Skip to main content

On a class of a coupled nonlinear viscoelastic Kirchhoff equations variable-exponents: global existence, blow up, growth and decay of solutions

Abstract

In this work, we consider a quasilinear system of viscoelastic equations with dispersion, source, and variable exponents. Under suitable assumptions on the initial data and the relaxation functions, we obtained that the solution of the system is global and bounded. Next, the blow-up is proved with negative initial energy. After that, the exponential growth of solutions is showed with positive initial energy, and by using an integral inequality due to Komornik, the general decay result is obtained in the case of absence of the source term.

1 Introduction

Numerous previous research works in the field of problems with variable exponents acknowledged the role of dampers which appear in many areas of applied sciences. The objective of this work is to provide further insight into the complex interactions that exist between dampers and variable exponents.

In the absence of a variable exponent, the reader can view the following papers related to the topic being studied: the general decay, blow-up, and growth of solutions [1, 35, 79, 1115].

We present our current problem of a quasilinear system of viscoelastic equations with dispersion, source, and variable exponents, where we combine several damping terms into one, of course in the general case (\(\eta \geq 0\)).

In this work, we try to collect many studies in one paper, where the reader has in his hands four different proofs with the methods used under appropriate conditions, while comparing the differences.

First, we list some previous works similar to ours. Whereas in the absence of the source term with (\(\eta =0\)), the study is found in [16], the authors studied the global existence and general decay of solutions for a quasilinear system with degenerate damping terms.

As for the presence of the source and degenerate damping terms in the absence of dispersion term, we mention the work done by the authors in [26], where they obtained global existence of solutions. Then, they proved the general decay result. Finally, they proved the finite time blow-up result of solutions with negative initial energy. For more information in this context, you can see the papers [6, 17, 18, 20, 22, 23].

On the other hand, there are many works that deal with the variable exponent. We mention, for example, our work [24]. In the presence of delay, the authors have demonstrated a nonlinear Kirchhoff-type equation with distributed delay and variable exponents. Under a suitable hypothesis they proved the blow-up of solutions, and by using an integral inequality due to Komornik, they obtained the general decay result. See also [2, 10, 21, 29], and [25], each of which examines a different problem with appropriate conditions.

In this work, we are examining the following problem:

$$\begin{aligned} \textstyle\begin{cases} \vert \Phi _{t} \vert ^{\eta }\Phi _{tt}-\mathcal{T}( \Vert \nabla \Phi \Vert _{2}^{2})\Delta \Phi +\int _{0}^{t}h_{1}(t- \varsigma )\Delta \Phi (\varsigma )\,d\varsigma -\Delta \Phi _{tt}+g_{1}( \Phi _{t}) =f_{1} ( \Phi ,\Psi ), \\ \vert \Psi _{t} \vert ^{\eta }\Psi _{tt}-\mathcal{T}( \Vert \nabla \Psi \Vert _{2}^{2})\Delta \Psi +\int _{0}^{t}h_{2}(t- \varsigma )\Delta \Psi (\varsigma )\,d\varsigma -\Delta \Psi _{tt}+g_{2}( \Psi _{t}) =f_{2} ( \Phi ,\Psi ), \\ \Phi ( x,t ) =\Psi ( x,t ) =0, \quad ( x,t ) \in \partial \Omega \times ( 0,T ) , \\ \Phi ( x,0 ) =\Phi _{0} ( x ) ,\qquad \Phi _{t} ( x,0 ) =\Phi _{1} ( x ) , \quad x\in \Omega , \\ \Psi ( x,0 ) =\Psi _{0} ( x ) ,\qquad \Psi _{t} ( x,0 ) =\Psi _{1} ( x ) , \quad x\in \Omega , \end{cases}\displaystyle \end{aligned}$$
(1.1)

where

$$ g_{1}(\Phi _{t}):=\zeta _{1} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)-2} \Phi _{t}(t), \qquad g_{2}(\Psi _{t}):=\zeta _{3} \bigl\vert \Psi _{t}(t) \bigr\vert ^{s(x)-2} \Psi _{t}(t), $$

in which \(\eta \geq 0\) for \(N=1,2\) and \(0<\eta \leq \frac{2}{N-2}\) for \(N\geq 3\), and \(h_{i}(\cdot):R^{+}\rightarrow R^{+}\) \((i=1,2)\) symbolizes the relaxation function, \(-\Delta _{tt} ( \cdot )\) symbolizes the dispersion term, and \(\mathcal{T}(\sigma )\) is a positive locally Lipschitz function for \(\gamma ,\sigma \geq 0\) such that \(\mathcal{T}(\sigma )=\alpha _{1}+\alpha _{2}\sigma ^{\gamma}\), and

$$ \textstyle\begin{cases} f_{1}(\Phi ,\Psi )=a_{1} \vert \Phi +\Psi \vert ^{2(q(x)+1)}(\Phi + \Psi )+b_{1} \vert \Phi \vert ^{q(x)}.\Phi . \vert \Psi \vert ^{q(x)+2}, \\ f_{2}(\Phi ,\Psi )=a_{1} \vert \Phi +\Psi \vert ^{2(q(x)+1)}(\Phi + \Psi )+b_{1} \vert \Psi \vert ^{q(x)}.\Psi . \vert v \vert ^{q(x)+2}. \end{cases} $$
(1.2)

In this context, we consider \(q(\cdot)\), \(m(\cdot)\), and \(s(\cdot)\) are variable exponents defined as measurable functions on Ω̅ in the following manner:

$$\begin{aligned} &1\leq q^{-}\leq q(x)\leq q^{+}\leq q^{*}, \\ &2\leq m^{-}\leq m(x)\leq m^{+}\leq m^{*}, \\ &2\leq s^{-}\leq s(x)\leq s^{+}\leq s^{*}, \end{aligned}$$
(1.3)

where

$$\begin{aligned} &q^{-}= \inf_{x\in \overline{\Omega}} q(x),\qquad m^{-}= \inf_{x\in \overline{\Omega}} m(x),\qquad s^{-}= \inf _{x\in \overline{\Omega}} s(x), \\ &q^{+}= \sup_{x\in \overline{\Omega}} q(x), \qquad m^{+}= \sup_{x\in \overline{\Omega}} m(x),\qquad s^{+}= \sup_{x\in \overline{\Omega}} s(x), \end{aligned}$$
(1.4)

with

$$ \max \bigl\{ m^{+},s^{+}\bigr\} \leq 2q^{-}+1 $$
(1.5)

and

$$ m^{*},s^{*}=\frac{2(n-1)}{n-2} \quad \text{if } n\geq 3. $$
(1.6)

As for the division of the paper, it is as follows. In the following section, we present the hypotheses, concepts, and lemmas essential for our study. In Sect. 3, we obtain global existence of the solution of (1.1). Next, Sects. 4 and 5 are dedicated to proving the blow-up result, followed by the exponential growth of solutions. In Sect. 6, we establish the general decay when \(f_{1}=f_{2}=0\). Finally, we present the general conclusion in the last section.

2 Preliminaries

In this section, we give some related theory and put suitable hypotheses for the proof of our result.

(H1) Put a nonincreasing and differentiable function \(h_{i}: \mathbb{R}_{+}\rightarrow \mathbb{R}_{+}\) where

$$\begin{aligned} &h_{i}(t)\geq 0 , \quad 1- \int _{0}^{\infty }h_{i} ( \varsigma ) \,d\varsigma =l_{i}>0, \quad i=1,2. \end{aligned}$$
(2.1)

(H2) One can find \(\xi _{1},\xi _{2}>0\) in a way that

$$\begin{aligned} &h_{i}^{\prime } ( t ) \leq -\xi _{i} h_{i} ( t ) , \quad t\geq 0, i=1,2. \end{aligned}$$
(2.2)

Lemma 2.1

There exists \(F(\Phi , \Psi )\) defined by

$$\begin{aligned} F(\Phi ,\Psi ) =&\frac{1}{2(q(x)+2)} \bigl[\Phi f_{1}(\Phi ,\Psi )+ \Phi f_{2}(\Phi ,\Psi ) \bigr] \\ =&\frac{1}{2(q(x)+2)} \bigl[a_{1} \vert \Phi +\Psi \vert ^{2(q(x)+2)}+2 b_{1} \vert \Phi .\Psi \vert ^{q(x)+2} \bigr] \geq 0, \end{aligned}$$

where

$$\begin{aligned} \frac{\partial F}{\partial \Phi}=f_{1}(\Phi ,\Psi ), \qquad \frac{\partial F}{\partial \Psi}=f_{2}(\Phi ,\Psi ). \end{aligned}$$

For simplification, we put \(\alpha _{1}=\alpha _{2}=1\) and \(a_{1}=b_{1} = 1 \) for convenience.

Lemma 2.2

[6] One can find \(c_{0}>0\) and \(c_{1}>0\) in a way that

$$\begin{aligned} \frac{c_{0}}{2(q(x)+2)} \bigl( \vert \Phi \vert ^{2(q(x)+2)}+ \vert \Psi \vert ^{2(q(x)+2)} \bigr) \leq& F(\Phi ,\Psi ) \\ \leq& \frac{c_{1}}{2(q(x)+2)} \bigl( \vert \Phi \vert ^{2(q(x)+2)}+ \vert \Psi \vert ^{2(q(x)+2)} \bigr). \end{aligned}$$
(2.3)

Now, we consider \(q:\Omega \rightarrow [1,\infty )\) is a measurable function.

After, introducing the Lebesgue space with a variable exponent \(q(\cdot)\) as follows:

$$ L^{q(\cdot)}(\Omega )= \biggl\{ \Phi :\Omega \rightarrow \mathbb{R}; \text{ measurable in } \Omega : \int _{\Omega} \vert \Phi \vert ^{q(\cdot)}\,dx< \infty \biggr\} , $$

we give the norm as follows:

$$ \Vert \Phi \Vert _{q(\cdot)}=\inf \biggl\{ \lambda >0: \int _{\Omega} \biggl\vert \frac{\Phi}{\lambda} \biggr\vert ^{q(x)}\,dx\leq 1 \biggr\} . $$

This space is fitted with the standard norm, \(L^{q(\cdot)}(\Omega )\) is a Banach space. After that, we introduce the variable exponent Sobolev space \(W^{1,q(\cdot)}(\Omega )\) as follows:

$$ W^{1,q(\cdot)}(\Omega )= \bigl\{ \Phi \in L^{q(\cdot)}(\Omega ); \nabla \Phi \text{ exists and } \vert \nabla \Phi \vert \in L^{q(\cdot)}(\Omega ) \bigr\} , $$

with the norm given by

$$ \Vert \Phi \Vert _{1,q(\cdot)}= \Vert \Phi \Vert _{q(\cdot)}+ \Vert \nabla \Phi \Vert _{q(\cdot)}, $$

\(W^{1,q(\cdot)}(\Omega )\) is a Banach space, and the closure of \(C^{\infty}_{0}(\Omega )\) is given by \(W^{1,q(\cdot)}_{0}(\Omega )\).

For \(\Phi \in W^{1,q(\cdot)}_{0}(\Omega )\), we give the equivalent norm

$$ \Vert \Phi \Vert _{1,q(\cdot)}= \Vert \nabla \Phi \Vert _{q(\cdot)}. $$

\(W^{-1,q'(\cdot)}_{0}(\Omega )\) denotes the dual of \(W^{1,q(\cdot)}_{0}(\Omega )\) in which \(\frac{1}{q(\cdot)}+\frac{1}{q'(\cdot)}=1\).

Next, we offer the continuity condition of Log-Hölder:

$$\begin{aligned} \bigl\vert p(x)-p(y) \bigr\vert \leq -\frac{M_{1}}{\log \vert x-y \vert } \quad \text{and} \quad \bigl\vert m(x)-m(y) \bigr\vert \leq - \frac{M_{2}}{\log \vert x-y \vert } \end{aligned}$$
(2.4)

for all \(x,y\in \Omega \), where \(M_{1},M_{2}>0\) and \(0<\varrho <1\) with \(\vert x-y\vert <\varrho \).

Theorem 2.3

Assume that (2.1)(2.2) hold. Then, for any \((\Phi _{0},\Phi _{1},\Psi _{0},\Psi _{1})\in \mathcal{H}\), (1.1) has a unique solution for some \(T>0\):

$$\begin{aligned} &\Phi ,\Psi \in C\bigl([0,T]; H^{2}(\Omega )\cap H^{1}_{0}(\Omega )\bigr), \\ &\Phi _{t}\in C\bigl([0,T]; H^{1}_{0}( \Omega )\bigr)\cap L^{m(x)}\bigl(\Omega \times (0,T)\bigr), \\ &\Psi _{t}\in C\bigl([0,T]; H^{1}_{0}( \Omega )\bigr)\cap L^{s(x)}\bigl(\Omega \times (0,T)\bigr), \end{aligned}$$

where

$$ \mathcal{H}= H^{1}_{0}(\Omega )\times L^{2}(\Omega )\times H^{1}_{0}( \Omega ) \times L^{2}(\Omega ). $$

Now, we define the functional of energy.

Lemma 2.4

Let (2.1)(2.2) be satisfied and \((\Phi ,\Psi )\) be a solution of (1.1). Then the functional \(\mathcal{E}(t)\) is nonincreasing and defined as follows:

$$\begin{aligned} \mathcal{E}(t) =&\frac{1}{\eta +2} \bigl[ \Vert \Phi _{t} \Vert _{\eta +2}^{ \eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2} \bigr]+\frac{1}{2} \bigl[ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr] \\ &{}+\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2( \gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr] \\ &{}+\frac{1}{2} \biggl[ \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}+\frac{1}{2} \bigl[(h_{1}o\nabla \Phi ) (t)+(h_{2}o\nabla \Psi ) (t) \bigr]- \int _{\Omega}F(\Phi ,\Psi )\,dx \end{aligned}$$
(2.5)

fulfills

$$\begin{aligned} \mathcal{E}'(t) =& \frac{1}{2} \bigl[ \bigl(h'_{1}o\nabla \Phi \bigr) (t)+ \bigl(h'_{2}o \nabla \Psi \bigr) (t) \bigr]- \frac{1}{2} \bigl[h_{1}(t) \Vert \nabla \Phi \Vert _{2}^{2}+h_{2}(t) \Vert \nabla \Psi \Vert _{2}^{2} \bigr] \\ &{}-\zeta _{1} \int _{\Omega} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)}\,dx-\zeta _{3} \int _{\Omega} \bigl\vert \Psi _{t}(t) \bigr\vert ^{s(x)}\,dx \\ \leq & 0. \end{aligned}$$
(2.6)

Proof

By multiplying (1.1)1, (1.1)2 by \(\Phi _{t}\), \(\Psi _{t}\) and integrating over Ω, we have

$$\begin{aligned} & \frac {d}{dt} \biggl\{ \frac{1}{\eta +2} \Vert \Phi _{t} \Vert _{\eta +2}^{ \eta +2}+\frac{1}{\eta +2} \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}+ \frac{1}{2} \Vert \nabla \Phi _{t} \Vert _{2}^{2}+\frac{1}{2} \Vert \nabla \Psi _{t} \Vert _{2}^{2} \\ &\qquad +\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2( \gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr] \\ &\qquad +\frac{1}{2} \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \frac{1}{2} \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \\ &\qquad +\frac{1}{2}(h_{1}o\nabla \Phi ) (t)+ \frac{1}{2}(h_{2}o\nabla \Psi ) (t)- \int _{\Omega}F(\Phi ,\Psi )\,dx \biggr\} \\ &\quad =-\zeta _{1} \int _{\Omega} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx-\zeta _{3} \int _{\Omega} \bigl\vert \Psi _{t}(t) \bigr\vert ^{s(x)} \,dx \\ &\qquad +\frac{1}{2}\bigl(h_{1}'o\nabla \Phi \bigr)-\frac{1}{2}h_{1}(t) \Vert \nabla \Phi \Vert _{2}^{2}+\frac{1}{2}\bigl(h_{2}'o \nabla \Psi \bigr)-\frac{1}{2}h_{2}(t) \Vert \nabla \Psi \Vert _{2}^{2}. \end{aligned}$$
(2.7)

Hence, we find (2.5) and (2.6). Then, we have \(\mathcal{E}\) is a nonincreasing function. This ends the proof. □

3 Global existence

Now, we show that the solution of (1.1) is uniformly bounded and global in time. For this purpose, we set

$$\begin{aligned} &I(t)= \biggl[ \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &\hphantom{I(t)}\quad +\frac{1}{(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr] \\ &\hphantom{I(t)}\quad + \bigl[(h_{1}o\nabla \Phi ) (t)+(h_{2}o\nabla \Psi ) (t) \bigr]-2\bigl(q^{-}+2\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx, \end{aligned}$$
(3.1)
$$\begin{aligned} &J(t)=\frac{1}{2} \biggl[ \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &\hphantom{J(t)}\quad +\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2( \gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr] \\ &\hphantom{J(t)}\quad +\frac{1}{2} \bigl[(h_{1}o\nabla \Phi ) (t)+(h_{2}o\nabla \Psi ) (t) \bigr]- \int _{\Omega}F(\Phi ,\Psi )\,dx. \end{aligned}$$
(3.2)

Hence,

$$ \mathcal{E}(t)=J(t)+\frac{1}{\eta +2} \bigl[ \Vert \Phi _{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2} \bigr]+ \frac{1}{2} \bigl[ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr]. $$
(3.3)

Lemma 3.1

Suppose that the initial data \((\Phi _{0},\Phi _{1}),(\Psi _{0},\Psi _{1}) \in (H^{1}(\Omega ) \times L^{2}(\Omega ))^{2}\) satisfy \(I(0)>0\) and

$$ \widehat{\xi}:=\frac{c_{1}C_{*}(p^{+})}{l} \biggl( \frac{(2p^{-}+4)\mathcal{E}(0)}{l(p^{-}+1)} \biggr)^{p^{+}+1}< 1. $$
(3.4)

Then \(I(t)>0\) for any \(t\in [0, T ]\).

Proof

Since \(I(0)>0\), we deduce by continuity that there exists \(0< T^{*}\leq T\) such that \(I(t)\geq 0\) for all \(t\in [0, T^{*}]\).

This implies that \(\forall t\in [0, T^{*}]\),

$$\begin{aligned} J(t) \geq &\frac{q^{-}+1}{2(q^{-}+2)} \biggl[ \biggl(1- \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}+\frac{q^{-}+1}{2(q^{-}+2)} \biggl\{ \frac{1}{(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)} \bigr] \biggr\} \\ &{}+\frac{q^{-}+1}{2(q^{-}+2)} \bigl[(h_{1}o\nabla \Phi ) (t)+(h_{2}o \nabla \Psi ) (t) \bigr]+\frac{1}{2(q^{-}+2)}I(t) \\ \geq &\frac{q^{-}+1}{2(q^{-}+2)} \biggl\{ l_{1} \Vert \nabla \Phi \Vert _{2}^{2}+l_{2} \Vert \nabla \Psi \Vert _{2}^{2}+\frac{1}{(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)} \bigr] \\ & {} +(h_{1}o\nabla \Phi ) (t)+(h_{2}o\nabla \Psi ) (t) \biggr\} \\ \geq &\frac{q^{-}+1}{2(q^{-}+2)} \bigl(l_{1} \Vert \nabla \Phi \Vert _{2}^{2}+l_{2} \Vert \nabla \Psi \Vert _{2}^{2} \bigr). \end{aligned}$$
(3.5)

Hence, by (2.6) and (3.3), we get

$$\begin{aligned} \bigl(l_{1} \Vert \nabla \Phi \Vert _{2}^{2}+l_{2} \Vert \nabla \Psi \Vert _{2}^{2} \bigr) \leq & \frac{2(q^{-}+2)}{q^{-}+1}J(t)\leq \frac{2(q^{-}+2)}{q^{-}+1}\mathcal{E}(t) \\ \leq &\frac{2(q^{-}+2)}{q^{-}+1}\mathcal{E}(0), \quad \forall t\in \bigl[0, T^{*}\bigr] . \end{aligned}$$
(3.6)

On the other hand, by using (2.3), we get

$$\begin{aligned} 2\bigl(q^{-}+2\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx < &c_{1} \int _{\Omega} \bigl( \vert \Phi \vert ^{2p^{+}+4)}+ \vert \Psi \vert ^{2p^{+}+4)} \bigr)\,dx. \end{aligned}$$
(3.7)

Then the embedding \(H^{1}_{0}(\Omega ))\hookrightarrow L^{2p^{+}+4}(\Omega )\) yields

$$\begin{aligned} \int _{\Omega} \bigl( \vert \Phi \vert ^{2p^{+}+4}+ \vert \Psi \vert ^{2p^{+}+4)} \bigr) \,dx \leq &C_{*} \bigl(p^{+}\bigr) \bigl( \bigl\Vert \nabla \Phi (t) \bigr\Vert _{2}^{2p^{+}+4}+ \bigl\Vert \nabla \Psi (t) \bigr\Vert _{2}^{2p^{+}+4} \bigr) \\ =&C_{*}\bigl(p^{+}\bigr) \bigl\{ \bigl\Vert \nabla \Phi (t) \bigr\Vert _{2}^{2} \bigl\Vert \nabla \Phi (t) \bigr\Vert _{2}^{2p^{+}+2} \\ & {} + \bigl\Vert \nabla \Psi (t) \bigr\Vert _{2}^{2} \bigl\Vert \nabla \Psi (t) \bigr\Vert _{2}^{2p^{+}+2} \bigr\} . \end{aligned}$$
(3.8)

By (3.6), we find

$$\begin{aligned} 2\bigl(q^{-}+2\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx&< c_{1}C_{*} \bigl(p^{+}\bigr) \biggl( \frac{2(p^{-}+2)\mathcal{E}(0)}{l_{1}( p^{-}+1)} \biggr)^{p^{+}+1} \bigl\Vert \nabla \Phi (t) \bigr\Vert _{2}^{2} \\ &\quad +c_{1}C_{*}\bigl(p^{+}\bigr) \biggl( \frac{2(p^{-}+2)\mathcal{E}(0)}{l_{2}(p^{-}+1)} \biggr)^{p^{+}+1} \bigl\Vert \nabla \Psi (t) \bigr\Vert _{2}^{2} \\ & < \widehat{\xi} \bigl(l_{1} \bigl\Vert \nabla \Phi (t) \bigr\Vert _{2}^{2}+l_{2} \bigl\Vert \nabla \Psi (t) \bigr\Vert _{2}^{2} \bigr), \end{aligned}$$
(3.9)

where

$$ \widehat{\xi}=c_{1}C_{*}\bigl(p^{+} \bigr)l^{-(p^{+}+2)} \biggl( \frac{(2p^{-}+4)\mathcal{E}(0)}{(p^{-}+1)} \biggr)^{p^{+}+1}, $$

the embedding constant \(C_{*}(p^{+})\) and \(l=\min (l_{1},l_{2})\).

By (3.4) and (2.1), we obtain

$$\begin{aligned} 2\bigl(q^{-}+2\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx < &\xi \biggl(1- \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggr) \bigl\Vert \nabla \Phi (t) \bigr\Vert _{2}^{2} \\ &{}+ \widehat{\xi} \biggl(1- \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \bigl\Vert \nabla \Psi (t) \bigr\Vert _{2}^{2}. \end{aligned}$$
(3.10)

According to (3.1),(3.6), and (3.10), we get

$$\begin{aligned} I(t) >& (1-\widehat{\xi}) \biggl\{ \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \bigl\Vert \nabla \Phi (t) \bigr\Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \bigl\Vert \nabla \Psi (t) \bigr\Vert _{2}^{2} \biggr\} \\ >&0, \quad \forall t\in \bigl[0,T^{*}\bigr]. \end{aligned}$$
(3.11)

By repeating this procedure, \(T^{*}\) can be extended to T. This completes the proof. □

Remark 3.2

Under the conditions of Lemma 3.1, we have \(J(t)\geq 0\), and consequently \(\mathcal{E}(t)\geq 0\), \(\forall t\in [0,T]\). Hence, by (3.3) and (3.5), we find

$$\begin{aligned} &\bigl\Vert \Phi _{t}(t) \bigr\Vert _{\eta +2}^{\eta +2}+ \bigl\Vert \Psi _{t}(t) \bigr\Vert _{ \eta +2}^{\eta +2} \leq (\eta +2)\mathcal{E}(0), \\ &\bigl\Vert \nabla \Phi _{t}(t) \bigr\Vert _{2}^{2}+ \bigl\Vert \nabla \Psi _{t}(t) \bigr\Vert _{2}^{2} \leq 2 \mathcal{E}(0), \\ &\Vert \nabla \Phi \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)}\leq \frac{2q^{-}+4}{q^{-}+1}(\gamma +1)\mathcal{E}(0). \end{aligned}$$
(3.12)

Theorem 3.3

Suppose that the hypotheses of Lemma 3.1hold, then the solution of (1.1) is global and bounded.

Proof

It suffices to show that

$$\begin{aligned} \bigl\Vert (\Phi ,\Psi ) \bigr\Vert _{H} :=& \Vert \Phi _{t} \Vert ^{\eta +2}_{ \eta +2}+ \Vert \Psi _{t} \Vert ^{\eta +2}_{\eta +2}+ \Vert \nabla \Phi \Vert ^{2}_{2}+ \Vert \nabla \Psi \Vert ^{2}_{2} \\ &{}+ \Vert \nabla \Phi _{t} \Vert ^{2}_{2}+ \Vert \nabla \Psi _{t} \Vert ^{2}_{2} \end{aligned}$$

is bounded independently of t. To achieve this, we use (3.12) to get

$$\begin{aligned} \mathcal{E}(0) >&\mathcal{E}(t)=J(t)+\frac{1}{\eta +2} \bigl[ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{ \eta +2} \bigr]+ \frac{1}{2} \bigl[ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr] \\ \geq &\frac{q^{-}+1}{2(q^{-}+2)} \bigl(l_{1} \Vert \nabla \Phi \Vert _{2}^{2}+l_{2} \Vert \nabla \Psi \Vert _{2}^{2} \bigr)+\frac{1}{\eta +2} \bigl[ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{ \eta +2} \bigr] \\ &{}+\frac{1}{2} \bigl[ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr]. \end{aligned}$$
(3.13)

Therefore,

$$ \bigl\Vert (\Phi ,\Psi ) \bigr\Vert _{H}\leq C\mathcal{E}(0), $$

where \(C(q^{-},\eta ,l_{1},l_{2})\) is a positive constant. □

4 Blow-up

Here, we establish the blow-up result for the solution of (1.1) with negative initial energy. Initially, we introduce the following functional:

$$\begin{aligned} \mathbb{H}(t)=-\mathcal{E}(t) =&-\frac{1}{\eta +2} \bigl[ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2} \bigr]- \frac{1}{2} \bigl[ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr] \\ &{}-\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2( \gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr] \\ &{}-\frac{1}{2} \biggl[ \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}-\frac{1}{2} \bigl[(h_{1}o\nabla \Phi ) (t)+(h_{2}o\nabla \Psi ) (t) \bigr]+ \int _{\Omega}F(\Phi ,\Psi )\,dx. \end{aligned}$$
(4.1)

Theorem 4.1

Assume that (2.1)(2.2) and \(\mathcal{E}(0)<0\) hold. Then the solution of (1.1) blows up in finite time.

Proof

From (2.5), the following can be written:

$$ \mathcal{E}(t)\leq \mathcal{E}(0)\leq 0. $$
(4.2)

Therefore

$$\begin{aligned} \mathbb{H}'(t)=-\mathcal{E}'(t) \geq & \zeta _{1} \int _{\Omega} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)}\,dx-\zeta _{3} \int _{\Omega} \bigl\vert \Psi _{t}(t) \bigr\vert ^{s(x)}\,dx, \end{aligned}$$
(4.3)

hence

$$\begin{aligned} \mathbb{H}'(t) \geq &\zeta _{1} \int _{\Omega} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)}\,dx \geq 0 \\ \mathbb{H}'(t) \geq &\zeta _{3} \int _{\Omega} \bigl\vert \Psi _{t}(t) \bigr\vert ^{s(x)}\,dx \geq 0. \end{aligned}$$
(4.4)

By (4.1) and (2.3), we have

$$\begin{aligned} 0\leq \mathbb{H}(0)\leq \mathbb{H}(t) \leq & \int _{\Omega}F(\Phi , \Psi )\,dx \\ \leq & \int _{\Omega}\frac{c_{1}}{2(q(x)+2)} \bigl( \vert \Phi \vert ^{2(q(x)+2)}+ \vert \Psi \vert ^{2(q(x)+2)} \bigr)\,dx \\ \leq &\frac{c_{1}}{2(q^{-}+2)}\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr), \end{aligned}$$
(4.5)

where

$$ \varrho (\varphi )=\varrho _{q(\cdot)}(\varphi )= \int _{\Omega} \vert \varphi \vert ^{2(q(x)+2)}\,dx. $$

Lemma 4.2

Let \(\exists c>0\) in a way that any solution of (1.1) satisfies

$$ \Vert \Phi \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)}+ \Vert \Psi \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq c\bigl(\varrho (\Phi )+\varrho (\Psi ) \bigr). $$
(4.6)

Proof

Let

$$ \Omega _{1}=\bigl\{ x\in \Omega : \bigl\vert \Phi (x,t) \bigr\vert \geq 1\bigr\} , \qquad \Omega _{2}=\bigl\{ x\in \Omega : \bigl\vert \Phi (x,t) \bigr\vert < 1\bigr\} , $$
(4.7)

we have

$$\begin{aligned} \varrho (\Phi ) =& \int _{\Omega _{1}} \vert \Phi \vert ^{2(q(x)+2)}\,dx+ \int _{\Omega _{2}} \vert \Phi \vert ^{2(q(x)+2)}\,dx \\ \geq & \int _{\Omega _{1}} \vert \Phi \vert ^{2(q^{-}+2)}\,dx+ \int _{ \Omega _{2}} \vert \Phi \vert ^{2(q^{+}+2)}\,dx \\ \geq & \int _{\Omega _{1}} \vert \Phi \vert ^{2(q^{-}+2)}\,dx+c \biggl( \int _{ \Omega _{2}} \vert \Phi \vert ^{2(q^{-}+2)}\,dx \biggr)^{ \frac{2(q^{+}+2)}{2(q^{-}+2)}}, \end{aligned}$$
(4.8)

then

$$\begin{aligned} &\varrho (\Phi )\geq \int _{\Omega _{1}} \vert \Phi \vert ^{2(q^{-}+2)}\,dx \\ &\biggl(\frac{\varrho (\Phi )}{c}\biggr)^{\frac{2(q^{-}+2)}{2(q^{+}+2)}}\geq \int _{\Omega _{1}} \vert \Phi \vert ^{2(q^{-}+2)}\,dx. \end{aligned}$$
(4.9)

Hence, we get

$$\begin{aligned} \Vert \Phi \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq &\varrho (\Phi )+c \bigl( \varrho (\Phi )\bigr)^{\frac{2(q^{-}+2)}{2(q^{+}+2)}} \\ \leq &\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+c\bigl(\varrho (\Phi )+ \varrho ( \Psi )\bigr)^{\frac{2(q^{-}+2)}{2(q^{+}+2)}} \\ \leq &\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)\bigl[1+c\bigl(\varrho (\Phi )+\varrho ( \Psi )\bigr)^{\frac{2(q^{-}+2)}{2(q^{+}+2)}-1}\bigr]. \end{aligned}$$
(4.10)

According to (4.5), we have

$$\begin{aligned} \frac{\mathbb{H}(0)}{c}\leq \bigl(\varrho (\Phi )+\varrho (\Psi )\bigr). \end{aligned}$$

Therefore,

$$\begin{aligned} \Vert \Phi \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq &\bigl(\varrho ( \Phi )+ \varrho (\Psi )\bigr)\bigl[1+c\bigl(\mathbb{H}(0)\bigr)^{\frac{2(q^{-}+2)}{2(q^{+}+2)}-1} \bigr]. \end{aligned}$$

Hence

$$ \Vert \Phi \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq c\bigl(\varrho ( \Phi )+ \varrho (\Psi )\bigr). $$
(4.11)

Using the same method, we find

$$ \Vert \Psi \Vert ^{2(q^{-}+2)}_{2(q^{-}+2)} \leq c\bigl(\varrho ( \Phi )+ \varrho (\Psi )\bigr). $$
(4.12)

By combining the previous two inequalities (4.11) and (4.12), we get the result we want (4.6). □

Corollary 4.3

$$\begin{aligned} & \int _{\Omega} \vert \Phi \vert ^{m(x)}\,dx\leq c \bigl(\bigl(\varrho (\Phi )+ \varrho (\Psi )\bigr)^{m^{-}/2(q^{-}+2)}+\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{m^{+}/2(q^{-}+2)} \bigr), \\ & \int _{\Omega} \vert \Psi \vert ^{s(y)}\,dy\leq c \bigl(\bigl(\varrho (\Phi )+ \varrho (\Psi )\bigr)^{s^{-}/2(q^{-}+2)} +\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{s^{+}/2(q^{-}+2)} \bigr). \end{aligned}$$
(4.13)

Proof

By (1.5), we get

$$\begin{aligned} \int _{\Omega} \vert \Phi \vert ^{m(x)}\,dx \leq & \int _{\Omega _{1}} \vert \Phi \vert ^{m^{+}}\,dx+ \int _{\Omega _{2}} \vert \Phi \vert ^{m^{-}}\,dx \\ \leq &c \biggl( \int _{\Omega _{1}} \vert \Phi \vert ^{2(q^{-}+2)}\,dx \biggr)^{\frac{m^{+}}{2(q^{-}+2)}}+c \biggl( \int _{\Omega _{2}} \vert \Phi \vert ^{2(q^{-}+2)}\,dx \biggr)^{\frac{m^{-}}{2(q^{-}+2)}} \\ \leq &c \bigl( \Vert \Phi \Vert ^{m^{+}}_{2(q^{-}+2)}+ \Vert \Phi \Vert ^{m^{-}}_{2(q^{-}+2)} \bigr). \end{aligned}$$
(4.14)

Then, Lemma 4.2 gives (4.13)1. Similarly, we get (4.13)2. □

Here, we introduce the following new functional:

$$\begin{aligned} \mathfrak{D}(t) =&\mathbb{H}^{1-\alpha}(t)+ \frac{\varepsilon}{\eta +1} \int _{\Omega} \bigl[\Phi \vert \Phi _{t} \vert ^{\eta}\Phi _{t}+\Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t} \bigr]\,dx \\ &{}+\varepsilon \int _{\Omega} [\nabla \Phi _{t}\nabla \Phi + \nabla \Psi _{t}\nabla \Psi ]\,dx, \end{aligned}$$
(4.15)

where \(0<\varepsilon \) will be considered later, and take

$$\begin{aligned} 0< \alpha < &\min \biggl\{ \biggl(1-\frac {1}{2(q^{-}+2)}- \frac{1}{\eta +2} \biggr),\frac{1+2\gamma}{4(\gamma +1)}, \frac{2q^{-}+4-m^{-}}{(2q^{-}+4)(m^{+}-1)}, \\ &{} \frac{2q^{-}+4-m^{+}}{(2q^{-}+4)(m^{+}-1)}, \frac{2q^{-}+4-r^{+}}{(2q^{-}+4)(s^{+}-1)}, \frac{2q^{-}+4-s^{-}}{(2q^{-}+4)(s^{+}-1)} \biggr\} < 1. \end{aligned}$$
(4.16)

By multiplying (1.1)1, (1.1)2 by Φ, Ψ and with the help of (4.15), we obtain

$$\begin{aligned} \mathfrak{D}'(t) =&(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\nabla \Phi \int ^{t}_{0}g(t-\varsigma ) \nabla \Phi ( \varsigma )\,d\varsigma \,dx}_{J_{1}} + \underbrace{\varepsilon \int _{\Omega}\nabla \Psi \int ^{t}_{0}h(t-\varsigma ) \nabla \Psi ( \varsigma )\,d\varsigma \,dx}_{J_{2}} \\ &{}- \underbrace{\varepsilon \zeta _{1} \int _{\Omega} \Phi \Phi _{t} \vert \Phi _{t} \vert ^{m(x)-2} \,dx}_{J_{3}}- \underbrace{ \varepsilon \zeta _{3} \int _{\Omega} \Psi \Psi _{t} \vert \Psi _{t} \vert ^{s(x)-2} \,dx}_{J_{4}} \\ &{}-\varepsilon \bigl( \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2}\bigr)-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\bigl(\Phi f_{1}(\Phi ,\Psi )+\Psi f_{2}(\Phi ,\Psi )\bigr)\,dx}_{J_{5}}. \end{aligned}$$

By (2.1), we obtain

$$\begin{aligned} \mathfrak{D}'(t) \geq &(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\nabla \Phi \int ^{t}_{0}h_{1}(t-\varsigma ) \nabla \Phi (\varsigma )\,d\varsigma \,dx}_{J_{1}} + \underbrace{ \varepsilon \int _{\Omega}\nabla \Psi \int ^{t}_{0}h_{2}(t-\varsigma ) \nabla \Psi (\varsigma )\,d\varsigma \,dx}_{J_{2}} \\ &{}- \underbrace{\varepsilon \zeta _{1} \int _{\Omega} \Phi \Phi _{t} \vert \Phi _{t} \vert ^{m(x)-2} \,dx}_{J_{3}}- \underbrace{ \varepsilon \zeta _{3} \int _{\Omega} \Psi \Psi _{t} \vert \Psi _{t} \vert ^{s(x)-2} \,dx}_{J_{4}} \\ &{}-\varepsilon \bigl( \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2}\bigr)-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+\underbrace{\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx}_{J_{5}}. \end{aligned}$$
(4.17)

We have

$$\begin{aligned} &J_{1}=\varepsilon \int _{0}^{t}h_{1}(t-\varsigma ) \,d\varsigma \int _{ \Omega}\nabla \Phi .\bigl(\nabla \Phi (\varsigma )-\nabla \Phi (t)\bigr)\,dx\,d \varsigma +\varepsilon \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \Vert \nabla \Phi \Vert _{2}^{2} \\ &\hphantom{J_{1}}\geq \frac{\varepsilon}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \Vert \nabla \Phi \Vert _{2}^{2}- \frac{\varepsilon}{2}(h_{1}o \nabla \Phi ). \end{aligned}$$
(4.18)
$$\begin{aligned} &J_{2}=\varepsilon \int _{0}^{t}h_{2}(t-\varsigma )\,d \varsigma \int _{ \Omega}\nabla \Psi .\bigl(\nabla \Psi (\varsigma )-\nabla \Psi (t)\bigr)\,dx\,d \varsigma +\varepsilon \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \Vert \nabla \Psi \Vert _{2}^{2} \\ &\hphantom{J_{2}}\geq \frac{\varepsilon}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \Vert \nabla \Psi \Vert _{2}^{2}- \frac{\varepsilon}{2}(h_{2}o \nabla \Psi ). \end{aligned}$$
(4.19)

From (4.17), we find

$$\begin{aligned} \mathfrak{D}'(t) \geq &(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}-\frac{\varepsilon}{2}(h_{1}o\nabla \Phi )-\frac{\varepsilon}{2}(h_{2}o \nabla \Psi )-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+J_{3}+J_{4}+J_{5}. \end{aligned}$$
(4.20)

At this stage we apply Young’s inequality, which gives us for \(\delta _{1},\delta _{2}>0\) the following:

$$\begin{aligned} &J_{3} \leq \varepsilon \zeta _{1} \biggl\{ \frac{1}{m^{-}} \int _{ \Omega}\delta _{1}^{m(x)} \vert \Phi \vert ^{m(x)}\,dx+ \frac{m^{+}-1}{m^{+}} \int _{\Omega}\delta _{1}^{-\frac{m(x)}{m(x)-1}} \vert \Phi _{t} \vert ^{m(x)} \,dx \biggr\} , \end{aligned}$$
(4.21)
$$\begin{aligned} &J_{4} \leq \varepsilon \zeta _{3} \biggl\{ \frac{1}{s^{-}} \int _{ \Omega}\delta _{2}^{s(x)} \vert \Psi \vert ^{s(x)}\,dx+ \frac{s^{+}-1}{s^{+}} \int _{\Omega}\delta _{2}^{-\frac{s(x)}{s(x)-1}} \vert \Psi _{t} \vert ^{s(x)} \,dx \biggr\} . \end{aligned}$$
(4.22)

Therefore, by setting \(\delta _{1}\), \(\delta _{2}\) so that

$$\begin{aligned} \delta _{1}^{-\frac{m(x)}{m(x)-1}}=\zeta _{1}\kappa \mathbb{H}^{- \alpha}(t), \qquad \delta _{2}^{-\frac{s(x)}{s(x)-1}}= \zeta _{3}\kappa \mathbb{H}^{- \alpha}(t), \end{aligned}$$
(4.23)

substituting the previous two equalities into (4.20) gives us the following inequality:

$$\begin{aligned} \mathfrak{D}'(t) \geq &\bigl[(1-\alpha )-\varepsilon \kappa ( \widehat{m}+ \widehat{s})\bigr]\mathbb{H}^{-\alpha}\mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1} \bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{ \eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o \nabla \Phi )-\frac{\varepsilon}{2}(h_{2}o\nabla \Psi ) \\ &{}-\varepsilon \frac{\zeta _{1}}{ m^{-}} \int _{\Omega}(\zeta _{1} \kappa )^{1-m(x)} \mathbb{H}^{\alpha (m(x)-1)}(t) \vert \Phi \vert ^{m(x)}\,dx \\ &{}-\varepsilon \frac{\zeta _{3}}{ s^{-}} \int _{\Omega}(\zeta _{3} \kappa )^{1-s(x)}\mathbb{H}^{\alpha (s(x)-1)}(t) \vert \Psi \vert ^{s(x)}\,dx \\ &{}-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr)+J_{5}, \end{aligned}$$
(4.24)

where \(\widehat{m}=\frac{m^{+}-1}{m^{-}}\), \(\widehat{s}=\frac{s^{+}-1}{s^{-}}\).

Now, by using (4.5) and (4.13)1, we have

$$\begin{aligned} & \frac{\zeta _{1}}{ m^{-}} \int _{\Omega}(\zeta _{1}\kappa )^{1-m(x)} \mathbb{H}^{\alpha (m(x)-1)}(t) \vert \Phi \vert ^{m(x)}\,dx \\ &\quad \leq \frac{\zeta _{1}}{ m^{-}} \int _{\Omega}(\zeta _{1}\kappa )^{1-m^{-}} \mathbb{H}^{\alpha (m^{+}-1)}(t) \vert \Phi \vert ^{m(x)}\,dx \\ &\quad =C_{1}\mathbb{H}^{\alpha (m^{+}-1)}(t) \int _{\Omega} \vert \Phi \vert ^{m(x)}\,dx \\ &\quad \leq C_{2} \bigl\{ \bigl(\varrho (\Phi )+\varrho (\Psi ) \bigr)^{ \frac{m^{-}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \\ &\qquad \times\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{\frac{m^{+}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \bigr\} . \end{aligned}$$
(4.25)

By (4.16), we find

$$\begin{aligned} &r=m^{-}+\alpha \bigl(2 q^{-}+4\bigr) \bigl(m^{+}-1\bigr)\leq \bigl(2q^{-}+4\bigr), \\ &r=m^{+}+\alpha \bigl(2 q^{-}+4\bigr) \bigl(m^{+}-1\bigr)\leq \bigl(2 q^{-}+4\bigr). \end{aligned}$$

We use the following inequality to advance the proof:

$$ Z^{\gamma}\leq Z+1\leq \biggl(1+\frac{1}{v}\biggr) (Z+v), \quad \forall Z\geq 0, 0< \gamma \leq 1, v>0, $$
(4.26)

with \(v=\frac{1}{\mathbb{H}(0)}\). Then we have

$$\begin{aligned} \bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{\frac{m^{-}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \leq &\biggl(1+ \frac{1}{\mathbb{H}(0)}\biggr) \bigl(\bigl(\varrho (\Phi )+\varrho ( \Psi )\bigr)+ \mathbb{H}(0) \bigr) \\ \leq &C_{3} \bigl(\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \mathbb{H}(t) \bigr) \end{aligned}$$
(4.27)

and

$$\begin{aligned} \bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{\frac{m^{+}}{2(q^{-}+2)}+\alpha (m^{+}-1)} \leq C_{3} \bigl(\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \mathbb{H}(t) \bigr), \end{aligned}$$
(4.28)

where \(C_{3}=1+\frac{1}{\mathbb{H}(0)}\). Substituting (4.27) and (4.28) into (4.25), we get

$$\begin{aligned} & \frac{\zeta _{1}}{ m^{-}} \int _{\Omega}(\zeta _{1}\kappa )^{1-m(x)} \mathbb{H}^{\alpha (m(x)-1)}(t) \vert \Phi \vert ^{m(x)}\,dx \\ &\quad \leq C_{4} \bigl(\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \mathbb{H}(t) \bigr). \end{aligned}$$
(4.29)

Similarly, we get

$$\begin{aligned} & \frac{\zeta _{3}}{ s^{-}} \int _{\Omega}(\zeta _{3}\kappa )^{1-s(x)} \mathbb{H}^{\alpha (s(x)-1)}(t) \vert \Psi \vert ^{s(x)}\,dx \\ &\quad \leq C_{5} \bigl(\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \mathbb{H}(t) \bigr), \end{aligned}$$
(4.30)

where \(C_{4}=C_{4}(\kappa )=C_{3}\frac{\zeta _{1}}{m^{-}}(\zeta _{1}\kappa )^{1-m^{-}}\), \(C_{5}=C_{5}(\kappa )=C_{3}\frac{\zeta _{3})}{ s^{-}}(\zeta _{3} \kappa )^{1-s^{-}}\).

At this stage, combining (4.29), (4.30), and (4.24), and by (2.3) we find

$$\begin{aligned} \mathfrak{D}'(t) \geq &\bigl[(1-\alpha )-\varepsilon \kappa ( \widehat{m}+ \widehat{s})\bigr]\mathbb{H}^{-\alpha}\mathbb{H}'(t)+ \frac{\varepsilon}{\eta +1} \bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{ \eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o \nabla \Phi )-\frac{\varepsilon}{2}(h_{2}o\nabla \Psi )+ J_{5} \\ &{}-\varepsilon ( C_{4}+C_{5}) \bigl(\bigl(\varrho ( \Phi )+\varrho (\Psi )\bigr)+ \mathbb{H}(t) \bigr)-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(4.31)

Now, for \(0< a<1\), from (4.1) and (2.3) we have

$$\begin{aligned} J_{5} =&\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx \\ =&\varepsilon a\bigl(2q^{-}+4\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx+\varepsilon (1-a) \bigl(2q^{-}+4\bigr) \mathbb{H}(t) \\ &{}+\frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}\bigl( \Vert \Phi _{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}\bigr) \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2} \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl((h_{1}o \nabla \Phi )+(h_{2}o\nabla \Psi )\bigr) \\ &{}+\frac{\varepsilon (1-a)(q^{-}+2)}{(\gamma +1)}\bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(4.32)

Substituting (4.32) in (4.31) and applying (2.3) gives

$$\begin{aligned} \mathfrak{D}'(t) \geq & \bigl\{ (1-\alpha )-\varepsilon \kappa ( \widehat{m}+\widehat{s}) \bigr\} \mathbb{H}^{-\alpha}\mathbb{H}'(t) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(q^{-}+2\bigr)+1 \bigr\} \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr) \\ &{}+\varepsilon \biggl\{ \frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}+ \frac{1}{\eta +1} \biggr\} \bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggr) \biggr\} \Vert \nabla \Phi \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \biggr\} \Vert \nabla \Psi \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr)- \frac{1}{2} \biggr\} (h_{1}o\nabla \Phi +h_{2}o \nabla \Psi ) \\ &{}+\varepsilon \biggl\{ \frac{(1-a)(q^{-}+2)}{\gamma +1}-1 \biggr\} \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)}\bigr) \\ &{}+\varepsilon \bigl\{ c_{0}a- \bigl(C_{4}(\kappa )+C_{5}(\kappa ) \bigr) \bigr\} \bigl(\varrho (\Phi )+\varrho (\Psi ) \bigr) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(2q^{-}+4\bigr)- \bigl(C_{4}(\kappa )+C_{5}( \kappa ) \bigr) \bigr\} \mathbb{H}(t). \end{aligned}$$
(4.33)

By choosing \(0< a\) so small that

$$ \bigl(q^{-}+2\bigr) (1-a)>1+\gamma , $$

we have

$$\begin{aligned} &\lambda _{1}:=\bigl(q^{-}+2\bigr) (1-a)-1>0, \\ &\lambda _{2}:=\bigl(q^{-}+2\bigr) (1-a)- \frac{1}{2}>0, \\ &\lambda _{3}:=\frac{(q^{-}+2)(1-a)}{\gamma +1}-1>0. \end{aligned}$$

At this moment we present this supposition

$$ \max \biggl\{ \int _{0}^{\infty}h_{1}(\varsigma )\,d \varsigma , \int _{0}^{ \infty}h_{2}(\varsigma )\,d \varsigma \biggr\} < \frac {(q^{-}+2)(1-a)-1}{((q^{-}+2)(1-a)-\frac {1}{2})}= \frac {2\lambda _{1}}{2\lambda _{1}+1} $$
(4.34)

gives

$$\begin{aligned} &\lambda _{4}=\biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggl(\bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0, \\ &\lambda _{5}= \biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggl(\bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0. \end{aligned}$$

Next, we choose κ large enough such that

$$\begin{aligned} &\lambda _{6}=ac_{0}- \bigl(C_{4}( \kappa )+C_{5}(\kappa ) \bigr)>0, \\ &\lambda _{7}=2\bigl(q^{-}+2\bigr) (1-a)- \bigl(C_{4}(\kappa )+C_{5}(\kappa ) \bigr)>0. \end{aligned}$$

At this point, take κ, a, and we pick ε in a way that

$$ \lambda _{8}=(1-\alpha )-\varepsilon \kappa (\widehat{m}+ \widehat{s})>0 $$

and

$$\begin{aligned} \mathfrak{D}(0) =&\mathbb{H}^{1-\alpha}(0)+ \frac{\varepsilon}{\eta +1} \int _{\Omega} \bigl[\Phi _{0} \vert \Phi _{1} \vert ^{\eta}\Phi _{1}+\Psi _{0} \vert \Psi _{1} \vert ^{\eta}\Psi _{1} \bigr]\,dx \\ &{}+\varepsilon \int _{\Omega} [\nabla \Phi _{1}\nabla \Phi _{0}+ \nabla \Psi _{1}\nabla \Psi _{0} ] \,dx>0. \end{aligned}$$
(4.35)

Hence, from (4.33) we deduce for some \(\mu >0\)

$$\begin{aligned} \mathfrak{D}'(t) \geq &\mu \bigl\{ \mathbb{H}(t)+ \Vert \Phi _{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)} \\ &{}+ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} + \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2} +(h_{1}o \nabla \Phi )+(h_{2}o\nabla \Psi ) \\ &{}+\varrho (\Phi )+\varrho (\Psi ) \bigr\} \end{aligned}$$
(4.36)

and

$$ \mathfrak{D}(t)\geq \mathfrak{D}(0)>0, \quad t>0. $$
(4.37)

Next, by Hölder’s and Young’s inequalities, we find

$$\begin{aligned} \biggl\vert \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta} \Phi _{t}+ \Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t}\bigr)\,dx \biggr\vert ^{ \frac{1}{1-\alpha}} \leq &C \bigl[ \Vert \Phi \Vert _{2(q^{-}+2)}^{ \frac{\theta}{1-\alpha}}+ \Vert \Phi _{t} \Vert _{\eta +2}^{ \frac{\mu}{1-\alpha}} \\ & {} + \Vert \Psi \Vert _{2(q^{-}+2)}^{\frac{\theta}{1-\alpha}}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\frac{\mu}{1-\alpha}} \bigr], \end{aligned}$$
(4.38)

where \(\frac{1}{\mu}+\frac{1}{\theta}=1\).

Pick \(\mu =(\eta +2)(1-\alpha )\) to get the below

$$ \frac{\theta}{1-\alpha}=\frac{\eta +2}{(1-\alpha )(\eta +2)-1}\leq 2\bigl(q^{-}+2 \bigr). $$

Consequently, by the application of (4.5), (4.16), and (4.26), we have

$$\begin{aligned} &\Vert \Phi \Vert _{2(q^{-}+2)}^{ \frac{\eta +2}{(1-\alpha )(\eta +2)-1}}\leq d\bigl( \Vert \Phi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+ \mathbb{H}(t)\bigr) \\ &\Vert \Psi \Vert _{2(q^{-}+2)}^{ \frac{\eta +2}{(1-\alpha )(\eta +2)-1}}\leq d\bigl( \Vert \Psi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+ \mathbb{H}(t)\bigr), \quad \forall t\geq 0. \end{aligned}$$

Then we have

$$\begin{aligned} & \biggl\vert \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta} \Phi _{t}+ \Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t}\bigr)\,dx \biggr\vert ^{ \frac{1}{1-\alpha}} \\ &\quad \leq c \bigl\{ \varrho (\Phi )+\varrho (\Psi )+ \Vert \Phi _{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}+ \mathbb{H}(t) \bigr\} . \end{aligned}$$
(4.39)

In the same way, we have

$$\begin{aligned} \biggl\vert \int _{\Omega}(\nabla \Phi \nabla \Phi _{t}+\nabla \Psi \nabla \Psi _{t})\,dx \biggr\vert ^{\frac{1}{1-\alpha}} \leq &C \bigl[ \Vert \nabla \Phi \Vert _{2}^{\frac{\theta}{1-\alpha}}+ \Vert \nabla \Phi _{t} \Vert _{2}^{\frac{\mu}{1-\alpha}} \\ & {} + \Vert \nabla \Psi \Vert _{2}^{\frac{\theta}{1-\alpha}}+ \Vert \nabla \Psi _{t} \Vert _{2}^{\frac{\mu}{1-\alpha}} \bigr], \end{aligned}$$

where \(\frac{1}{\mu}+\frac{1}{\theta}=1\).

In this, by assuming \(\theta =2(\gamma +1)(1-\alpha )\), we get

$$\begin{aligned} &\frac{\mu}{1-\alpha}=\frac{2(\gamma +1)}{2(1-\alpha )(\gamma +1)-1} \leq 2 \\ &\biggl\vert \int _{\Omega}(\nabla \Phi \nabla \Phi _{t}+\nabla \Psi \nabla \Psi _{t})\,dx \biggr\vert ^{\frac{1}{1-\alpha}}\leq c \bigl\{ \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert ^{2( \gamma +1)}_{2} \\ &\hphantom{\biggl\vert \int _{\Omega}(\nabla \Phi \nabla \Phi _{t}+\nabla \Psi \nabla \Psi _{t})\,dx \biggr\vert ^{\frac{1}{1-\alpha}}}\quad + \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr\} . \end{aligned}$$
(4.40)

Thus, by (4.39) and (4.40), we have

$$\begin{aligned} \mathfrak{D}^{\frac{1}{1-\alpha}}(t) =& \biggl(\mathbb{H}^{1-\alpha}(t)+ \frac{\varepsilon}{\eta +1} \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{ \eta}\Phi _{t}+\Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t}\bigr)\,dx \\ &{}+\varepsilon \int _{\Omega}(\nabla \Phi _{t}\nabla \Phi +\nabla \Psi _{t}\nabla \Psi )\,dx \biggr)^{\frac{1}{1-\alpha}} \\ \leq &c \biggl(\mathbb{H}(t)+ \biggl\vert \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta} \Phi _{t}+\Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t}\bigr) \,dx \biggr\vert ^{\frac{1}{1-\alpha}}+ \Vert \nabla \Phi \Vert _{2}^{ \frac{2}{1-\alpha}}+ \Vert \nabla \Psi \Vert _{2}^{\frac{2}{1-\alpha}} \\ & {} + \Vert \nabla \Phi _{t} \Vert _{2}^{\frac{2}{1-\alpha}}+ \Vert \nabla \Psi _{t} \Vert _{2}^{\frac{2}{1-\alpha}} \biggr) \\ \leq &c \bigl(\mathbb{H}(t)+ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla \Phi \Vert ^{2( \gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}+ \Vert \nabla \Phi _{t} \Vert _{2}^{2} \\ &{}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}+(h_{1}o \nabla \Phi )+(h_{2}o \nabla \Psi )+\varrho (\Phi )+\varrho (\Psi ) \bigr) \\ \leq &c \bigl\{ \mathbb{H}(t)+ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla \Phi \Vert ^{2( \gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \\ &{}+ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}+ \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2}+(h_{1}o \nabla \Phi )+(h_{2}o\nabla \Psi ) \\ &{}+\varrho (\Phi )+\varrho (\Psi ) \bigr\} . \end{aligned}$$
(4.41)

Now, (4.36) and (4.41) imply

$$ \mathfrak{D}'(t)\geq \lambda \mathfrak{D}^{\frac{1}{1-\alpha}}(t), $$
(4.42)

where \(0< \lambda \), this relies only on β and c.

Further simplification of (4.42) leads us to

$$ \mathfrak{D}^{\frac{\alpha}{1-\alpha}}(t)\geq \frac{1}{\mathfrak{D}^{\frac{-\alpha}{1-\alpha}}(0)-\lambda \frac{\alpha}{(1-\alpha )} t}. $$

Hence, \(\mathfrak{D}(t)\) blows up in time

$$ T\leq T^{*}= \frac{1-\alpha}{\lambda \alpha \mathfrak{D}^{\alpha /(1-\alpha )}(0)}. $$

This ends the proof. □

5 Growth of solution

Here, the exponential growth of solution of problem (1.1) is established with positive initial energy.

First, based on Theorem 3.3, we have a solution that is global in time. To achieve the objectives of our results in this section, we first introduce the following function:

$$\begin{aligned} \begin{aligned} \Upsilon (t):={}&\biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2}+(h_{1} \circ \nabla \Phi )\\ &+(h_{2} \circ \nabla \Psi ). \end{aligned} \end{aligned}$$
(5.1)

Then, we present the following lemma, which is similar to the one presented first by Vitillaro [28] to study a class of single wave equations, also see [27].

Lemma 5.1

Suppose that (2.1) and (2.2) hold. Let \((u, v,z,y)\) be a solution of (1.1). Assume further that

$$ \Vert \nabla \Phi _{0} \Vert _{2}^{2}+ \Vert \nabla \Psi _{0} \Vert _{2}^{2}> \alpha _{1}^{2}, \qquad \mathcal{E}(0) < d_{1}. $$
(5.2)

Then there exists a constant \(\alpha _{2} > \alpha _{1}\) such that

$$ \Upsilon (t)>\alpha _{2}^{2} $$
(5.3)

and

$$ 2\bigl(p^{-}+2\bigr) \int _{0}^{L}F(\Phi ,\Psi )\,dx\geq (B\alpha _{2})^{2(p^{+}+2)} $$
(5.4)

with

$$\begin{aligned} &B= \biggl(\frac{c_{1}C_{*}(p^{+})}{l^{(p^{+}+2)}} \biggr)^{ \frac{1}{2(p^{+}+2)}}, \quad \alpha _{1}=B^{-\frac{p^{+}+2}{p^{+}+1}}, \\ & d_{1}= \biggl[\frac{1}{2(p^{-}+2)(1-a)}-\frac{1}{2(p^{-}+2)} \biggr] \alpha _{1}^{2}. \end{aligned}$$
(5.5)

We also know which number \(d= [\frac{1}{2}-\frac{1}{2(p^{-}+2)} ]\alpha _{1}^{2}>d_{1}> \mathcal{E}(0)\).

Moreover, one can easily see that, from (5.5), the condition \(\mathcal{E}(0) < d_{1}\) is equivalent to inequality (3.4).

Since \(0< a<1\), we will appoint it later, we have \(2<2(p^{-}+2)(1-a)<2(p^{-}+2)\).

For this purpose, we set the functional

$$\begin{aligned} \mathbb{T}(t)=d_{1}-\mathcal{E}(t) =&d_{1}- \frac{1}{\eta +2} \bigl[ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{ \eta +2}^{\eta +2} \bigr]-\frac{1}{2} \bigl[ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr] \\ &{}-\frac{1}{2(\gamma +1)} \bigl[ \Vert \nabla \Phi \Vert _{2}^{2( \gamma +1)}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr] \\ &{}-\frac{1}{2} \biggl[ \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}-\frac{1}{2} \bigl[(h_{1}o\nabla \Phi ) (t)+(h_{2}o\nabla \Psi ) (t) \bigr]+ \int _{\Omega}F(\Phi ,\Psi )\,dx. \end{aligned}$$
(5.6)

Theorem 5.2

Assume that (2.1)(2.2) are satisfied and \(\mathcal{E}(0)< d_{1}\), then

$$ 2\bigl(q^{-}+2\bigr)>\frac{\eta +2}{\eta +1}. $$
(5.7)

Then the solution of problem (1.1) grows exponentially.

Proof

To achieve our goal, by (2.5) we first deduce

$$ \mathcal{E}(t)\leq \mathcal{E}(0)< d_{1}, $$
(5.8)

with the help of (4.3) and (4.4) and (5.2), (2.3), we have

$$\begin{aligned} 0\leq \mathbb{T}(0)\leq \mathbb{T}(t) \leq &d_{1}- \frac{1}{2}\alpha _{1}^{2}+ \frac{1}{2(p^{-}+2)} \bigl[ \Vert \Phi +\Psi \Vert _{2(p^{-}+2)}^{2(p^{-}+2)}+2 \Vert \Phi \Psi \Vert _{(p^{-}+2)}^{p^{-}+2} \bigr] \\ \leq &d-\frac{1}{2}\alpha _{1}^{2}+ \frac{c_{1}}{2(p^{-}+2)} \bigl[ \Vert \Phi \Vert _{2(p^{-}+2)}^{2(p^{-}+2)}+ \Vert \Psi \Vert _{2(p^{-}+2)}^{2(p^{-}+2)} \bigr] \\ \leq &-\frac{1}{2(p^{-}+2)}\alpha _{1}^{2}+ \frac{c_{1}}{2(p^{-}+2)} \bigl[ \Vert \Phi \Vert _{2(p^{-}+2)}^{2(p^{-}+2)}+ \Vert \Psi \Vert _{2(p^{-}+2)}^{2(p^{-}+2)} \bigr] \\ \leq &\frac{c_{1}}{2(p^{-}+2)} \bigl[ \Vert \Phi \Vert _{2(p^{-}+2)}^{2(p^{-}+2)}+ \Vert \Psi \Vert _{2(p^{-}+2)}^{2(p^{-}+2)} \bigr] . \end{aligned}$$
(5.9)

In this, we introduce the functional

$$\begin{aligned} \mathfrak{R}(t) =&\mathbb{T}(t)+\frac{\varepsilon}{\eta +1} \int _{ \Omega} \bigl[\Phi \vert \Phi _{t} \vert ^{\eta}\Phi _{t}+\Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t} \bigr]\,dx \\ &{}+\varepsilon \int _{\Omega} [\nabla \Phi _{t}\nabla v+\nabla \Psi _{t}\nabla \Psi ]\,dx, \end{aligned}$$
(5.10)

where \(\varepsilon >0\).

From (1.1)1, (1.1)2, and (5.10), we get

$$\begin{aligned} \mathfrak{R}'(t) =&\mathbb{T}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{ \eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}\bigr) \\ &{}+\varepsilon \int _{\Omega}\nabla \Phi \int ^{t}_{0}h_{1}(t- \varsigma ) \nabla \Phi (\varsigma )\,d\varsigma \,dx +\varepsilon \int _{ \Omega}\nabla \Psi \int ^{t}_{0}h_{2}(t-\varsigma ) \nabla \Psi ( \varsigma )\,d\varsigma \,dx \\ &{}-\varepsilon \zeta _{1} \int _{\Omega} \Phi \Phi _{t} \vert \Phi _{t} \vert ^{m(x)-2} \,dx-\varepsilon \zeta _{3} \int _{\Omega} \Psi \Psi _{t} \vert \Psi _{t} \vert ^{s(x)-2} \,dx \\ &{}-\varepsilon \bigl( \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2}\bigr)-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+\varepsilon \int _{\Omega}\bigl(\Phi f_{1}(\Phi ,\Psi )+\Psi f_{2}( \Phi ,\Psi )\bigr)\,dx. \end{aligned}$$

By (2.1), we find

$$\begin{aligned} \mathfrak{R}'(t) \geq &\mathbb{T}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{ \eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}\bigr) \\ &{}+ \underbrace{\varepsilon \int _{\Omega}\nabla \Phi \int ^{t}_{0}h_{1}(t-\varsigma ) \nabla \Phi (\varsigma )\,d\varsigma \,dx}_{I_{1}} + \underbrace{ \varepsilon \int _{\Omega}\nabla \Psi \int ^{t}_{0}h_{2}(t-\varsigma ) \nabla \Psi (\varsigma )\,d\varsigma \,dx}_{I_{2}} \\ &{}- \underbrace{\varepsilon \zeta _{1} \int _{\Omega} \Phi \Phi _{t} \vert \Phi _{t} \vert ^{m(x)-2} \,dx}_{I_{3}}- \underbrace{ \varepsilon \zeta _{3} \int _{\Omega} \Psi \Psi _{t} \vert \Psi _{t} \vert ^{s(x)-2} \,dx}_{I_{4}} \\ &{}-\varepsilon \bigl( \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2}\bigr)-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+\underbrace{\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx}_{I_{5}}. \end{aligned}$$
(5.11)

Similarly to \(J_{1}\), \(J_{2}\) in (4.18) and (4.19), we estimate \(I_{1}\), \(I_{2}\):

$$\begin{aligned} &I_{1}=J_{1}\geq \frac{\varepsilon}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \Vert \nabla \Phi \Vert _{2}^{2}- \frac{\varepsilon}{2}(h_{1}o \nabla \Phi ), \end{aligned}$$
(5.12)
$$\begin{aligned} &I_{2}=J_{2}\geq \frac{\varepsilon}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \Vert \nabla \Psi \Vert _{2}^{2}- \frac{\varepsilon}{2}(h_{2}o \nabla \Psi ). \end{aligned}$$
(5.13)

From (5.11), we find

$$\begin{aligned} \mathfrak{R}'(t) \geq &\mathbb{T}'(t)+ \frac{\varepsilon}{\eta +1}\bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{ \eta +2}^{\eta +2}\bigr)+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}\bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}-\frac{\varepsilon}{2}(h_{1}o\nabla \Phi )-\frac{\varepsilon}{2}(h_{2}o \nabla \Psi )-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr) \\ &{}+I_{3}+I_{4}+I_{5} . \end{aligned}$$
(5.14)

Similar to \(J_{3}\) and \(J_{4}\) in (4.21)–(4.22), we estimate \(I_{3}\) and \(I_{4}\). By Young’s inequality, we find for \(\delta _{1},\delta _{2}>0\)

$$\begin{aligned} I_{3} \leq &\varepsilon \zeta _{1} \biggl\{ \frac{1}{m^{-}} \int _{ \Omega}\delta _{1}^{m(x)} \vert \Phi \vert ^{m(x)}\,dx+ \frac{m^{+}-1}{m^{+}} \int _{\Omega}\delta _{1}^{-\frac{m(x)}{m(x)-1}} \vert \Phi _{t} \vert ^{m(x)} \,dx \biggr\} \end{aligned}$$
(5.15)

and

$$\begin{aligned} I_{4} \leq &\varepsilon \zeta _{3} \biggl\{ \frac{1}{s^{-}} \int _{ \Omega}\delta _{2}^{s(x)} \vert \Psi \vert ^{s(x)}\,dx+ \frac{s^{+}-1}{s^{+}} \int _{\Omega}\delta _{2}^{-\frac{s(x)}{s(x)-1}} \vert \Psi _{t} \vert ^{s(x)} \,dx \biggr\} . \end{aligned}$$
(5.16)

Therefore, by setting \(\delta _{1}\), \(\delta _{2}\) so that

$$\begin{aligned} \delta _{1}^{-\frac{m(x)}{m(x)-1}}=\frac{\zeta _{1}}{2}\kappa , \qquad \delta _{2}^{-\frac{s(x)}{s(x)-1}}=\frac{\zeta _{3}}{2}\kappa , \end{aligned}$$
(5.17)

substituting in (5.14), we obtain

$$\begin{aligned} \mathfrak{R}'(t) \geq &\bigl[1-\varepsilon \kappa (\widehat{m}+ \widehat{s})\bigr] \mathbb{T}'(t)+\frac{\varepsilon}{\eta +1} \bigl( \Vert \Phi _{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o \nabla \Phi )-\frac{\varepsilon}{2}(h_{2}o\nabla \Psi ) \\ &{}-\varepsilon \frac{\zeta _{1}}{m^{-}} \int _{\Omega}\biggl( \frac{\zeta _{1}\kappa}{2}\biggr)^{1-m(x)} \vert \Phi \vert ^{m(x)}\,dx- \varepsilon \frac{\zeta _{3}}{ s^{-}} \int _{\Omega}\biggl( \frac{\zeta _{3}\kappa}{2}\biggr)^{1-s(x)} \vert \Psi \vert ^{s(x)}\,dx \\ &{}-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)} \bigr)+I_{5}, \end{aligned}$$
(5.18)

where \(\widehat{m}=\frac{m^{+}-1}{m^{-}}\), \(\widehat{s}=\frac{s^{+}-1}{s^{-}}\). By using (4.5) and (4.13), we have

$$\begin{aligned} \frac{\zeta _{1}}{ m^{-}} \int _{\Omega}\biggl(\frac{\zeta _{1}\kappa}{2}\biggr)^{1-m(x)} \vert \Phi \vert ^{m(x)}\,dx \leq &\frac{\zeta _{1}}{ m^{-}} \int _{ \Omega}\biggl(\frac{\zeta _{1}\kappa}{2}\biggr)^{1-m^{-}} \vert \Phi \vert ^{m(x)}\,dx \\ =&C_{8} \int _{\Omega} \vert \Phi \vert ^{m(x)}\,dx \\ \leq &C_{9} \bigl\{ \bigl(\varrho (\Phi )+\varrho (\Psi ) \bigr)^{ \frac{m^{-}}{2(q^{-}+2)}} \\ &{}+\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{\frac{m^{+}}{2(q^{-}+2)}} \bigr\} . \end{aligned}$$
(5.19)

By (1.5), we get

$$\begin{aligned} r=m^{-}\leq \bigl(2q^{-}+4\bigr), \qquad r=m^{+}\leq \bigl(2 q^{-}+4\bigr) \end{aligned}$$

and by (4.26) with \(v=\frac{1}{\mathbb{T}(0)}\). Then we have

$$\begin{aligned} \bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{\frac{m^{-}}{2(q^{-}+2)}} \leq &\biggl(1+ \frac{1}{\mathbb{T}(0)}\biggr) \bigl(\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \mathbb{T}(0) \bigr) \\ \leq &C_{10} \bigl(\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \mathbb{T}(t) \bigr) \end{aligned}$$
(5.20)

and

$$\begin{aligned} \bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)^{\frac{m^{+}}{2(q^{-}+2)}}\leq C_{10} \bigl(\bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \mathbb{T}(t) \bigr), \end{aligned}$$
(5.21)

where \(C_{10}=1+\frac{1}{\mathbb{T}(0)}\). Substituting (5.20) and (5.21) into (5.19), we get

$$\begin{aligned} \frac{\zeta _{1}}{ m^{-}} \int _{\Omega}\biggl(\frac{\zeta _{1}\kappa}{2}\biggr)^{1-m(x)} \vert \Phi \vert ^{m(x)}\,dx\leq C_{11} \bigl(\bigl( \varrho (\Phi )+\varrho ( \Psi )\bigr)+\mathbb{T}(t) \bigr). \end{aligned}$$
(5.22)

Similarly, we find

$$\begin{aligned} \frac{\zeta _{3}}{ s^{-}} \int _{\Omega}\biggl(\frac{\zeta _{3}\kappa}{2}\biggr)^{1-s(x)} \vert \Psi \vert ^{s(x)}\,dx\leq C_{12} \bigl(\bigl( \varrho (\Phi )+\varrho ( \Psi )\bigr)+\mathbb{T}(t) \bigr), \end{aligned}$$
(5.23)

where \(C_{11}=C_{11}(\kappa )=C_{9}\frac{\zeta _{1}}{m^{-}}( \frac{\zeta _{1}\kappa}{2})^{1-m^{-}}\), \(C_{12}=C_{12}(\kappa )=C_{9}\frac{\zeta _{3}}{ s^{-}}( \frac{\zeta _{3}\kappa}{2})^{1-s^{-}}\).

Combining (5.22), (5.23), and (5.18), we have

$$\begin{aligned} \mathfrak{R}'(t) \geq &\bigl[1-\varepsilon \kappa (\widehat{m}+ \widehat{s})\bigr] \mathbb{T}'(t)+\frac{\varepsilon}{\eta +1} \bigl( \Vert \Phi _{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2} \bigr) \\ &{}-\varepsilon \biggl[ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \biggr] \\ &{}+\varepsilon \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr)-\frac{\varepsilon}{2}(h_{1}o \nabla \Phi )-\frac{\varepsilon}{2}(h_{2}o\nabla \Psi )+ I_{5} \\ &{}-\varepsilon ( C_{11}+C_{12}) \bigl(\bigl(\varrho ( \Phi )+\varrho (\Psi )\bigr)+ \mathbb{T}(t) \bigr)-\varepsilon \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(5.24)

Here, for \(0< a<1\), from (5.6) and (2.3) we have

$$\begin{aligned} J_{7} =&\varepsilon \bigl(2q^{-}+4\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx \\ =&\varepsilon a\bigl(2q^{-}+4\bigr) \int _{\Omega}F(\Phi ,\Psi )\,dx+\varepsilon (1-a) \bigl(2q^{-}+4\bigr) \bigl( \mathbb{T}(t)-d_{1}\bigr) \\ &{}+\frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}\bigl( \Vert \Phi _{t} \Vert _{ \eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}\bigr) \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2} \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{2}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Psi \Vert _{2}^{2} \\ &{}+\varepsilon (1-a) \bigl(q^{-}+2\bigr) \bigl((h_{1}o \nabla \Phi )+(h_{2}o\nabla \Psi )\bigr) \\ &{}+\frac{\varepsilon (1-a)(q^{-}+2)}{(\gamma +1)}\bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2(\gamma +1)}\bigr). \end{aligned}$$
(5.25)

Substituting (5.25) in (5.24) and applying (2.3) and (5.4), we get

$$\begin{aligned} \mathfrak{R}'(t) \geq & \bigl\{ 1-\varepsilon \kappa (\widehat{m}+ \widehat{s}) \bigr\} \mathbb{T}'(t) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(q^{-}+2\bigr)+1 \bigr\} \bigl( \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} \bigr) \\ &{}+\varepsilon \biggl\{ \frac{\varepsilon (1-a)(2q^{-}+4)}{\eta +2}+ \frac{1}{\eta +1} \biggr\} \bigl( \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}\bigr) \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggr) \biggr\} \Vert \nabla \Phi \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr) \biggl(1- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr)- \biggl(1-\frac{1}{2} \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggr) \biggr\} \Vert \nabla \Psi \Vert _{2}^{2} \\ &{}+\varepsilon \biggl\{ (1-a) \bigl(q^{-}+2\bigr)- \frac{1}{2} \biggr\} (h_{1}o\nabla \Phi +h_{2}o \nabla \Psi ) \\ &{}+\varepsilon \biggl\{ \frac{(1-a)(q^{-}+2)}{\gamma +1}-1 \biggr\} \bigl( \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)}\bigr) \\ &{}+\varepsilon \bigl\{ c_{0}\bigl( \underbrace{a-2 \bigl(p^{-}+2\bigr) (1-a)\,d_{1}(B\alpha _{2})^{-2(p^{+}+2)}}_{ \widehat{c}}\bigr)-C_{13}( \kappa ) \bigr\} \bigl(\varrho (\Phi )+\varrho ( \Psi ) \bigr) \\ &{}+\varepsilon \bigl\{ (1-a) \bigl(2q^{-}+4\bigr)-C_{13}( \kappa ) \bigr\} \mathbb{T}(t), \end{aligned}$$
(5.26)

where \(C_{13}(\kappa )=C_{11}(\kappa )+C_{12}(\kappa )\), by (5.5),(2.3), and (5.4), one can check that \(\widehat{c}>0\).

Here, assume \(0< a\) so small that

$$ \bigl(q^{-}+2\bigr) (1-a)>1+\gamma , $$

we have

$$\begin{aligned} &\lambda _{1}:=\bigl(q^{-}+2\bigr) (1-a)-1>0, \\ &\lambda _{2}:=\bigl(q^{-}+2\bigr) (1-a)- \frac{1}{2}>0, \\ &\lambda _{3}:=\frac{(q^{-}+2)(1-a)}{\gamma +1}-1>0, \end{aligned}$$

and we assume

$$ \max \biggl\{ \int _{0}^{\infty}h_{1}(\varsigma )\,d \varsigma , \int _{0}^{ \infty}h_{2}(\varsigma )\,d \varsigma \biggr\} < \frac {(q^{-}+2)(1-a)-1}{((q^{-}+2)(1-a)-\frac {1}{2})}= \frac {2\lambda _{1}}{2\lambda _{1}+1}, $$
(5.27)

which gives

$$\begin{aligned} &\lambda _{4}= \biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{1}( \varsigma )\,d \varsigma \biggl(\bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0, \\ &\lambda _{5}= \biggl\{ \bigl(\bigl(q^{-}+2\bigr) (1-a)-1 \bigr)- \int _{0}^{t}h_{2}( \varsigma )\,d \varsigma \biggl(\bigl(q^{-}+2\bigr) (1-a)-\frac{1}{2} \biggr) \biggr\} >0. \end{aligned}$$

Next, we pick κ large enough such that

$$\begin{aligned} \lambda _{6} =&c_{0}\widehat{c}-C_{13}( \kappa )>0, \\ \lambda _{7} =&2\bigl(q^{-}+2\bigr) (1-a)-C_{13}(\kappa )>0. \end{aligned}$$

At this point, we fix κ, a and select ε so small that

$$ \lambda _{8}=1-\varepsilon \kappa (\widehat{m}+\widehat{s})>0 $$

and

$$\begin{aligned} \mathfrak{R}(0) =&\mathbb{T}(0)+\frac{\varepsilon}{\eta +1} \int _{ \Omega} \bigl[\Phi _{0} \vert \Phi _{1} \vert ^{\eta}\Phi _{1}+\Psi _{0} \vert \Psi _{1} \vert ^{\eta}\Psi _{1} \bigr]\,dx \\ &{}+\varepsilon \int _{\Omega} [\nabla \Phi _{1}\nabla \Phi _{0}+ \nabla \Psi _{1}\nabla \Psi _{0} ] \,dx>0, \end{aligned}$$
(5.28)

and from (5.9) and (5.10)

$$\begin{aligned} \mathfrak{R}(t) \leq & c \bigl[ \Vert \Phi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+ \Vert \Psi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)} \bigr]. \end{aligned}$$
(5.29)

Thus, for some \(\mu _{1}>0\), (5.26) implies

$$\begin{aligned} \mathfrak{R}'(t) \geq &\mu _{1} \bigl\{ \mathbb{T}(t)+ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert w_{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla v \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)} \\ &{}+ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2} + \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2} +(h_{1}o \nabla \Phi )+(h_{2}o\nabla \Psi ) \\ &{}+\varrho (\Phi )+\varrho (\Psi ) \bigr\} \end{aligned}$$
(5.30)

and

$$ \mathfrak{R}(t)\geq \mathfrak{R}(0)>0, \quad t>0. $$
(5.31)

After, by Hölder’s and Young’s inequalities, we find

$$\begin{aligned} \biggl\vert \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta} \Phi _{t}+ \Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t}\bigr)\,dx \biggr\vert \leq &C \bigl[ \Vert \Phi \Vert _{2(q^{-}+2)}^{\theta}+ \Vert \Phi _{t} \Vert _{ \eta +2}^{\mu} \\ & {} + \Vert \Psi \Vert _{2(q^{-}+2)}^{\theta}+ \Vert \Psi _{t} \Vert _{\eta +2}^{ \mu} \bigr] , \end{aligned}$$
(5.32)

where \(\frac{1}{\mu}+\frac{1}{\theta}=1\). Next, assume \(\mu =(\eta +2)\) to reach

$$ \theta =\frac{(\eta +2)}{(\eta +1)}\leq 2\bigl(q^{-}+2\bigr). $$

By using (5.7) and (4.26), we find

$$\begin{aligned} &\Vert \Phi \Vert _{2(q^{-}+2)}^{\frac{\eta +2}{(\eta +1)}}\leq K\bigl( \Vert \Phi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+\mathbb{T}(t)\bigr) \\ &\Vert \Psi \Vert _{2(q^{-}+2)}^{\frac{\eta +2}{(\eta +1)}}\leq K\bigl( \Vert \Psi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+\mathbb{T}(t)\bigr), \quad \forall t\geq 0. \end{aligned}$$

Then

$$\begin{aligned} & \biggl\vert \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta} \Phi _{t}+ \Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t}\bigr)\,dx \biggr\vert \\ &\quad \leq c \bigl\{ \bigl(\varrho (\Phi )+\varrho (\Psi )\bigr)+ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}+ \mathbb{T}(t) \bigr\} . \end{aligned}$$
(5.33)

Hence

$$\begin{aligned} \mathfrak{R}(t) =& \biggl(\mathbb{T}(t)+\frac{\varepsilon}{\eta +1} \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta}\Phi _{t}+\Psi \vert \Psi _{t} \vert ^{\eta}\Psi _{t}\bigr)\,dx \\ &{}+\varepsilon \int _{\Omega}(\nabla \Phi _{t}\nabla \Phi +\nabla \Psi _{t}\nabla \Psi )\,dx \biggr) \\ \leq &c \bigl(\mathbb{T}(t)+ \Vert \Phi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \Psi _{t} \Vert _{\eta +2}^{\eta +2}+ \Vert \nabla \Phi \Vert _{2}^{2}+ \Vert \nabla \Psi \Vert _{2}^{2} \\ &{}+ \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \Vert \nabla \Psi _{t} \Vert _{2}^{2}+ \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}+ \Vert \nabla \Psi \Vert _{2}^{2( \gamma +1)} \\ &{}+(h_{1}o\nabla \Phi )+(h_{2}o\nabla \Psi )+\bigl( \varrho (\Phi )+ \varrho (\Psi )\bigr) \bigr). \end{aligned}$$
(5.34)

From (5.30) and (5.34), we have

$$ \mathfrak{R}'(t)\geq \lambda _{1} \mathfrak{R}(t), $$
(5.35)

where \(\lambda _{1}> 0 \), this relies on \(\mu _{1} \) and c. Hence, (5.35) gives

$$ \mathfrak{R}(t)\geq \mathfrak{R}(0)e^{(\lambda _{1} t)}\quad \forall t>0. $$
(5.36)

Then (5.29) and (5.36) imply

$$ \Vert \Phi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)}+ \Vert \Psi \Vert _{2(q^{-}+2)}^{2(q^{-}+2)} \geq C e^{(\lambda _{1} t)},\quad \forall t>0. $$

This implies that the solution grows exponentially with \(L^{2(p^{-}+2)}\)-norm. This ends the proof. □

6 General decay

In this section, we state and prove the general decay of system (1.1) in the case \(f_{1}=f_{2}=0\). For this goal, problem (1.1) can be written as

$$ \textstyle\begin{cases} \vert \Phi _{t} \vert ^{\eta }\Phi _{tt}-\mathcal{T}( \Vert \nabla \Phi \Vert _{2}^{2})\Delta \Phi +\int _{0}^{t}h_{1}(t- \varsigma )\Delta \Phi (\varsigma )\,d\varsigma -\Delta \Phi _{tt}+g_{1}( \Phi _{t})=0, \\ \Phi ( x,0) =\Phi _{0}(x), \qquad \Phi _{t}( x,0) =\Phi _{1}( x), \quad \text{in } \Omega \\ \Phi ( x,t) =0, \quad \text{in } \partial \Omega \times (0, T), \end{cases} $$
(6.1)

where

$$ g_{1}(\Phi _{t})=\zeta _{1} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)-2} \Phi _{t}(t). $$

We introduce the modified functional of energy \(\mathfrak{E}\) of (6.1) as follows:

$$\begin{aligned} \mathfrak{E}(t) =&\frac{1}{\eta +2} \Vert \Phi _{t} \Vert _{\eta +2}^{ \eta +2}+\frac{1}{2} \Vert \nabla \Phi _{t} \Vert _{2}^{2}+ \frac{1}{2(\gamma +1)} \Vert \nabla \Phi \Vert _{2}^{2(\gamma +1)} \\ &{}+\frac{1}{2} \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \Vert \nabla \Phi \Vert _{2}^{2}+ \frac{1}{2}(h_{1}o\nabla \Phi ) (t). \end{aligned}$$
(6.2)

From Lemma 2.4, the functional of energy satisfies

$$\begin{aligned} \mathfrak{E}'(t) \leq &-\zeta _{1} \int _{\Omega} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)}\,dx+ \frac{1}{2}\bigl(h'_{1}o \nabla \Phi \bigr) (t)-\frac{1}{2}h_{1}(t) \Vert \nabla \Phi \Vert _{2}^{2}\leq 0. \end{aligned}$$
(6.3)

Lemma 6.1

(Komornik, [19]) Assume a nonincreasing function \(E:\mathbb{R}_{+}\rightarrow \mathbb{R}_{+}\) and suppose that \(\exists \sigma ,\omega >0\) in a manner that

$$ \int _{\Im}^{\infty}E^{1+\aleph}(t)\,dt\leq \frac{1}{\omega}E^{\aleph}(0)E( \Im )=cE(\Im ), \quad \forall \Im >0. $$
(6.4)

Then we have \(\forall t\geq 0\)

$$ \textstyle\begin{cases} E(t)\leq cE(0)/(1+t)^{\frac{1}{\aleph}}, \quad \textit{if } \aleph >0, \\ E(t)\leq cE(0)e^{-\omega t}, \quad \textit{if } \aleph =0. \end{cases} $$
(6.5)

Theorem 6.2

Suppose that (1.3), (2.1)(2.2), and (2.4) hold. Then there exist \(c,\lambda >0\) so that the solution of (6.1) satisfies

$$ \textstyle\begin{cases} \mathfrak{E}(t)\leq c\mathfrak{E}(0)/(1+t)^{\frac{2}{m^{+}-2}}, \quad \textit{if } m^{+}>2, \\ \mathfrak{E}(t)\leq c\mathfrak{E}(0)e^{-\lambda t}, \quad \textit{if } m(x)=2. \end{cases} $$
(6.6)

Proof

Multiplying (6.1)1 by \(\Phi \mathfrak{E}^{p}(t)\) for \(p>0\),

then integrating over \(\Omega \times (\Im ,T)\), where \(\Im < T\), gives

$$\begin{aligned} & \int _{\Im}^{T}\mathfrak{E}^{p}(t) \int _{\Omega} \biggl\{ \Phi \vert \Phi _{t} \vert ^{\eta }\Phi _{tt}-\mathcal{T}\bigl( \Vert \nabla \Phi \Vert _{2}^{2}\bigr)\Phi \Delta \Phi + \int _{0}^{t}h_{1}(t- \varsigma ) \Phi \Delta \Phi (\varsigma )\,d\varsigma \\ & \quad -\Phi \Delta \Phi _{tt}+\zeta _{1}\Phi \Phi _{t} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)-2} \biggr\} \,dx\,dt=0, \end{aligned}$$
(6.7)

we deduce that

$$\begin{aligned} & \int _{\Im}^{T}\mathfrak{E}^{p}(t) \int _{\Omega} \biggl\{ \frac{d}{dt} \frac{1}{\eta +1}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}\bigr)-\frac{1}{\eta +1} \vert \Phi _{t} \vert ^{\eta +2}+ \frac{d}{dt}(\nabla \Phi \nabla \Phi _{t})- \vert \nabla \Phi _{t} \vert ^{2} \\ &\qquad +\mathcal{T} \bigl( \Vert \nabla \Phi \Vert ^{2}_{2} \bigr) \vert \nabla \Phi \vert ^{2}- \int _{0}^{t}h_{1}(t-\varsigma ) \nabla \Phi \nabla \Phi (\varsigma )\,d\varsigma +\zeta _{1}\Phi \Phi _{t} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)-2} \biggr\} \,dx\,dt \\ &\quad =0. \end{aligned}$$
(6.8)

By (6.2) and the relation

$$\begin{aligned} &\frac{d}{dt} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}\bigl(\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}+\nabla \Phi \nabla \Phi _{t} \bigr) \,dx \biggr) \\ &\quad =p \mathfrak{E}^{p-1}(t)\mathfrak{E}'(t) \biggl( \int _{\Omega}\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}\,dx+ \int _{\Omega} \nabla \Phi \nabla \Phi _{t} \,dx \biggr) \\ &\qquad +\mathfrak{E}^{p}(t)\frac{d}{dt} \biggl( \int _{\Omega}\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}\,dx+ \int _{\Omega} \nabla \Phi \nabla \Phi _{t} \,dx \biggr), \end{aligned}$$

we deduce

$$\begin{aligned} &(\eta +2) \int _{\Im}^{T}\mathfrak{E}^{p+1}(t) \,dt \\ &\quad = \underbrace{ \int _{\Im}^{T}\frac{d}{dt} \biggl( \mathfrak{E}^{p}(t) \int _{\Omega}\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}\,dx \biggr)\,dt}_{I_{1}}- \underbrace{p \int _{\Im}^{T} \biggl(\mathfrak{E}^{p-1}(t) \mathfrak{E}'(t) \int _{\Omega}\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}\,dx \biggr)\,dt}_{I_{2}} \\ &\qquad +(\eta +1) \underbrace{ \int _{\Im}^{T}\frac{d}{dt} \biggl( \mathfrak{E}^{p}(t) \int _{\Omega}\nabla \Phi \nabla \Phi _{t}\,dx \biggr)\,dt}_{I_{3}} \\ &\qquad - \underbrace{(\eta +1)p \int _{\Im}^{T} \biggl(\mathfrak{E}^{p-1}(t) \mathfrak{E}'(t) \int _{\Omega}\nabla \Phi \nabla \Phi _{t}\,dx \biggr)\,dt}_{I_{4}}- \underbrace{\frac{\eta}{2} \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega} \vert \nabla \Phi _{t} \vert ^{2}\,dx \biggr)\,dt}_{I_{5}} \\ &\qquad + \underbrace{\frac{\eta +2}{2} \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \biggl(1- \int _{0}^{t}h_{1}(\varsigma )\,d \varsigma \biggr) \int _{\Omega} \vert \nabla \Phi \vert ^{2}\,dx \biggr)\,dt}_{I_{6}} \\ &\qquad + \underbrace{ \biggl((\eta +1)+\frac{\eta +2}{2(\gamma +1)} \biggr) \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega} \Vert \nabla \Phi \Vert ^{2\gamma}_{2} \vert \nabla \Phi \vert ^{2}\,dx \biggr)\,dt}_{I_{7}} \\ &\qquad + \underbrace{(\eta +1)\zeta _{1} \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}\Phi \Phi _{t} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)-2} \,dx \biggr) \,dt}_{I_{8}} \\ &\qquad + \underbrace{\frac{\eta +2}{2} \int _{\Im}^{T} \bigl(\mathfrak{E}^{p}(t) (h_{1}\circ \nabla \Phi ) (t) \bigr)\,dt}_{I_{9}} \\ &\qquad - \underbrace{(\eta +1) \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{0}^{t}h_{1}(t-\varsigma ) \int _{\Omega}\nabla \Phi \nabla \Phi (\varsigma )\,dx\,d\varsigma \biggr)\,dt}_{I_{10}}. \end{aligned}$$
(6.9)

Now, we estimate \(I_{j},j=1,\ldots,10\), of the RHS in (6.9), we have

$$\begin{aligned} I_{1} =&\mathfrak{E}^{p}(T) \int _{\Omega}\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}(x,T)\,dx-\mathfrak{E}^{p}(\Im ) \int _{ \Omega}\Phi \vert \Phi _{t} \vert ^{\eta } \Phi _{t}(x, \Im )\,dx \\ \leq &c\mathfrak{E}^{p}(T) \bigl\{ \bigl\Vert \Phi (x,T) \bigr\Vert _{2}^{2}+ \bigl\Vert \Phi _{t}(x,T) \bigr\Vert _{\eta +2}^{\eta +2} \bigr\} \\ &{}+c\mathfrak{E}^{p}(\Im ) \bigl\{ \bigl\Vert \Phi (x,\Im ) \bigr\Vert _{2}^{2}+ \bigl\Vert \Phi _{t}(x,\Im ) \bigr\Vert _{\eta +2}^{\eta +2} \bigr\} \\ \leq &c\mathfrak{E}^{p}(T) \bigl\{ c_{*} \bigl\Vert \nabla \Phi (T) \bigr\Vert ^{2}_{2}+ \mathfrak{E}(T) \bigr\} \\ &{}+c\mathfrak{E}^{p}(\Im ) \bigl\{ c_{*} \bigl\Vert \nabla \Phi (\Im ) \bigr\Vert ^{2}_{2}+ \mathfrak{E}(\Im ) \bigr\} \\ \leq &c_{1} \bigl(\mathfrak{E}^{p+1}(T)+ \mathfrak{E}^{p+1}(\Im ) \bigr). \end{aligned}$$
(6.10)

Because \(\mathfrak{E}\) is a nonincreasing function, we find

$$\begin{aligned} I_{1}\leq c\mathfrak{E}^{p+1}(\Im )\leq \mathfrak{E}^{p}(0) \mathfrak{E}(\Im )\leq c\mathfrak{E}(\Im ). \end{aligned}$$
(6.11)

Similarly, we find

$$\begin{aligned} &I_{2}\leq -p \int _{\Im}^{T}\mathfrak{E}^{p-1}(t) \mathfrak{E}'(t) \bigl(c_{*}\mathfrak{E}(t)+ \mathfrak{E}(t) \bigr)\,dt \\ &\hphantom{I_{2}}\leq -c \int _{\Im}^{T}\mathfrak{E}^{p}(t) \mathfrak{E}'(t)\,dt\leq c \mathfrak{E}^{p+1}(\Im )\leq c\mathcal{E}(\Im ), \end{aligned}$$
(6.12)
$$\begin{aligned} &I_{3}\leq c \int _{\Im}^{T}\mathfrak{E}^{p}(t) \bigl( \Vert \nabla \Phi \Vert ^{2}_{2}+ \Vert \nabla \Phi _{t} \Vert ^{2}_{2}\bigr)\,dt \\ &\hphantom{I_{3}}\leq c\mathfrak{E}^{p+1}(\Im )\leq \mathfrak{E}^{p}(0) \mathfrak{E}( \Im )\leq c\mathfrak{E}(\Im ), \end{aligned}$$
(6.13)

and

$$\begin{aligned} I_{4} \leq &-(\eta +1)p \int _{\Im}^{T}\mathfrak{E}^{p-1}(t) \mathfrak{E}'(t) \bigl(c\mathfrak{E}(t) \bigr)\,dt \\ \leq &-c \int _{\Im}^{T}\mathfrak{E}^{p}(t) \mathfrak{E}'(t)\,dt\leq c \mathfrak{E}^{p+1}(\Im )\leq c\mathfrak{E}(\Im ). \end{aligned}$$
(6.14)

Next, we get

$$\begin{aligned} I_{5} =&-\frac{\eta}{2}c \int _{\Im}^{T} \bigl(\mathfrak{E}^{p}(t) \Vert \nabla \Phi _{t} \Vert ^{2}_{2} \bigr)\,dt \\ \leq &c \int _{\Im}^{T}\mathfrak{E}^{p}(t) \mathfrak{E}(t)\,dt\leq c \mathfrak{E}^{p+1}(\Im )\leq c\mathfrak{E}( \Im ). \end{aligned}$$
(6.15)

After that, we get

$$\begin{aligned} I_{6} \leq &(\eta +2) \int _{\Im}^{T}\mathfrak{E}^{p}(t) \mathfrak{E}(t)\,dt \leq c\mathfrak{E}^{p+1}(\Im )\leq c\mathfrak{E}( \Im ). \end{aligned}$$
(6.16)

For the next term, we have

$$\begin{aligned} I_{7} =& \bigl(2(\gamma +1) (\eta +1)+(\eta +2) \bigr) \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \frac{ \Vert \nabla \Phi \Vert ^{2(\gamma +1)}_{2}}{2(\gamma +1)} \biggr)\,dt \\ \leq &c \int _{\Im}^{T}\mathfrak{E}^{p}(t) \mathfrak{E}(t)\,dt\leq c \mathfrak{E}^{p+1}(\Im )\leq c\mathfrak{E}( \Im ), \end{aligned}$$
(6.17)

by Young’s inequality, we find

$$\begin{aligned} I_{8} =&(\eta +1)\zeta _{1} \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}\Phi \Phi _{t} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)-2} \,dx \biggr)\,dt \\ \leq &\varepsilon \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{ \Omega} \bigl\vert \Phi (t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt \\ &{}+c \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}c_{ \varepsilon}(x) \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt \\ \leq &\varepsilon \int _{\Im}^{T}\mathfrak{E}^{p}(t) \biggl[ \int _{ \Omega _{+}} \bigl\vert \Phi (t) \bigr\vert ^{m^{+}} \,dx+ \int _{\Omega _{-}} \bigl\vert \Phi (t) \bigr\vert ^{m^{-}} \,dx \biggr]\,dt \\ &{}+c \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}c_{ \varepsilon}(x) \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt. \end{aligned}$$

Here, utilizing \(H_{0}^{1}(\Omega )\hookrightarrow L^{m^{-}}(\Omega )\) and \(H_{0}^{1}(\Omega )\hookrightarrow L^{m^{+}}(\Omega )\), we get

$$\begin{aligned} I_{8} \leq &\varepsilon \int _{\Im}^{T}\mathfrak{E}^{p}(t) \bigl[c \bigl\Vert \nabla \Phi (t) \bigr\Vert ^{m^{+}}_{2} +c \bigl\Vert \nabla \Phi (t) \bigr\Vert ^{m^{-}}_{2} \bigr]\,dt \\ &{}+c \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}c_{ \varepsilon}(x) \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt \\ \leq &\varepsilon \int _{\Im}^{T}\mathfrak{E}^{p}(t) \bigl[c \mathfrak{E}^{\frac{m^{+}-2}{2}}(0)\mathfrak{E}(t) +c\mathfrak{E}^{ \frac{m^{-}-2}{2}}(0) \mathfrak{E}(t) \bigr]\,dt \\ &{}+c \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}c_{ \varepsilon}(x) \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt \\ \leq &c\varepsilon \int _{\Im}^{T}\mathfrak{E}^{p+1}(t) \,dt+c \int _{ \Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(x) \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt \end{aligned}$$
(6.18)

and

$$\begin{aligned} I_{9} \leq &(\eta +2) \int _{\Im}^{T}\mathfrak{E}^{p}(t) \mathfrak{E}(t)\,dt \leq c\mathfrak{E}^{p+1}(\Im )\leq c\mathfrak{E}( \Im ). \end{aligned}$$
(6.19)

By Young’s inequality, we get

$$\begin{aligned} I_{10} \leq &(\eta +1) \int _{\Im}^{T} (\mathfrak{E}^{p}(t) \bigl(c \Vert \nabla \Phi \Vert ^{2}_{2}+c(h_{1} \circ \nabla \Phi ) (t) \bigr)\,dt \\ \leq &c \int _{\Im}^{T}\mathfrak{E}^{p}(t) \mathfrak{E}(t)\,dt\leq c \mathfrak{E}^{p+1}(\Im )\leq c\mathfrak{E}( \Im ). \end{aligned}$$
(6.20)

By substituting (6.11)–(6.20) into (6.9), we find

$$\begin{aligned} \int _{\Im}^{T}\mathfrak{E}^{p+1}(t) \,dt \leq &c\varepsilon \int _{\Im}^{T} \mathfrak{E}^{p+1}(t) \,dt+c\mathfrak{E}(\Im ) \\ &{}+c \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}c_{ \varepsilon}(x) \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt. \end{aligned}$$
(6.21)

Now, we choose ε so small that

$$\begin{aligned} \int _{\Im}^{T}\mathfrak{E}^{p+1}(t) \,dt \leq &c\mathfrak{E}(\Im )+c \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega}c_{\varepsilon}(x) \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt. \end{aligned}$$
(6.22)

After, we fix ε, \(c_{\varepsilon}(x)\leq M\) since \(m(x)\) is bounded.

Then, by (6.3), we have

$$\begin{aligned} \int _{\Im}^{T}\mathfrak{E}^{p+1}(t) \,dt \leq &c\mathfrak{E}(\Im )+cM \int _{\Im}^{T} \biggl(\mathfrak{E}^{p}(t) \int _{\Omega} \bigl\vert \Phi _{t}(t) \bigr\vert ^{m(x)} \,dx \biggr)\,dt \\ \leq &c\mathfrak{E}(\Im )-\frac{cM}{\zeta _{1}} \int _{\Im}^{T} \mathfrak{E}^{p}(t) \mathfrak{E}'(t)\,dt \\ \leq &c\mathfrak{E}(\Im )+\frac{cM}{\zeta _{1}(p+1)} \bigl[ \mathfrak{E}^{p+1}( \Im )-\mathfrak{E}^{p+1}(T) \bigr]\leq c \mathfrak{E}(\Im ). \end{aligned}$$
(6.23)

Taking \(T\rightarrow \infty \), we get

$$\begin{aligned} \int _{\Im}^{\infty}\mathfrak{E}^{p+1}(t) \,dt\leq c\mathfrak{E}(\Im ). \end{aligned}$$
(6.24)

Hence, Komornik’s Lemma 6.1 (with \(\aleph =p=\frac{m^{+}-2}{2}\)) gives (6.6). This ends the proof. □

7 Conclusion

In this paper, we investigated a coupled nonlinear viscoelastic Kirchhoff-type system with sources and variable exponents. Firstly, we showed the global existence of the solution. Next, we proved the blow-up result with negative initial energy. After that, we established the exponential growth of solution but with positive initial energy. At the end of this study we obtained the general decay by Komornik’s lemma in the case of absence of the source terms.

As for the future vision, we will apply the same method to study other systems, but with the addition of some damping terms.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Agre, K., Rammaha, M.A.: Systems of nonlinear wave equations with damping and source terms. Differ. Integral Equ. 19, 1235–1270 (2007)

    MathSciNet  Google Scholar 

  2. Al-Mahdi, A.: The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: strong damping versus weak damping of variable-exponent type. AIMS Math. 8(11), 27439–27459 (2023). https://doi.org/10.3934/math.20231404

    Article  MathSciNet  Google Scholar 

  3. Ball, J.: Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation. Q. J. Math. 28, 473–486 (1977)

    Article  MathSciNet  Google Scholar 

  4. Ben Aissa, A., Ouchenane, D., Zennir, K.: Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms. Nonlinear Stud. 19(4), 523–535 (2012)

    MathSciNet  Google Scholar 

  5. Bland, D.R.: The Theory of Linear Viscoelasticity. Courier Dover Publications, Mineola (2016)

    Google Scholar 

  6. Boulaaras, S., Choucha, A., Ouchenane, D., et al.: Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents. J. Inequal. Appl. 2024, 55 (2024). https://doi.org/10.1186/s13660-024-03132-2

    Article  MathSciNet  Google Scholar 

  7. Boulaaras, S., Choucha, A., Ouchenane, D., Cherif, B.: Blow up of solutions of two singular nonlinear viscoelastic equations with general source and localized frictional damping terms. Adv. Differ. Equ. 2020, 310 (2020)

    Article  MathSciNet  Google Scholar 

  8. Boulaaras, S., Choucha, A., Ouchenane, D., Jan, R.: Blow up, growth, and decay of solutions for a class of coupled nonlinear viscoelastic Kirchhoff equations with distributed delay and variable exponents. J. Inequal. Appl. 2024, 55 (2024). https://doi.org/10.1186/s13660-024-03132-2.

    Article  MathSciNet  Google Scholar 

  9. Cavalcanti, M.M., Cavalcanti, D., Ferreira, J.: Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 24, 1043–1053 (2001)

    Article  MathSciNet  Google Scholar 

  10. Choucha, A., Boulaaras, S., Jan, R., Alharbi, R.: Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents. Math. Methods Appl. Sci., 1–18 (2024). https://doi.org/10.1002/mma.9950

    Article  Google Scholar 

  11. Choucha, A., Boulaaras, S., Ouchenane, D., Beloul, S.: General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, logarithmic nonlinearity and distributed delay terms. Math. Methods Appl. Sci. 44. 1–22 (2020). https://doi.org/10.1002/mma.7121

    Article  MathSciNet  Google Scholar 

  12. Choucha, A., Boulaaras, S.M.: Asymptotic behavior for a viscoelastic Kirchhoff equation with distributed delay and Balakrishnan-Taylor damping. Bound. Value Probl. (2021). https://doi.org/10.1186/s13661-021-01555-0

    Article  MathSciNet  Google Scholar 

  13. Choucha, A., Ouchenane, D., Boulaaras, S.: Blow-up of a nonlinear viscoelastic wave equation with distributed delay combined with strong damping and source terms. J. Nonlinear Funct. Anal. (2020). https://doi.org/10.23952/jnfa.2020.31

    Article  Google Scholar 

  14. Choucha, A., Ouchenane, D., Zennir, K.: Exponential growth of solution with \(L_{p}\)-norm for class of non-linear viscoelastic wave equation with distributed delay term for large initial data. Open J. Math. Anal. 4(1), 76–83 (2020)

    Article  Google Scholar 

  15. Coleman, B.D., Noll, W.: Foundations of linear viscoelasticity. Rev. Mod. Phys. 33(2), 239 (1961)

    Article  MathSciNet  Google Scholar 

  16. Ekinci, F., Piskin, E., Boulaaras, S.M., Mekawy, I.: Global existence and general decay of solutions for a quasilinear system with degenerate damping terms. J. Funct. Spaces (2021)

  17. Georgiev, V., Todorova, G.: Existence of a solution of the wave equation with nonlinear damping and source term. J. Differ. Equ. 109, 295–308 (1994)

    Article  MathSciNet  Google Scholar 

  18. Kirchhoff, G.: Vorlesungen uber Mechanik. Tauber, Leipzig (1883)

    Google Scholar 

  19. Komornik, V.: Exact controlability and stabilisation. The multiplier method, Masson and Wiley

  20. Liu, W.: General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal. 73, 1890–1904 (2010)

    Article  MathSciNet  Google Scholar 

  21. Mesaoudi, S., Kafini, M.: On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay. Ann. Pol. Math. 122(1), 49–70 (2019)

    Article  MathSciNet  Google Scholar 

  22. Mesloub, F., Boulaaras, S.: General decay for a viscoelastic problem with not necessarily decreasing kernel. J. Appl. Math. Comput. 58, 647–665 (2018). https://doi.org/10.1007/S12190-017-1161-9

    Article  MathSciNet  Google Scholar 

  23. Messaoudi, S.A., Said-Houari, B.: Global nonexistence of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms. J. Math. Anal. Appl. 365, 277–287 (2010)

    Article  MathSciNet  Google Scholar 

  24. Ouchenane, D., Boulaaras, S., Choucha, A., Alngga, M.: Blow-up and general decay of solutions for a Kirchhoff-type equation with distributed delay and variable-exponents. Quaest. Math. (2023). https://doi.org/10.2989/16073606.2023.2183156

    Article  Google Scholar 

  25. Pişkin, E.: Blow up of solutions for a nonlinear viscoelastic wave equations with variable exponents. Middle East J. Sci. 5(2), 134–145 (2019)

    Article  MathSciNet  Google Scholar 

  26. Pişkin, E., Ekinci, F.: General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms. Math. Methods Appl. Sci. 42(16), 5468–5488 (2019)

    Article  MathSciNet  Google Scholar 

  27. Said-Houari, B.: Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms. Differ. Integral Equ. 23, 79–92 (2010)

    MathSciNet  Google Scholar 

  28. Vitillaro, E.: Global existence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149, 155–182 (1999)

    Article  MathSciNet  Google Scholar 

  29. Yilmaz, N., Piskin, E., Boulaaras, S.: Viscoelastic plate equation with variable exponents: existence and blow-up. J. Anal. (2024). https://doi.org/10.1007/s41478-024-00765-w

    Article  Google Scholar 

Download references

Funding

No funding is associated with the current research work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study. All authors read and approve the final manuscript.

Corresponding authors

Correspondence to Abdelbaki Choucha or Salah Boulaaras.

Ethics declarations

Ethical approval

There is no ethical issue in this work. All the authors actively participated in this research and approved it for publication.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choucha, A., Haiour, M. & Boulaaras, S. On a class of a coupled nonlinear viscoelastic Kirchhoff equations variable-exponents: global existence, blow up, growth and decay of solutions. Bound Value Probl 2024, 57 (2024). https://doi.org/10.1186/s13661-024-01864-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01864-0

Mathematics Subject Classification

Keywords