Taking \(\lambda =0\) in Theorem 4, we attain
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{\Gamma (\alpha +1)}{2(\varsigma -\omega )^{\alpha}} \bigl[J_{ \varsigma -}^{\alpha} \mathcal{F}(\omega )+J_{\omega +}^{\alpha} \mathcal{F}(\varsigma ) \bigr] \biggr\vert \\ &\quad \leq \frac{\alpha (\varsigma -\omega )}{4}\mathsf{\Omega _{1}}( \alpha , 0) (M-m), \end{aligned}$$
which is presented in [9, Theorem 4].
Remark 11
Assume \(\lambda =0\) and \(\alpha =1\) in Theorem 4, we deduce the subsequent inequality:
$$\begin{aligned} \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{1}{\varsigma -\omega} \int _{\omega}^{\varsigma}\mathcal{F}(\xi )\,d \xi \biggr\vert \leq \frac{5(\varsigma -\omega )}{24} (M-m ), \end{aligned}$$
which is defined in [9, Corollary 2].
Theorem 5
Consider the conditions outlined in Lemma 1to hold. If \(\mathcal{F'}\) is an L-Lipschitzian function on the interval \([\omega , \varsigma ]\), then we obtain the following Milne-type inequalities for tempered fractional integrals:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )- \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +2} \frac{\mathsf{\Omega _{2}}(\alpha , \lambda )}{\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \mathsf{L}. \end{aligned}$$
(13)
Here, \({\Omega _{2}}(\alpha , \lambda )\) is defined as in Theorem 3.
Proof
Utilizing the modulus in Lemma 1, we attain
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \varsigma -\omega )} \bigl[\mathcal{J}_{\varsigma -}^{(\alpha , \lambda )} \mathcal{F}( \omega )+\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F}( \varsigma ) \bigr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{1}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[ \int _{0}^{1} \biggl\vert \curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , \xi )+\frac{1}{3}\curlyvee _{ \lambda (\frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \\ &\qquad{} \times \biggl\vert \mathcal{F'} \biggl( \biggl( \frac{1-\xi}{2} \biggr)\omega + \biggl(\frac{1+\xi}{2} \biggr)\varsigma \biggr)- \mathcal{F'} \biggl( \biggl(\frac{1+\xi}{2} \biggr)\omega + \biggl( \frac{1-\xi}{2} \biggr)\varsigma \biggr) \biggr\vert \,d\xi \biggr]. \end{aligned}$$
Since \(|\mathcal{F'}|\) is an L-Lipschitzian function, we can conclude
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \varsigma -\omega )} \bigl[\mathcal{J}_{\varsigma -}^{(\alpha , \lambda )} \mathcal{F}( \omega )+\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F}( \varsigma ) \bigr] \biggr\vert \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +1} \frac{1}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \int _{0}^{1} \biggl\vert \curlyvee _{\lambda (\frac{\varsigma -\omega}{2})}( \alpha , \xi )+\frac{1}{3}\curlyvee _{\lambda ( \frac{\varsigma -\omega}{2})}(\alpha , 1) \biggr\vert \mathsf{L}( \varsigma -\omega )\xi \,d\xi \\ &\quad \leq \biggl(\frac{\varsigma -\omega}{2} \biggr)^{\alpha +2} \frac{\mathsf{\Omega _{2}}(\alpha , \lambda )}{\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \mathsf{L}. \end{aligned}$$
Consequently, the demonstration is concluded. □
Remark 12
By setting \(\lambda =0\), in Theorem 5, we attain
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{\Gamma (\alpha +1)}{2(\varsigma -\omega )^{\alpha}} \bigl[J_{ \varsigma -}^{\alpha} \mathcal{F}(\omega )+J_{\omega +}^{\alpha} \mathcal{F}(\varsigma ) \bigr] \biggr\vert \\ &\quad \leq \frac{\alpha (\varsigma -\omega )^{2}}{4}\mathsf{\Omega _{2}}( \alpha , 0)\mathsf{L}, \end{aligned}$$
which is defined in [9, Theorem 5].
Remark 13
By setting \(\lambda =0\) and \(\alpha =1\) in Theorem 5, this yields
$$\begin{aligned} \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{1}{\varsigma -\omega} \int _{\omega}^{\varsigma}\mathcal{F}(\xi )\,d \xi \biggr\vert \leq \frac{(\varsigma -\omega )^{2}}{8}\mathsf{L}, \end{aligned}$$
which is presented in [9, Corollary 4].
Theorem 6
Assume \(\mathcal{F}:[\omega , \varsigma ]\to \mathbb{R}\) exhibits a bounded variation over the interval \([\omega , \varsigma ]\). Then, we have the following Milne-type inequality that is specifically tailored for tempered fractional integrals:
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )- \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{1}{2\curlyvee _{\lambda }(\alpha ,\frac{\varsigma -\omega}{2})} \biggl[\max \biggl\{ \frac{\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega}{2})}{3}, \biggl\vert \curlyvee _{\lambda } \biggl( \alpha , \frac{\varsigma -\omega}{2} \biggr)+ \frac{\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega}{2})}{3} \biggr\vert \biggr\} \biggr] \bigvee _{\omega }^{\varsigma }( \mathcal{F}), \end{aligned}$$
(14)
where \(\bigvee_{\omega}^{\varsigma}(\mathcal{F})\) indicate the total variation of \(\mathcal{F}\) on \([\omega , \varsigma ]\).
Proof
Define the mappings
$$\begin{aligned} \mathsf{T}_{\alpha}(\varkappa )=\textstyle\begin{cases} {-}\curlyvee _{\lambda}(\alpha , \frac{\omega +\varsigma}{2}-\varkappa )- \frac{\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})}{3}, & \omega \leq \varkappa \leq \frac{\omega +\varsigma}{2} \\ \curlyvee _{\lambda}(\alpha , \varkappa -\frac{\omega +\varsigma}{2})+ \frac{\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})}{3} & \frac{\omega +\varsigma}{2}< \varkappa \leq \varsigma . \end{cases}\displaystyle \end{aligned}$$
By employing the integration by parts technique, we acquire
$$\begin{aligned} & \int _{\omega}^{\varsigma} \mathsf{T}_{\alpha}(\varkappa )\,d \mathcal{F}(\varkappa ) \\ &\quad = \int _{\omega}^{\frac{\omega +\varsigma}{2}} \biggl({-}\curlyvee _{ \lambda} \biggl(\alpha , \frac{\omega +\varsigma}{2}-\varkappa \biggr) - \frac{\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr) \,d\mathcal{F}(\varkappa ) \\ &\qquad{} + \int _{\frac{\omega +\varsigma}{2}}^{ \varsigma} \biggl(\curlyvee _{\lambda} \biggl(\alpha , \varkappa - \frac{\omega +\varsigma}{2} \biggr) + \frac{\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr)\,d \mathcal{F}(\varkappa ) \\ &\quad = \biggl(-\curlyvee _{\lambda} \biggl(\alpha , \frac{\omega +\varsigma}{2}- \varkappa \biggr)- \frac{\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr)\mathcal{F}(\varkappa )\bigg|_{\omega}^{ \frac{\omega +\varsigma}{2}} \\ &\qquad{} - \int _{\omega}^{ \frac{\omega +\varsigma}{2}} \biggl(\frac{\omega +\varsigma}{2}- \varkappa \biggr)^{\alpha -1}e^{-\lambda ( \frac{\omega +\varsigma}{2}-\varkappa )}\mathcal{F}(\varkappa )\,d \mathcal{F}( \varkappa ) \\ &\qquad{} + \biggl(\curlyvee _{\lambda} \biggl(\alpha , \varkappa - \frac{\omega +\varsigma}{2} \biggr)+ \frac{\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr)\mathcal{F}(\varkappa )\bigg|_{\frac{\omega +\varsigma}{2}}^{ \varsigma} \\ &\qquad{} - \int _{\frac{\omega +\varsigma}{2}}^{\varsigma} \biggl( \varkappa -\frac{\omega +\varsigma}{2} \biggr)^{\alpha -1}e^{- \lambda (\varkappa -\frac{\omega +\varsigma}{2} )} \mathcal{F}(\varkappa )\,d\mathcal{F}( \varkappa ) \\ &\quad =- \frac{\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr)+ \frac{4\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \mathcal{F}(\omega )-{\Gamma (\alpha )}\mathcal{J}_{\omega +}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \\ &\qquad{} + \frac{4\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \mathcal{F}(\varsigma )- \frac{\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr)-{\Gamma ( \alpha )} \mathcal{J}_{\varsigma -}^{(\alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \\ &\quad = \frac{2\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} -{ \Gamma (\alpha )} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{ \varsigma -}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr) \biggr]. \end{aligned}$$
That is,
$$\begin{aligned} &\frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \\ &\quad = \frac{1}{2\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )} \int _{\omega}^{\varsigma} \mathsf{T}_{\alpha}(\varkappa )\,d \mathcal{F}(\varkappa ). \end{aligned}$$
It is a well-established fact that if \(\mathsf{g}, \mathcal{F}:[\omega , \varsigma ] \rightarrow \mathbb{R}\) satisfy the conditions where g is continuous on \([\omega , \varsigma ]\) and \(\mathcal{F}\) is of bounded variation on \([\omega , \varsigma ]\), then \(\int _{\omega}^{\varsigma }\mathsf{g}(\xi ) \,d\mathcal{F}(\xi )\) exists and
$$\begin{aligned} \biggl\vert \int _{\omega}^{\varsigma} \mathsf{g}(\xi ) \,d\mathcal{F}(\xi ) \biggr\vert \leq \sup_{\xi \in [\omega , \varsigma ]} \bigl\vert \mathsf{g}(\xi ) \bigr\vert \bigvee_{\omega}^{\varsigma}(\mathcal{F}). \end{aligned}$$
(15)
However, employing (15), we have
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2\mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr] \\ &\qquad{} - \frac{\Gamma (\alpha )}{2\curlyvee _{\lambda}(\alpha , \frac{\varsigma -\omega}{2})} \biggl[\mathcal{J}_{\omega +}^{(\alpha , \lambda )} \mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+\mathcal{J}_{\varsigma -}^{( \alpha , \lambda )} \mathcal{F} \biggl(\frac{\omega +\varsigma}{2} \biggr) \biggr] \biggr\vert \\ &\quad \leq \frac{1}{2\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega}{2})} \biggl\vert \int _{\omega }^{\varsigma }\mathsf{T}_{\alpha }( \varkappa )\,d \mathcal{F}(\varkappa ) \biggr\vert \\ &\quad \leq \frac{1}{2\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega }{2})} \biggl[ \biggl\vert \int _{\omega }^{\frac{\omega +\varsigma }{2}} \biggl(\curlyvee _{\lambda} \biggl(\alpha , \frac{\omega +\varsigma}{2}-\varkappa \biggr) + \frac{\curlyvee _{\lambda} (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr) \,d \mathcal{F}(\varkappa ) \biggr\vert \\ &\qquad{} + \biggl\vert \int _{\frac{\omega +\varsigma }{2}}^{ \varsigma } \biggl( \curlyvee _{\lambda } \biggl(\alpha ,\varkappa - \frac{\omega +\varsigma}{2} \biggr) + \frac{\curlyvee _{\lambda } (\alpha ,\frac{\varsigma -\omega}{2} )}{3} \biggr) \,d \mathcal{F}(\varkappa ) \biggr\vert \biggr] \\ &\quad \leq \frac{1}{2\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega }{2})} \Biggl[ \sup_{\varkappa \in [ \omega , \frac{\omega +\varsigma }{2} ] } \biggl\vert \curlyvee _{ \lambda } \biggl(\alpha , \frac{\omega +\varsigma}{2}-\varkappa \biggr)+ \frac{\curlyvee _{\lambda } (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr\vert \bigvee_{\omega }^{\frac{\omega +\varsigma }{2}}( \mathcal{F}) \\ &\qquad{} +\sup_{\varkappa \in [ \frac{\omega +\varsigma }{2}, \varsigma ] } \biggl\vert \curlyvee _{\lambda } \biggl(\alpha , \varkappa -\frac{\omega +\varsigma}{2} \biggr) + \frac{\curlyvee _{\lambda } (\alpha ,\frac{\varsigma -\omega}{2} )}{3} \biggr\vert \bigvee_{\frac{\omega +\varsigma }{2}}^{\varsigma }(\mathcal{F}) \Biggr] \\ &\quad \leq \frac{1}{2\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega }{2})} \Biggl[ \max \Biggl\{ \frac{\curlyvee _{\lambda } (\alpha , \frac{\varsigma -\omega}{2} )}{3}, \biggl\vert \curlyvee _{\lambda } \biggl(\alpha , \frac{\varsigma -\omega}{2} \biggr)+ \frac{\curlyvee _{\lambda } (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr\vert \bigvee_{\omega }^{\frac{\omega +\varsigma }{2}}( \mathcal{F}) \Biggr\} \\ & \qquad{} +\max \Biggl\{ \frac{\curlyvee _{\lambda } (\alpha , \frac{\varsigma -\omega}{2} )}{3}, \biggl\vert \curlyvee _{\lambda } \biggl(\alpha , \frac{\varsigma -\omega}{2} \biggr)+ \frac{\curlyvee _{\lambda } (\alpha , \frac{\varsigma -\omega}{2} )}{3} \biggr\vert \bigvee_{\frac{\omega +\varsigma }{2}}^{\varsigma }(\mathcal{F}) \Biggr\} \Biggr] \\ & \quad \leq \frac{1}{2\curlyvee _{\lambda }(\alpha ,\frac{\varsigma -\omega}{2})} \biggl[\max \biggl\{ \frac{\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega}{2})}{3}, \biggl\vert \curlyvee _{\lambda } \biggl( \alpha , \frac{\varsigma -\omega}{2} \biggr)+ \frac{\curlyvee _{\lambda }(\alpha , \frac{\varsigma -\omega}{2})}{3} \biggr\vert \biggr\} \biggr] \bigvee _{\omega }^{\varsigma }( \mathcal{F}). \end{aligned}$$
Hence, the proof is finalized. □
Remark 14
Setting \(\lambda =0\), in Theorem 6, we find
$$\begin{aligned} & \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{\Gamma (\alpha +1)}{2(\varsigma -\omega )^{\alpha}} \bigl[J_{ \varsigma -}^{\alpha} \mathcal{F}(\omega )+J_{\omega +}^{\alpha} \mathcal{F}(\varsigma ) \bigr] \biggr\vert \leq \frac{2}{3} \bigvee_{ \omega}^{\varsigma}( \mathcal{F}), \end{aligned}$$
which is obtained in [9, Theorem 6].
Remark 15
Assume \(\lambda =0\) and \(\alpha =1\) in Theorem 6, this yields
$$\begin{aligned} \biggl\vert \frac{1}{3} \biggl[2 \mathcal{F}(\omega )-\mathcal{F} \biggl( \frac{\omega +\varsigma}{2} \biggr)+2 \mathcal{F}(\varsigma ) \biggr]- \frac{1}{\varsigma -\omega} \int _{\omega}^{\varsigma}\mathcal{F}(\xi )\,d \xi \biggr\vert \leq \frac{2}{3} \bigvee_{\omega}^{\varsigma}( \mathcal{F}), \end{aligned}$$
which is proposed in [3].