Skip to main content

Existence of periodic solutions for a class of \((\phi _{1},\phi _{2})\)-Laplacian difference system with asymptotically \((p,q)\)-linear conditions


In this paper, we consider a \((\phi _{1},\phi _{2})\)-Laplacian system as follows:

$$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{1} (\Delta u(t-1) )+\nabla _{u} F(t,u(t),v(t))=0, \\ \Delta \phi _{2} (\Delta v(t-1) )+\nabla _{v} F(t,u(t),v(t))=0, \end{cases}\displaystyle \end{aligned}$$

where \(F(t,u(t),v(t))=-K(t,u(t),v(t))+W(t,u(t),v(t))\) is T-periodic in t. By using the mountain pass theorem, we obtain that the \((\phi _{1},\phi _{2})\)-Laplacian system has at least one periodic solution if W is asymptotically \((p,q)\)-linear at infinity. Our results improve and extend some known works.

1 Introduction

Let N, \(\mathbb{Z}\mathbbm{,}\) and \(\mathbb{R}\) represent the sets of all natural numbers, integers, and real numbers, respectively. In this paper, we investigate the following \((\phi _{1},\phi _{2})\)-Laplacian difference system:

$$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{1} (\Delta u(t-1) )+\nabla _{u} F(t,u(t),v(t))=0 \\ \Delta \phi _{2} (\Delta v(t-1) )+\nabla _{v} F(t,u(t),v(t))=0, \end{cases}\displaystyle \end{aligned}$$

where Δ is the forward difference operator, \(t\in \mathbb{Z}\), \(u, v\in \mathbb{R}^{N}\), \(F(t,x_{1},x_{2})=-K(t,x_{1},x_{2})+W(t,x_{1},x_{2})\), \(K,W:\mathbb{Z}\times \mathbb{R}^{N}\times \mathbb{R}^{N}\rightarrow \mathbb{R}\) are T-periodic in t, \(\phi _{i}, i=1,2\) satisfy the following condition:

\((\mathcal{A}0)\) \(\phi _{i}: \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}\), and \(\phi _{i}(0)=0\), \(\phi _{i}=\nabla \Phi _{i}\), \(\Phi _{i}\in C^{1}(\mathbb{R}^{N},[0,+\infty ))\) strictly convex, \(\Phi _{i}(0)=0\).

Remark 1.1

Condition \((\mathcal{A}0)\) is introduced in [1, 2] to depict the classical homeomorphism. If \(\Phi _{i}(x)\rightarrow +\infty \) (\(|x|\rightarrow \infty \)), there exists \(\delta _{i}>0\) such that

$$ \Phi _{i}(x)\geq \delta _{i}\bigl( \vert x \vert -1\bigr),\quad x\in \mathbb{R}^{N}, $$

where \(\delta _{i}=\min \Phi _{i}(x)\), \((|x|=1, i=1,2)\).

The variational method (see [35]) has become an important method to study periodic solutions, homoclinic solutions, ground state solutions, sign-changing solutions of differential equations ([69]), difference equations ([1012]), Hamiltonian systems ([1318]), poly-Laplacian system ([19, 20]), fractional problems ([2123]), and so on. The nonlinear difference equations have become an important theoretical basis for computer science, ecology, engineering control, economics, etc. Mawhin ([1, 2]) considered the existence of periodic solutions for ϕ-Laplacian difference systems:

$$ \Delta \phi \bigl[\Delta u(t-1)\bigr]=\nabla _{u}F \bigl[n,u(t)\bigr]+h(t)\quad (t\in \mathbb{Z}), $$

where \(\phi =\nabla \Phi \), \(\phi :\mathbb{R}^{N}\rightarrow B_{a}\subset \mathbb{R}^{N}\) or \(\phi :B_{a}\rightarrow \mathbb{R}^{N}\). He studied three cases of ϕ: (1) \(\phi :\mathbb{R}^{N}\rightarrow \mathbb{R}^{N}\); (2) \(\phi :\mathbb{R}^{N}\rightarrow B_{a}\) \((a<+\infty )\); (3) \(\phi :B_{a}\subset \mathbb{R}^{N}\rightarrow \mathbb{R}^{N}\).

Zhang and Wang in [24] investigated the existence of homoclinic solutions for the following \((\phi _{1},\phi _{2})\)-Laplacian systems:

$$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{1} (\Delta u_{1}(t-1) )+\nabla _{u_{1}} V (t,u_{1}(t),u_{2}(t) )=f_{1}(t) \\ \Delta \phi _{2} (\Delta u_{2}(t-1) )+\nabla _{u_{2}} V (t,u_{1}(t),u_{2}(t) )=f_{2}(t), \end{cases}\displaystyle \end{aligned}$$

where \(\phi :\mathbb{R}^{N}\rightarrow \mathbb{R}^{N}\), when \(V=-K+W\), K possess p-sublinear, W possess p-superlinear growth, by using a linking theorem, they obtained the existence of homoclinic solutions for system (1.3). In [25], Deng et al. studied the existence of periodic solution for system (1.3) with classical or bounded homeomorphism \(f_{1}=f_{2}=0\). Using the saddle point theorem and the least action principle, they obtained that system has at least one periodic solution under \((p, q)\)-sublinear condition and Lipschitz condition. In [26], Zhang et al. studied the \((\phi _{1},\phi _{2})\)-Laplacian difference system with a parameter. Using the Clark’s theorem, they obtained system has multiplicity results of homoclinic solutions under sub\((p, q)\)-linear growth or \((p, q)\)-linear growth. In [27], by using the genus theory, Wang et al. considered the existence and multiplicity of weak solution for \((\phi _{1},\phi _{2})\)-Laplacian elliptic system, under sub-linear growth condition and symmetric conditions. However, few people investigated the existence and multiplicity of solution for system (1.1) under asymptotically linear growth.

Inspired by the results above, in this paper, we study the existence of periodic solutions for \((\phi _{1},\phi _{2})\)-Laplacian system (1.1) with classical homeomorphism, when W satisfies asymptotically \((p, q)\)-linear condition at infinity.

Theorem 1.1

Suppose that \((\mathcal {A}0)\) holds, K and W satisfy the following conditions:

\((\mathcal {A}1)\) there exist constants \(c_{1}, c_{2}>0\), \(p, q>1\) such that

$$ \Phi _{1}(x)\geq c_{1} \vert x \vert ^{p},\qquad \Phi _{2}(y)\geq c_{2} \vert y \vert ^{q}, $$


$$ \bigl(\phi _{1}(x),x\bigr)+\bigl(\phi _{2}(y),y\bigr) \leq \max \{p,q\}\bigl[\Phi _{1}(x)+\Phi _{2}(y)\bigr]; $$

(K1) there exist constants \(b_{1}, b_{2}>0\), \(\lambda _{1}\in (1,p]\), \(\lambda _{2}\in (1,q]\) such that

$$ K(t,0,0)=0,\qquad K(t,u,v)\geq b_{1} \vert u \vert ^{\lambda _{1}}+b_{2} \vert v \vert ^{ \lambda _{2}},\quad \forall (t,u,v)\in \mathbb{Z}[1,T]\times \mathbb{R}^{N} \times \mathbb{R}^{N}; $$


$$\begin{aligned} &\bigl(\nabla _{u}K(t,u,v),u\bigr)+\bigl(\nabla _{v}K(t,u,v),v \bigr)\leq \max \{p,q\}K(t,u,v), \\ &\quad \forall (t,u,v)\in \mathbb{Z}[1,T]\times \mathbb{R}^{N}\times \mathbb{R}^{N}; \end{aligned}$$


$$ \underset{ \vert (u,v) \vert \rightarrow 0}{\lim \sup}\frac{W(t,u,v)}{ \vert u \vert ^{p}+ \vert v \vert ^{q}}< \min \{b_{1},b_{2} \}, \quad \textit{uniformly for } t\in \mathbb{Z}[1,T]; $$

(W2) there exists \(g\in L^{1}(\mathbb{Z}[1,T],\mathbb{R})\) such that

$$ \bigl(\nabla _{u}W(t,u,v),u\bigr)+\bigl(\nabla _{v}W(t,u,v),v \bigr)-\max \{p,q\}W(t,u,v) \geq g(t) $$


$$\begin{aligned} &\lim_{|(u,v)|\rightarrow \infty}\bigl[\bigl(\nabla _{u}W(t,u,v),u \bigr)+\bigl(\nabla _{v}W(t,u,v),v\bigr) -\max \{p,q\}W(t,u,v) \bigr]=+\infty \\ &\quad \forall t\in \mathbb{Z}[1,T]; \end{aligned}$$

(W3) there exist constants \(a_{1}, a_{2}>0\), \(d>0\) such that

$$ W(t,u,v)\leq a_{1} \vert u \vert ^{p}+a_{2} \vert v \vert ^{q}+d, \quad \forall (t,u,v)\in \mathbb{Z}[1,T] \times \mathbb{R}^{N}\times \mathbb{R}^{N}; $$

(W4) there exists \((u_{0},v_{0})\in \mathbb{R}^{N}\times \mathbb{R}^{N}\) such that

$$ \sum_{t=1}^{T} \biggl[K(t,u_{0},v_{0})-W(t,u_{0},v_{0})- \frac{g(t)}{\max \{p,q\}} \biggr]< 0. $$

Then system (1.1) possesses at least one nontrivial periodic solution.

Remark 1.2

There are many examples that satisfy \((\mathcal {A}0)\) and \((\mathcal {A}1)\), such as

$$ \phi _{1}(x)=a_{0}p \vert x \vert ^{p-1}+b_{0} \vert x \vert ^{\alpha -1},\qquad \phi _{2}(y)=c_{0}q \vert y \vert ^{q-1}+d_{0} \vert y \vert ^{ \beta -1}, $$

for some \(a_{0},b_{0},c_{0},d_{0}>0\), where \(1\leq \alpha \leq p\), \(1\leq \beta \leq q\).

Remark 1.3

Theorem 1.1 extend the results in [12] (p-Laplacian discrete system) and [14] (second-order Hamiltonian system). We consider the more general \((\phi _{1},\phi _{2})\)-Laplacian system (1.1). Even if \(\phi _{1}=\phi _{2}=:\phi \), \(u=v\), \(F(t,u,v)\equiv F(t,v,u)\), system (1.1) is still different from [12, 28], and [10].

Remark 1.4

From \((W1)\)\((W3)\), it can be concluded that W satisfies asymptotically \((p, q)\)-linear condition at infinity. Moreover, there are many examples that satisfy Theorem 1.1, which we will illustrate in the fourth part.

2 Preliminaries

We use \((\cdot , \cdot )\) and \(|\cdot |\) to represent the inner product and the Euclidean norm in \(\mathbb{R}^{N}\). Define

$$ E_{T}=\bigl\{ u:=\bigl\{ u(t)\bigr\} \big|u(t+T)=u(t),u(t)\in \mathbb{R}^{N},t\in \mathbb{Z}\bigr\} , $$


$$ \Vert u \Vert _{s}= \Biggl(\sum_{t=1}^{T} \bigl( \bigl\vert \Delta u(t) \bigr\vert ^{s}+ \bigl\vert u(t) \bigr\vert ^{s} \bigr) \Biggr)^{1/s}, \quad u\in E_{T}. $$

Let \(E=E_{T}\times E_{T}\), for \(\varpi =(u,v)^{\tau}\in E\), define

$$ \Vert \omega \Vert = \bigl\Vert (u,v) \bigr\Vert = \Vert u \Vert _{p}+ \Vert v \Vert _{q}. $$

Then E is separable and reflexive Banach space. Moreover, define

$$ \Vert v \Vert _{[r]}= \Biggl(\sum_{t=1}^{T} \bigl\vert v(t) \bigr\vert ^{r} \Biggr)^{1/r},\quad r>1, \qquad \Vert v \Vert _{\infty}=\max_{t\in \mathbb{Z}[1,T]} \bigl\vert v(t) \bigr\vert . $$

For \(u, v\in E_{T}\), it is easy to obtain that there exists \(C_{0}>0\) such that

$$\begin{aligned} \Vert u \Vert _{\infty}\leq C_{0} \Vert u \Vert _{p}, \qquad \Vert v \Vert _{\infty}\leq C_{0} \Vert v \Vert _{q}. \end{aligned}$$

Define \(\mathcal{J}:E\rightarrow \mathbb{R}\), as

$$\begin{aligned} \mathcal{J}(u,v)=\sum_{t=1}^{T} \bigl[\Phi _{1}\bigl(\Delta u(t)\bigr)+\Phi _{2}\bigl( \Delta v(t)\bigr)-F\bigl(t,u(t),v(t)\bigr) \bigr]. \end{aligned}$$

Then \(\mathcal{J}\in C^{1}(E,\mathbb{R})\), for each \(\varpi =(u,v)^{\tau}\), \(\psi =(\psi _{1}, \psi _{2})^{\tau}\in E\), one can easily check that

$$\begin{aligned} \begin{aligned} \bigl\langle \mathcal{J}'(\varpi ),\psi \bigr\rangle &=\bigl\langle \mathcal{J}'(u,v),( \psi _{1}, \psi _{2})\bigr\rangle =\bigl\langle \mathcal{J}_{u}(u,v), \psi _{1} \bigr\rangle +\bigl\langle \mathcal{J}_{v}(u,v), \psi _{2}\bigr\rangle \\ &=\sum_{t=1}^{T} \bigl[\bigl(\phi _{1}\bigl(\Delta u(t)\bigr),\Delta \psi _{1}(t)\bigr)+ \bigl( \nabla _{u}K\bigl(t,u(t),v(t)\bigr),\psi _{1}(t) \bigr)\\ &\quad -\bigl(\nabla _{u}W\bigl(t,u(t),v(t)\bigr), \psi _{1}(t)\bigr) \bigr] \\ &\quad +\sum_{t=1}^{T} \bigl[\bigl(\phi _{2}\bigl(\Delta v(t)\bigr),\Delta \psi _{2}(t)\bigr)+ \bigl( \nabla _{v}K\bigl(t,u(t),v(t)\bigr),\psi _{2}(t) \bigr)\\ &\quad -\bigl(\nabla _{v}W\bigl(t,u(t),v(t)\bigr), \psi _{2}(t)\bigr) \bigr]. \end{aligned} \end{aligned}$$

Lemma 2.1

(see [25]) For any \(\varpi =(u,v)^{\tau}\), \(\psi =(\psi _{1}, \psi _{2})^{\tau}\in E\), we have:

$$\begin{aligned} &-\sum_{t=1}^{T}\bigl(\Delta \phi _{1}\bigl(\Delta u(t-1)\bigr),\psi _{1}(t)\bigr)=\sum _{t=1}^{T}\bigl( \phi _{1} \bigl(\Delta u(t)\bigr),\Delta \psi _{1}(t)\bigr),\\ &-\sum_{t=1}^{T}\bigl(\Delta \phi _{2}\bigl(\Delta v(t-1)\bigr),\psi _{2}(t)\bigr)=\sum _{t=1}^{T}\bigl( \phi _{2} \bigl(\Delta v(t)\bigr),\Delta \psi _{2}(t)\bigr). \end{aligned}$$

Through Lemma 2.1, we obtain

$$\begin{aligned} & \sum_{t=1}^{T} \bigl[\bigl(\phi _{1}\bigl(\Delta u(t)\bigr),\Delta \psi _{1}(t)\bigr)+\bigl( \nabla _{u}K\bigl(t,u(t),v(t) \bigr),\psi _{1}(t)\bigr)-\bigl(\nabla _{u}W \bigl(t,u(t),v(t)\bigr), \psi _{1}(t)\bigr) \bigr] \\ &\qquad +\sum_{t=1}^{T} \bigl[\bigl(\phi _{2}\bigl(\Delta v(t)\bigr),\Delta \psi _{2}(t)\bigr)+ \bigl( \nabla _{v}K\bigl(t,u(t),v(t)\bigr),\psi _{2}(t) \bigr)\\ &\qquad -\bigl(\nabla _{v}W\bigl(t,u(t),v(t)\bigr), \psi _{2}(t)\bigr) \bigr] \\ &\quad =\sum_{t=1}^{T} \bigl[- \bigl(\Delta \phi _{1}\bigl(\Delta u(t-1)\bigr),\psi _{1}(t)\bigr)+ \bigl( \nabla _{u}K\bigl(t,u(t),v(t)\bigr),\psi _{1}(t) \bigr)\\ &\qquad -\bigl(\nabla _{u}W\bigl(t,u(t),v(t)\bigr), \psi _{1}(t)\bigr) \bigr] \\ &\qquad +\sum_{t=1}^{T} \bigl[- \bigl( \Delta \phi _{2}\bigl(\Delta v(t-1)\bigr),\psi _{2}(t) \bigr)+\bigl( \nabla _{v}K\bigl(t,u(t),v(t)\bigr),\psi _{2}(t)\bigr)\\ &\qquad -\bigl(\nabla _{v}W\bigl(t,u(t),v(t) \bigr), \psi _{2}(t)\bigr) \bigr] \\ &\quad =\sum_{t=1}^{T} \bigl[\bigl(- \Delta \phi _{1}\bigl(\Delta u(t-1)\bigr)+\nabla _{u}K \bigl(t,u(t),v(t)\bigr)- \nabla _{u}W\bigl(t,u(t),v(t)\bigr),\psi _{1}(t)\bigr) \bigr] \\ &\qquad +\sum_{t=1}^{T} \bigl[\bigl(- \Delta \phi _{2}\bigl(\Delta v(t-1)\bigr)+\nabla _{v}K \bigl(t,u(t),v(t)\bigr)- \nabla _{v}W\bigl(t,u(t),v(t)\bigr),\psi _{2}(t)\bigr) \bigr]. \end{aligned}$$

From the above equation, we can easily obtain that the critical points of \(\mathcal{J}\) in E are periodic solutions of system (1.1).

Let X be a real Banach space. For \(J\in C^{1}(X,\mathbb{R})\), we say that J satisfies the (PS)-condition, if any sequence \(\{\varpi _{m}\}\in X\), \(J(\varpi _{m})\) is bounded, and \(J'(\varpi _{m})\rightarrow 0\) (\(m\rightarrow \infty \)) possesses a convergent subsequence.

Lemma 2.2

(see [4]) Suppose X is a real Banach space, \(J\in C^{1}(X,\mathbb{R})\) satisfies the (PS)-condition and the following conditions:

(i) \(J(0)=0\);

(ii) there exist constants \(\rho ,\alpha >0\) such that \(J|_{\partial B\rho (0)}\geq \alpha \);

(iii) there exists \(e\in X \setminus \overline{B}_{\rho}(0)\) such that \(J(e)\leq 0\),

then J possesses a critical value \(c\geq \alpha \) given by

$$ c=\inf_{g\in \Gamma}\max_{s\in [0,1]}J\bigl(g(s)\bigr), $$

where \(B_{\rho}(0)\) is an open ball in X of radius ρ at 0, and

$$ \Gamma =\bigl\{ g\in C\bigl([0,1], X\bigr): g(0)=0, g(1)=e\bigr\} . $$

Remark 2.1

Under the weaker Cerami condition than (PS), the mountain pass theorem still holds. A sequence \(\{\omega _{n}\}\) is called Cerami-sequence (henceforth denoted by \((C)\)-sequence), if \(\mathcal{J}\{\omega _{n}\}\) is bounded and \((1+\|u_{n}\|)\|\mathcal{J}'(u_{n})\|\rightarrow 0\) (\(n\rightarrow \infty \)), if any \((C)\)-sequence for \(\mathcal{J}\) has a convergent subsequence, we call the functional \(\mathcal{J}\) satisfies \((C)\)-condition.

3 Proofs

Lemma 3.1

Assume that \((\mathcal {A}0)\), \((\mathcal {A}1)\), \((K1)\), \((K2)\), \((W2)\), and \((W3)\) hold. Then J satisfies \((C)\)-condition.


Presume that \(\{\varpi _{n}=(u_{n}, v_{n})^{\tau}\}\subset E\) is a \((C)\) sequence for \(\mathcal{J}\), then \(\mathcal{J}(\varpi _{n})\) is bounded, \((1+\|\varpi _{n}\|)\|\mathcal{J}'(\varpi _{n})\|\rightarrow 0\) (\(n \rightarrow \infty \)). Hence, there exists \(M>0\) such that \(|\mathcal{J}(\varpi _{n})|\leq M\), \((1+\|\varpi _{n}\|)\|\mathcal{J}'(\varpi _{n})\|\leq M\). Then, by (2.2), (2.3), \((\mathcal {A}1)\), and \((K2)\), we have

$$\begin{aligned} \bigl(1+\max \{p,q\}\bigr)M &\geq \max \{p,q\} \mathcal{J}(u_{n},v_{n})-\bigl\langle \mathcal{J}_{u_{n}}(u_{n},v_{n}),u_{n} \bigr\rangle -\bigl\langle \mathcal{J}_{v_{n}}(u_{n},v_{n}),v_{n} \bigr\rangle \\ & \geq \sum_{t=1}^{T}\bigl[\bigl(\nabla _{u_{n}}W\bigl(t,u_{n}(t),v_{n}(t) \bigr),u_{n}(t)\bigr)+\bigl( \nabla _{v_{n}}W \bigl(t,u_{n}(t),v_{n}(t)\bigr),v_{n}(t) \bigr) \\ &\quad -\max \{p,q\}W\bigl(t,u_{n}(t),v_{n}(t)\bigr) \bigr]. \end{aligned}$$

Now, we demonstrate that \(\{\varpi _{n}=(u_{n},v_{n})^{\tau}\}\) is bounded, through contradiction. If \(\{\varpi _{n}\}\) is unbounded, then \(\{\varpi _{n}\}\) has a subsequence, still remember \(\{\varpi _{n}=(u_{n},v_{n})^{\tau}\}\), and \(\|u_{n}\|_{p}+\|v_{n}\|_{q} \to +\infty \), (\(n\rightarrow \infty \)). Therefore, we can suppose that \(\|u_{n}\|_{p}\rightarrow +\infty \). Then there are two situations.

(i): \(\|v_{n}\|_{q}\rightarrow +\infty \)

Let \(z_{1}^{(n)}=\frac{u_{n}}{\|u_{n}\|_{p}}\), \(z_{2}^{(n)}=\frac{v_{n}}{\|v_{n}\|_{q}}\), then \(\|z_{1}^{(n)}\|_{p}=1\) and \(\|z_{2}^{(n)}\|_{q}=1\). Hence, \(\{z_{i}^{(n)}\}(i=1,2)\) has a convergent subsequence, still remember \(\{z_{i}^{(n)}\}(i=1,2)\), such that \(z_{i}^{(n)}\to z_{i}(i=1,2)\), (\(n \rightarrow \infty \)), for some \((z_{1},z_{2})\in E\). Then

$$ z_{1}^{(n)}(t)\to z_{1}(t), \qquad z_{2}^{(n)}(t)\to z_{2}(t),\quad \text{for all } t\in \mathbb{Z}, \text{ as } n\to \infty . $$

By (\(\mathcal{A}1\)), (K1), and (W3), we have

$$\begin{aligned} \mathcal{J}(u_{n},v_{n}) & = \sum _{t=1}^{T}\bigl[\Phi _{1} \bigl(\Delta u_{n}(t)\bigr)+ \Phi _{2}\bigl(\Delta v_{n}(t)\bigr)+K\bigl(t,u_{n}(t),v_{n}(t) \bigr)-W\bigl(t,u_{n}(t),v_{n}(t)\bigr)\bigr] \\ & \ge \min \{c_{1},c_{2}\}\sum _{t=1}^{T}\bigl[ \bigl\vert \Delta u_{n}(t) \bigr\vert ^{p}+ \bigl\vert \Delta v_{n}(t) \bigr\vert ^{q}\bigr]-\sum _{t=1}^{T}\bigl[a_{1} \bigl\vert u_{n}(t) \bigr\vert ^{p}+a_{2} \bigl\vert v_{n}(t) \bigr\vert ^{q}\bigr]-dT \\ & \ge C_{1}\bigl( \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}\bigr)-C_{2} \Biggl[\sum _{t=1}^{T} \bigl\vert u_{n}(t) \bigr\vert ^{p}+ \sum_{t=1}^{T} \bigl\vert v_{n}(t) \bigr\vert ^{q} \Biggr]-dT, \end{aligned}$$

where \(C_{1}=\min \{c_{1},c_{2}\}\), \(C_{2}=\min \{c_{1},c_{2}\}+\max \{a_{1},a_{2}\}\). Then, we have

$$\begin{aligned} \frac{\mathcal{J}(u_{n},v_{n})}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} & \geq C_{1}-C_{2} \biggl[ \frac{{\sum_{t=1}^{T} \vert u_{n}(t) \vert ^{p}}}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} + \frac{{\sum_{t=1}^{T} \vert v_{n}(t) \vert ^{q}}}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} \biggr]- \frac{dT}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} \\ &\geq C_{1}-C_{2} \Biggl[\sum _{t=1}^{T} \frac{ \vert u_{n}(t) \vert ^{p}}{ \Vert u_{n} \Vert _{p}^{p}} +\sum _{t=1}^{T} \frac{ \vert v_{n}(t) \vert ^{q}}{ \Vert v_{n} \Vert _{q}^{q}} \Biggr]- \frac{dT}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} \\ &\geq C_{1}-C_{2} \Biggl[\sum _{t=1}^{T} \bigl\vert z_{1}^{(n)}(t) \bigr\vert ^{p} +\sum_{t=1}^{T} \bigl\vert z_{2}^{(n)}(t) \bigr\vert ^{q} \Biggr]-\frac{dT}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}}. \end{aligned}$$

Taking the limit of the above inequality, by (3.2), we have

$$\begin{aligned} \sum_{t=1}^{T} \bigl\vert z_{1}(t) \bigr\vert ^{p}+\sum _{t=1}^{T} \bigl\vert z_{2}(t) \bigr\vert ^{q}\ge \frac{C_{1}}{C_{2}}>0, \end{aligned}$$

then, there exists a set \(\Omega _{1}=\{t\in \mathbb{Z}: z_{1}(t)\neq 0 \text{ or } z_{2}(t) \neq 0\}\neq \phi \subset \mathbb{Z}\) such that

$$ \bigl\vert z_{1}(t) \bigr\vert + \bigl\vert z_{2}(t) \bigr\vert >0,\quad \forall t\in \Omega _{1}. $$


$$ \lim_{n\rightarrow \infty} \bigl\vert u_{n}(t) \bigr\vert + \bigl\vert v_{n}(t) \bigr\vert =+\infty , \quad \text{for all } t\in \Omega _{1}. $$

Then, by (3.6) and \((W2)\), for \(t\in \Omega _{1}\), we have

$$\begin{aligned} &\lim_{n\rightarrow \infty}\bigl[\bigl(\nabla _{u_{n}}W\bigl(t,u_{n}(t),v_{n}(t) \bigr),u_{n}(t)\bigr) +\bigl(\nabla _{v_{n}}W \bigl(t,u_{n}(t),v_{n}(t)\bigr),v_{n}(t) \bigr) \\ &\qquad -\max \{p,q\}W\bigl(t,u_{n}(t),v_{n}(t)\bigr) \bigr] \\ &\quad =+\infty . \end{aligned}$$

By \((\mathcal {A}2)\), (3.6), and (3.7), we get

$$\begin{aligned} & \lim_{n\rightarrow \infty}\inf \sum _{t=1}^{T}\bigl[\bigl(\nabla _{u_{n}}W \bigl(t,u_{n}(t),v_{n}(t)\bigr),u_{n}(t) \bigr)+\bigl( \nabla _{v_{n}}W\bigl(t,u_{n}(t),v_{n}(t) \bigr),v_{n}(t)\bigr) \\ &\qquad -\max \{p,q\}W\bigl(t,u_{n}(t),v_{n}(t)\bigr) \bigr] \\ &\quad \geq \lim_{n\rightarrow \infty}\inf \sum_{t\in \Omega _{1}} \bigl[\bigl( \nabla _{u_{n}}W\bigl(t,u_{n}(t),v_{n}(t) \bigr),u_{n}(t)\bigr)+\bigl(\nabla _{v_{n}}W \bigl(t,u_{n}(t),v_{n}(t)\bigr),v_{n}(t) \bigr) \\ &\qquad -\max \{p,q\}W\bigl(t,u_{n}(t),v_{n}(t)\bigr) \bigr]+\sum_{t\in{\mathbb{Z}[1,T] \setminus \Omega _{1}}}g(t) \\ &\quad \geq \sum_{t\in \Omega _{1}}\lim_{n\rightarrow \infty}\inf \bigl[\bigl( \nabla _{u_{n}}W\bigl(t,u_{n}(t),v_{n}(t) \bigr),u_{n}(t)\bigr) +\bigl(\nabla _{v_{n}}W \bigl(t,u_{n}(t),v_{n}(t)\bigr),v_{n}(t) \bigr) \\ &\qquad -\max \{p,q\}W\bigl(t,u_{n}(t),v_{n}(t)\bigr) \bigr]+\sum_{t\in{\mathbb{Z}[1,T] \setminus \Omega _{1}}}g(t) \\ &\quad = +\infty , \end{aligned}$$

which contradicts (3.1). Hence \(\{u_{n}\}\) is bounded.

(ii): \(\|v_{n}\|_{q}\) is boundness

For this case, there exists \(C_{3}>0\) such that

$$ \Vert u_{n} \Vert _{p} \to +\infty , \quad \text{as } n\to \infty ,\quad \text{and}\quad \Vert v_{n} \Vert _{q} \le C_{3}. $$

Let \(z_{1}^{(n)}=\frac{u_{n}}{\|u_{n}\|_{p}}\), then \(\|z_{1}^{(n)}\|_{p}=1\). Hence, \(\{z_{1}^{(n)}\}\) has a convergent subsequence, still remember \(\{z_{1}^{(n)}\}\), such that \(z_{1}^{(n)}\to z_{1}\), (\(n \rightarrow \infty \)), for some \(z_{1}\in E_{T}\). Then

$$ z_{1}^{(n)}(t)\to z_{1}(t), \quad \text{for all } t\in \mathbb{Z}, \text{ as } n\to \infty . $$

Hence, we have

$$\begin{aligned} & \frac{\mathcal{J}(u_{n},v_{n})}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} \\ &\quad \geq C_{1}-C_{2} \biggl[ \frac{{\sum_{t=1}^{T} \vert u_{n}(t) \vert ^{p}}}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} + \frac{{\sum_{t=1}^{T} \vert v_{n}(t) \vert ^{q}}}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} \biggr]-\frac{dT}{ \Vert u_{n} \Vert _{p}^{p}+ \Vert v_{n} \Vert _{q}^{q}} \\ &\quad \geq C_{1}-C_{2} \Biggl[\sum _{t=1}^{T} \frac{ \vert u_{n}(t) \vert ^{p}}{ \Vert u_{n} \Vert _{p}^{p}} +\sum _{t=1}^{T} \frac{ \vert v_{n}(t) \vert ^{q}}{ \Vert u_{n} \Vert _{p}^{p}} \Biggr]- \frac{dT}{ \Vert u_{n} \Vert _{p}^{p}} \\ &\quad \geq C_{1}-C_{2}\sum_{t=1}^{T} \bigl\vert z_{1}^{(n)}(t) \bigr\vert ^{p} -C_{2} \frac{C_{3}^{q}}{ \Vert u_{n} \Vert _{p}^{p}}- \frac{dT}{ \Vert u_{n} \Vert _{p}^{p}}. \end{aligned}$$

Let \(n\to \infty \). (3.10) implies that

$$ \sum_{t=1}^{T} \bigl\vert z_{1}^{n}(t) \bigr\vert ^{p}>0, $$

then, there exists a set \(\Omega _{2}=\{t\in \mathbb{Z}: z_{1}(t)\neq 0\}\neq \phi \subset \mathbb{Z}\) such that

$$ \bigl\vert z_{1}(t) \bigr\vert >0,\quad \forall t\in \Omega _{2}. $$


$$ \lim_{n\rightarrow \infty} \bigl\vert u_{n}(t) \bigr\vert + \bigl\vert v_{n}(t) \bigr\vert =+\infty ,\quad \text{for all } t\in \Omega _{2}. $$

The remaining proof is similar to the case (i), we can also get that \(\{u_{n}\}\) is bounded. □

Likewise, we can show that \(\{v_{n}\}\) is bounded. So \(\{\varpi _{n}=(u_{n},v_{n})^{\tau}\}\) is bounded in E. Meanwhile, E is finite dimensional, thus there exists a convergent subsequence. Then J satisfies \((C)\)-condition.

Lemma 3.2

Assume that \((\mathcal {A}0)\), \((\mathcal {A}1)\), \((K1)\), \((W1)\), and \((W3)\) hold, there exist \(\rho >0\), \(\alpha >0\) such that \(J|_{\partial B\rho (0)}\geq \alpha \).


From \((W1)\) and \((W3)\), there exist constants \(0<\varepsilon <\min \{b_{1}, b_{2}, c_{1}, c_{2}\}\), \(\tau _{1}>p\), \(\tau _{2}>q\) and \(C_{4}, C_{5}>0\) such that

$$ W(t,u,v)\leq \bigl(\min \{b_{1},b_{2} \}-\varepsilon \bigr) \bigl( \vert u \vert ^{p}+ \vert v \vert ^{q}\bigr)+C_{4} \vert u \vert ^{ \tau _{1}}+C_{5} \vert v \vert ^{\tau _{2}}. $$


$$ \rho =\min \biggl\{ \frac{1}{\max \{p,q\}C_{0}}, \biggl( \frac{\varepsilon}{pC_{4}TC_{0}^{\tau _{1}}} \biggr)^{ \frac{1}{\tau _{1}-p}}, \biggl( \frac{\varepsilon}{qC_{5}TC_{0}^{\tau _{2}}} \biggr)^{ \frac{1}{\tau _{2}-q}} \biggr\} . $$

\(\|u\|_{p}\leq \|(u,v)\|=\rho \), \(\|v\|_{q}\leq \|(u,v)\|=\rho \), then \(|u(t)|\leq \|u\|_{\infty}\leq C_{0}\|u\|_{p}\leq C_{0}\rho <1\), \(|v(t)|\leq \|v\|_{\infty}\leq C_{0}\|v\|_{q}\leq C_{0}\rho <1\). Then, from (2.1), (2.2), (3.12), \((\mathcal {A}1)\), and \((K1)\), we have

$$\begin{aligned} \mathcal{J}(u,v) & = \sum_{t=1}^{T} \bigl[\Phi _{1}\bigl(\Delta u(t)\bigr)+\Phi _{2}\bigl( \Delta v(t)\bigr)+K\bigl(t,u(t),v(t)\bigr)-W\bigl(t,u(t),v(t)\bigr)\bigr] \\ & \geq c_{1}\sum_{t=1}^{T} \bigl\vert \Delta u(t) \bigr\vert ^{p}+c_{2}\sum _{t=1}^{T} \bigl\vert \Delta v(t) \bigr\vert ^{q}+b_{1}\sum_{t=1}^{T} \bigl\vert u(t) \bigr\vert ^{\lambda _{1}}+b_{2}\sum _{t=1}^{T} \bigl\vert v(t) \bigr\vert ^{ \lambda _{2}} \\ & \quad -\bigl(\min \{b_{1},b_{2}\}-\varepsilon \bigr) \sum_{t=1}^{T} \bigl\vert u(t) \bigr\vert ^{p}\\ &\quad -\bigl( \min \{b_{1},b_{2}\}- \varepsilon \bigr)\sum_{t=1}^{T} \bigl\vert v(t) \bigr\vert ^{q} -C_{4} \sum _{t=1}^{T} \bigl\vert u(t) \bigr\vert ^{\tau _{1}}-C_{5}\sum_{t=1}^{T} \bigl\vert v(t) \bigr\vert ^{\tau _{2}} \\ & \geq \varepsilon \Biggl(\sum_{t=1}^{T} \bigl\vert \Delta u(t) \bigr\vert ^{p}+\sum _{t=1}^{T} \bigl\vert u(t) \bigr\vert ^{p} \Biggr) +\varepsilon \Biggl(\sum_{t=1}^{T} \bigl\vert \Delta v(t) \bigr\vert ^{q}+\sum _{t=1}^{T} \bigl\vert v(t) \bigr\vert ^{q} \Biggr) \\ &\quad -C_{4}\sum_{t=1}^{T} \bigl\vert u(t) \bigr\vert ^{\tau _{1}}-C_{5}\sum _{t=1}^{T} \bigl\vert v(t) \bigr\vert ^{ \tau _{2}} \\ & \geq \varepsilon \Vert u \Vert _{p}^{p}+ \varepsilon \Vert v \Vert _{q}^{q}-C_{4}T \Vert u \Vert _{\infty}^{\tau _{1}}-C_{5}T \Vert v \Vert _{\infty}^{\tau _{2}} \\ & \geq \varepsilon \Vert u \Vert _{p}^{p}+ \varepsilon \Vert v \Vert _{q}^{q}-C_{4}TC_{0}^{ \tau _{1}} \Vert u \Vert _{p}^{\tau _{1}}-C_{5}TC_{0}^{\tau _{2}} \Vert v \Vert _{q}^{ \tau _{2}} \\ & \geq \bigl(\varepsilon -C_{4}TC_{0}^{\tau _{1}} \Vert u \Vert _{p}^{\tau _{1}-p} \bigr) \Vert u \Vert _{p}^{p} + \bigl(\varepsilon -C_{5}TC_{0}^{\tau _{2}} \Vert v \Vert _{q}^{\tau _{2}-q} \bigr) \Vert v \Vert _{q}^{q} \\ & \geq \min \bigl\{ \varepsilon -C_{4}TC_{0}^{\tau _{1}} \rho ^{\tau _{1}-p}, \varepsilon -C_{5}TC_{0}^{\tau _{2}} \rho ^{\tau _{2}-q} \bigr\} \bigl( \Vert u \Vert _{p}^{p}+ \Vert v \Vert _{q}^{q}\bigr) \\ & \geq \varepsilon \min \biggl\{ 1-\frac{1}{p},1-\frac{1}{q} \biggr\} \frac{1}{\max \{2^{p-1},2^{q-1}\}}\bigl( \Vert u \Vert _{p}+ \Vert v \Vert _{q}\bigr)^{\min \{p,q\}} \\ & = \varepsilon \min \biggl\{ 1-\frac{1}{p},1-\frac{1}{q} \biggr\} \frac{1}{\max \{2^{p-1},2^{q-1}\}} \bigl\Vert (u,v) \bigr\Vert ^{\min \{p,q\}}. \end{aligned}$$

Let \(\alpha :=\varepsilon \min \{1-\frac{1}{p},1-\frac{1}{q} \}\frac{1}{\max \{2^{p-1},2^{q-1}\}}\rho ^{\min \{p,q\}}>0\). So (3.13) shows that \(\|(u,v)\|=\rho \) implies that \(\mathcal{J}(u,v)\geq \alpha \). □

Lemma 3.3

Assume that \((\mathcal {A}0)\), \((K2)\), \((W2)\), and \((W4)\) hold. Then \(J(u^{*},v^{*})\leq 0\), where \((u^{*},v^{*})\in E\setminus \overline{B}_{\rho}(0)\).


Let \(\psi (s)=s^{-\max \{p,q\}}W(t,su_{0},sv_{0})\) (\(s>0\)). By \((W2)\), we obtain

$$\begin{aligned} \psi '(s) & = s^{{-\max \{p,q\}}-1}\bigl[{-\max \{p,q \}}W(t,su_{0},sv_{0})+\bigl( \nabla _{su_{0}} W(t,su_{0},sv_{0}),su_{0}\bigr)\\ &\quad +\bigl( \nabla _{sv_{0}} W(t,su_{0},sv_{0}),sv_{0} \bigr)\bigr] \\ & \geq s^{{-\max \{p,q\}}-1}g(t), \end{aligned}$$


$$\begin{aligned} \int _{1}^{\zeta}\psi '(s)\,ds \geq \int _{1}^{\zeta}s^{{-\max \{p,q\}}-1}g(t)\,ds \end{aligned}$$

when \(\zeta >1\), that is

$$\begin{aligned} W(t,\zeta u_{0},\zeta v_{0})\geq \zeta ^{\max \{p,q\}} W(t,u_{0},v_{0})+ \frac{g(t)}{\max \{p,q\}}\bigl(\zeta ^{\max \{p,q\}}-1\bigr). \end{aligned}$$

By \((K2)\), we have

$$\begin{aligned} K(t,\zeta u_{0},\zeta v_{0})\leq \zeta ^{\max \{p,q\}} K(t,u_{0},v_{0}). \end{aligned}$$

Combining with (3.14), (3.15), and \((W4)\), we have

$$\begin{aligned} \mathcal{J}(\zeta u_{0},\zeta v_{0}) & = \sum_{t=1}^{T}\bigl[K(t,\zeta u_{0}, \zeta v_{0})-W(t,\zeta u_{0},\zeta v_{0})\bigr] \\ & \leq \zeta ^{\max \{p,q\}}\sum_{t=1}^{T} \biggl[K(t,u_{0},v_{0})-W(t,u_{0},v_{0})- \frac{g(t)}{{\max \{p,q\}}} \biggr]\\ &\quad +\frac{1}{{\max \{p,q\}}}\sum _{t=1}^{T}g(t) \\ & \rightarrow -\infty ,\quad \text{as } \zeta \rightarrow \infty . \end{aligned}$$

Hence, there exists \(\zeta _{0}\) large enough such that \(\mathcal{J}(\zeta _{0} u_{0},\zeta _{0} v_{0})<0\). Let \(u^{*}=\zeta _{0} u_{0}\) and \(v^{*}=\zeta _{0} v_{0}\), then \(J(u^{*},v^{*})\leq 0\). □

Proof of Theorem 1.1.

Obviously, \(\mathcal{J}(0,0)=0\). By Lemma 2.2 and Lemmas 3.13.3, \(\mathcal{J}\) has a critical value c such that \(\mathcal{J}(u,v)=c\), \(\mathcal{J}'(u,v)=0 \). Hence, \((u,v)\) is a desired nontrivial periodic solution of (1.1). □

4 Example

Example 4.1


$$\begin{aligned} &K(t,u,v)=b_{1} \vert u \vert ^{\lambda _{1}}+b_{2} \vert v \vert ^{\lambda _{2}}+\theta _{1}(t) \vert u \vert ^{ \kappa _{1}}+\theta _{2}(t) \vert v \vert ^{\kappa _{2}},\\ &W(t,u,v)=\theta _{3}(t) \vert u \vert ^{\max \{p,q\}} \biggl(1- \frac{1}{\ln (e+ \vert u \vert ^{p})} \biggr)+\theta _{4}(t) \vert v \vert ^{\max \{p,q\}} \biggl(1-\frac{1}{\ln (e+ \vert v \vert ^{q})} \biggr), \end{aligned}$$

where \(b_{1}, b_{2}>0\), \(\theta _{i}\in l^{1}(\mathbb{Z},[0,+\infty )) (i=1,2,3,4)\) and are T-periodic, \(1<\lambda _{1}<\kappa _{1}\leq p\), \(1<\lambda _{2}<\kappa _{2}\leq q\), then K and W satisfy \((K1)\), \((K2)\), \((W1)\), and \((W3)\).

$$\begin{aligned} \nabla _{u}W(t,u,v)&=\theta _{3}(t)\max \{p,q\}u \vert u \vert ^{\max \{p,q\}-2} \biggl(1-\frac{1}{\ln (e+ \vert u \vert ^{p})} \biggr) \\ &\quad +u \vert u \vert ^{\max \{p,q\}+p-2} \frac{p\theta _{3}(t)}{(e+ \vert u \vert ^{p})(\ln (e+ \vert u \vert ^{p}))^{2}}, \end{aligned}$$
$$\begin{aligned} \nabla _{v}W(t,u,v)&=\theta _{4}(t)\max \{p,q\}v \vert v \vert ^{\max \{p,q\}-2} \biggl(1-\frac{1}{\ln (e+ \vert v \vert ^{q})} \biggr) \\ &\quad +v \vert v \vert ^{\max \{p,q\}+q-2} \frac{q\theta _{4}(t)}{(e+ \vert v \vert ^{q})(\ln (e+ \vert v \vert ^{q}))^{2}}, \end{aligned}$$


$$\begin{aligned} & \bigl(\nabla _{u}W(t,u,v),u\bigr)+\bigl(\nabla _{v}W(t,u,v),v\bigr)-\max \{p,q\}W(t,u,v) \\ & \quad = \vert u \vert ^{\max \{p,q\}+p} \frac{p\theta _{3}(t)}{(e+ \vert u \vert ^{p})(\ln (e+ \vert u \vert ^{p}))^{2}}+ \vert v \vert ^{\max \{p,q \}+q}\frac{q\theta _{4}(t)}{(e+ \vert v \vert ^{q})(\ln (e+ \vert v \vert ^{q}))^{2}}, \end{aligned}$$

then it is easy to test that \((W2)\) holds.

$$\begin{aligned} & \sum_{t=1}^{T} \biggl[K(t,u_{0},v_{0})-W(t,u_{0},v_{0})- \frac{g(t)}{\max \{p,q\}} \biggr] \\ & \quad =\sum_{t=1}^{T} \biggl[b_{1} \vert u \vert ^{\lambda _{1}}+b_{2} \vert v \vert ^{\lambda _{2}}+ \theta _{1}(t) \vert u \vert ^{\kappa _{1}} +\theta _{2}(t) \vert v \vert ^{\kappa _{2}}- \theta _{3}(t) \vert u \vert ^{\max \{p,q\}} \biggl(1- \frac{1}{\ln (e+ \vert u \vert ^{p})} \biggr) \\ &\qquad -\theta _{4}(t) \vert v \vert ^{\max \{p,q\}} \biggl(1- \frac{1}{\ln (e+ \vert v \vert ^{q})} \biggr)-\frac{g(t)}{\max \{p,q\}} \biggr] \\ & \quad =b_{1}T \vert u \vert ^{\lambda _{1}}+b_{2}T \vert v \vert ^{\lambda _{2}}+ \vert u \vert ^{\kappa _{1}} \sum _{t=1}^{T}\theta _{3}(t)+ \vert v \vert ^{\kappa _{2}}\sum_{t=1}^{T} \theta _{4}(t)- \frac{ \Vert g \Vert _{l^{1}}}{\max \{p,q\}} \\ &\qquad - \vert u \vert ^{\max \{p,q\}} \biggl(1-\frac{1}{\ln (e+ \vert u \vert ^{p})} \biggr) \sum_{t=1}^{T}\theta _{1}(t) - \vert v \vert ^{\max \{p,q\}} \biggl(1- \frac{1}{\ln (e+ \vert v \vert ^{q})} \biggr)\sum_{t=1}^{T} \theta _{2}(t) \end{aligned}$$


$$ \sum_{t=1}^{T}\theta _{1}(t)>\sum_{t=1}^{T}\theta _{3}(t), \quad \sum_{t=1}^{T} \theta _{2}(t)>\sum_{t=1}^{T} \theta _{4}(t), $$

there exists \((u_{0},v_{0})\in \mathbb{R}^{N}\times \mathbb{R}^{N}\) such that \((W4)\) holds. Hence, system (1.1) has one nontrival T-periodic solution.

Data Availability

No datasets were generated or analysed during the current study.


  1. Mawhin, J.: Periodic solutions of second order nonlinear difference systems with ϕ-Laplacian: a variational approach. Nonlinear Anal. 75(12), 4672–4687 (2012)

    Article  MathSciNet  Google Scholar 

  2. Mawhin, J.: Periodic solutions of second order Lagrangian difference systems with bounded or singular ϕ-Laplacian and periodic potential. Discrete Contin. Dyn. Syst. 6(4), 1065–1076 (2013)

    Article  MathSciNet  Google Scholar 

  3. Mawhin, J., Willen, M.: Critical Point Theory and Hamilotonian Systems. Applied Mathematical Sciences, vol. 74. Springer, New York (1989)

    Book  Google Scholar 

  4. Rabinowitz, P.H.: Minimax Methods Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conf. Ser. in Math., vol. 65. Am. Math. Soc., Providence (1986)

    Book  Google Scholar 

  5. Ding, Y.H.: Variational Methods for Strongly Indefinite Problems. Singapore: Interdisciplinary Mathematical Sciences, vol. 7. World Scientific Publishing Co. Pte. Ltd., Hackensack (2007)

    Google Scholar 

  6. Li, C., Ou, Z.Q., Tang, C.L.: Periodic solutions for non-autonomous second-order differential systems with \((q,p)\)-Laplacian. Electron. J. Differ. Equ. 2014(64), (2014)

  7. Paca, D.: Periodic solutions of second-order differential inclusions systems with \((q,p)\)-Laplacian. Anal. Appl. 9, 201–223 (2011)

    Article  MathSciNet  Google Scholar 

  8. Li, Y.K., Zhang, T.W.: Infinitely many periodic solutions for second-order \((q,p)\)-Laplacian differential systems. Nonlinear Anal. 74(15), 5215–5221 (2011)

    Article  MathSciNet  Google Scholar 

  9. Yang, X.Y., Chen, H.B.: Periodic solutions for a nonlinear \((q,p)\)-Laplacian dynamical system with impulsive effects. J. Appl. Math. Comput. 40, 607–625 (2012)

    Article  MathSciNet  Google Scholar 

  10. He, X., Chen, P.: Homoclinic solutions for second order discrete p-Laplacian systems. Adv. Differ. Equ. 2011, 57 (2011)

    Article  MathSciNet  Google Scholar 

  11. Li, C., Tang, C.L.: Periodic and subharmonic solutions of discrete p-Laplacian systems. J. Appl. Math. Comput. 2011(35), 417–430 (2011)

    Article  MathSciNet  Google Scholar 

  12. Chen, K., Zhang, Q.F.: Existence of periodic solutions for a class of asymptotically p-linear discrete systems involving p-Laplacian. J. Appl. Math. 2012(2), 1281–1302 (2012)

    MathSciNet  Google Scholar 

  13. Lin, X.Y.: Homoclinic orbits for second-order discrete Hamiltonian systems with subquadratic potential. Adv. Differ. Equ. 2013, 228 (2013)

    Article  MathSciNet  Google Scholar 

  14. Tang, X.H., Jiang, J.C.: Existence and multiplicity of periodic solutions for a class of second-order Hamiltonian system. Comput. Math. Appl. 59(12), 3646–3655 (2010)

    Article  MathSciNet  Google Scholar 

  15. Tang, X.H., Lin, X.Y.: Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential. J. Differ. Equ. Appl. 17(11), 1617–1634 (2011)

    Article  MathSciNet  Google Scholar 

  16. Jia, L.Q., Chen, G.W.: Existence of periodic solutions for Hamiltonian systems with super-linear and sign-changing nonlinearities. J. Appl. Anal. Comput. 8(5), 1524–1534 (2018)

    MathSciNet  Google Scholar 

  17. Wang, Z.Y., Zhang, J.H.: Existence of periodic solutions for a class of damped vibration problems. C. R. Math. 356(6), 597–612 (2018)

    Article  MathSciNet  Google Scholar 

  18. Liu, P., Guo, F.: Multiplicity of periodic solutions for second order Hamiltonian systems with asymptotically quadratic conditions. Acta Math. Sin. Engl. Ser. 36(1), 55–65 (2020)

    Article  MathSciNet  Google Scholar 

  19. Yu, X.L., Zhang, X.Y., Xie, J.P., Zhang, X.C.: Existence of nontrivial solutions for a class of poly-Laplacian system with mixed nonlinearity on graphs. Math. Methods Appl. Sci. 2023, 1–14 (2023)

    Google Scholar 

  20. Zhang, X.C., Zhang, X.Y., Liu, C.L., Yu, X.L.: Existence and multiplicity of nontrivial solutions for poly-Laplacian systems on finite graphs. Bound. Value Probl. 2022(1), 32 (2022)

    Article  MathSciNet  Google Scholar 

  21. Liu, C.L., Zhang, X.Y., Xie, J.P.: Variational method to a fractional impulsive \((p,q)\)-Laplacian coupled systems with partial sub-\((p,q)\) linear growth. Adv. Differ. Equ. 2019(1), 100 (2019)

    Article  MathSciNet  Google Scholar 

  22. Zhang, W., Zhang, J., Mi, H.L.: On fractional Schrodinger equation with periodic and asymptotically periodic conditions. Comput. Math. Appl. 74(6), 1321–1332 (2017)

    Article  MathSciNet  Google Scholar 

  23. Mi, H.L., Deng, X.Q., Zhang, W.: Ground state solution for asymptotically periodic fractional p-Laplacian equation. Appl. Math. Lett. 120, 107280 (2021)

    Article  MathSciNet  Google Scholar 

  24. Zhang, X.Y., Wang, Y.: Homoclinic solutions for a class of nonlinear difference systems with classical \((\phi _{1},\phi _{2})\)-Laplacian. Adv. Differ. Equ. 2015(1), 149 (2015)

    Article  MathSciNet  Google Scholar 

  25. Deng, H.Y., Zhang, X.Y., Fang, H.: Existence of periodic solutions for a class of discrete systems with classical or bounded \((\phi _{1},\phi _{2})\)-Laplacian. J. Nonlinear Sci. Appl. 2017(10), 535–559 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhang, X.Y., Zong, C., Deng, H.Y., Wang, L.B.: Existence and multiplicity of homoclinic solutions for difference systems involving classical \((\phi _{1},\phi _{2})\)-Laplacian and a parameter. Adv. Differ. Equ. 2017, 380 (2017)

    Article  MathSciNet  Google Scholar 

  27. Wang, L.B., Zhang, X.Y., Fang, H.: Existence and multiplicity of solutions for a class of \((\phi _{1},\phi _{2})\)-Laplacian elliptic system in \(\mathbb{R}^{N}\) via genus theory. Comput. Math. Appl. 2016(72), 110–130 (2016)

    Article  Google Scholar 

  28. Zhang, Q.F., Tang, X.H.: Existence of homoclinic orbits for a class of asymptotically p-linear difference systems with p-Laplacian. Abstr. Appl. Anal. 2011, 351562 (2011)

    Article  MathSciNet  Google Scholar 

Download references


The authors would like to express sincere thanks to the anonymous referees for their carefully reading of the manuscript and valuable comments and suggestions.


The project is supported by the NSF of Hunan Province, China (No.2022JJ30463, 2023JJ30482), Research Foundation of Education Bureau of Hunan Province, China (No.22A0540, 23A0558), Huaihua University Scientific Research Project, China (Nos.HHUY2022-11, HHUY2019-3) and the Huaihua University Double First-Class Initiative Applied Characteristic Discipline of Control Science and Engineering.

Author information

Authors and Affiliations



Hai-yun DENG and Yu-bo HE wrote the main manuscript text. Xiao-yan LIN participated in the discussion of this paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yu-bo He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Hy., Lin, Xy. & He, Yb. Existence of periodic solutions for a class of \((\phi _{1},\phi _{2})\)-Laplacian difference system with asymptotically \((p,q)\)-linear conditions. Bound Value Probl 2024, 58 (2024).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Mathematics Subject Classification