Skip to main content

Exact solutions and bifurcation curves of nonlocal elliptic equations with convolutional Kirchhoff functions

Abstract

We study the one-dimensional nonlocal elliptic equation of Kirchhoff type with convolutional Kirchhoff functions. We establish the exact solutions \(u_{\lambda}\) and bifurcation curves \(\lambda (\alpha )\), where \(\alpha := \Vert u_{\lambda}\Vert _{\infty}\).

1 Introduction

We consider the following one-dimensional nonlocal elliptic equation with convolutional Kirchhoff function:

$$ \textstyle\begin{cases} - ({\int _{0}^{1}} f(x)u(x)^{q} \,dx ) u''(x)= \lambda u(x)^{p}, \quad x \in I:= (0,1), \\ u(x) > 0, \quad x\in I, \\ u(0) = u(1) = 0, \end{cases} $$
(1.1)

where \(f(x) = (1-x)^{n}\) (\(n \in \mathbb{N}\)) and \(p, q > 1\) are given constants. Further, \(\lambda > 0\) is a bifurcation parameter.

Equation (1.1) is motivated by the convolution nonlocal elliptic problem of Kirchhoff type in [9]:

$$ -J \bigl( \bigl(h *u^{q} \bigr) (1) \bigr)u''(x)= \lambda g \bigl(x, u(x) \bigr), \quad x \in I, $$
(1.2)

where J, h, and g are continuous functions and

$$ \bigl(h * u^{q} \bigr) (t) := \int _{0}^{t} h(t-s)u(s)^{q}\,ds. $$

If we put \(J(y) = y\), \(h(y) = y^{n}\) and \(g(x, u) = u^{p}\), then we obtain (1.1).

The purpose of this paper is to obtain the exact solutions and bifurcation curves of problem (1.1) by concentrating on the typical convolutional equation (1.1). Our results are novel since there seem to be few results to treat such problem as (1.1) from a viewpoint of bifurcation analysis, and the results obtained here will be the good first step to understand well the structures of solutions and bifurcation curves in the field of nonlocal elliptic problems. Moreover, as far as the author knows, the bifurcation phenomena of nonlocal problem with the coefficient coming from the convolution have not been considered before.

It is known that there are so many results concerning nonlocal and related problems. We refer to [1–4, 6–11, 13–18, 23, 25] and the references therein. In addition to this, there is much interesting and significant motivation to study this kind of nonlocal problems as (1.2). We refer to [9] and the references therein to understand the background of this problem. On the other hand, although the analysis of bifurcation diagram is a very popular problem in nonlinear elliptic problems, there are few results concerning the bifurcation problems for nonlocal problems. We refer to [19–22, 24].

Before stating our results, we explain some notations. For \(p> 1\), let

$$ \textstyle\begin{cases} {-}W''(x)= W(x)^{p}, \quad x \in I, \\ W(x) > 0, \quad x\in I, \\ W(0) = W(1) = 0. \end{cases} $$
(1.3)

We know from [5] that there exists a unique solution \(W_{p}(x)\) of (1.3). For \(d, k\ge 0\), we put

$$\begin{aligned} &L_{k,d}:= \int _{0}^{1} \frac{s^{d}}{\sqrt{1-s^{k+1}}}\,ds, \end{aligned}$$
(1.4)
$$\begin{aligned} &M_{k,d}:= \int _{0}^{1} (1-x)^{k}W_{p}(x)^{d} \,dx, \end{aligned}$$
(1.5)
$$\begin{aligned} &R_{k, d}:= \int _{0}^{1} x^{k} W_{p}(x)^{d}\,dx, \end{aligned}$$
(1.6)
$$\begin{aligned} &S_{k, d}:= \int _{0}^{1/2} x^{k} W_{p}(x)^{d}\,dx. \end{aligned}$$
(1.7)

Let \(\Vert \cdot \Vert _{\beta}\) (\(1 \le \beta \le \infty \)) be the usual \(L^{\beta}\)-norm. We know from [22] that, for \(p > 1\),

$$\begin{aligned} \xi _{p} := \Vert W_{p} \Vert _{\infty } =& \bigl(2(p+1) \bigr)^{1/(p-1)}L_{p,0}^{2/(p-1)}. \end{aligned}$$
(1.8)

Now, we state our results.

Theorem 1.1

Let \(f(x) = (1-x)^{n}\) \((n \in \mathbb{N})\). Further, \(\lambda > 0\) is a given constant.

(i) Assume that \(p \neq q+1\). Then the solution \(u_{\lambda}\) is given by

$$\begin{aligned} u_{\lambda }= \biggl(\frac{\lambda}{M_{n,q}} \biggr)^{1/(q-p+1)}W_{p}(x). \end{aligned}$$
(1.9)

(ii) Assume that \(p = q+1\).

(a) Suppose that \(\lambda = M_{n,q}\). Then all the solutions \(u_{\lambda}\) are represented as \(u_{\lambda }= tW_{p}\), where \(t > 0\) is an arbitrary constant.

(b) Assume that there exists a solution \(U_{\lambda}\) of (1.1). Then \(U_{\lambda }= r_{\lambda }W_{p}\), where \(r_{\lambda}:= (Q_{n,q}/\lambda )^{1/(p-1)}\) and

$$\begin{aligned} Q_{n,q}:= \int _{0}^{1} (1-x)^{n}u_{\lambda}(x)^{q} \,dx. \end{aligned}$$
(1.10)

Moreover, \(\lambda = M_{n,q}\) holds. Therefore, by (i) above, all the solutions \(u_{\lambda}\) of (1.1) are obtained as \(u_{\lambda }= tW_{p}\), where \(t > 0\) is an arbitrary constant.

(c) Assume that \(\lambda \neq M_{n,q}\). Then (1.1) has no solutions.

By Theorem 1.1, we see that the essential point to obtain the solution \(u_{\lambda}\) is to find \(M_{n,q}\). In the following Theorems 1.2 and 1.3, by using Theorem 1.1 (i), we obtain the exact solution \(u_{\lambda}\) for given \(\lambda > 0\) and show that λ is parameterized by \(\alpha := \Vert u_{\lambda}\Vert _{\infty}\), namely, \(\lambda =\lambda (\alpha )\), and we establish the exact formula of \(\lambda (\alpha )\).

Theorem 1.2

Let \(f(x) = 1-x\) in (1.1). Assume that \(p \neq q+1\). Then, for any given \(\lambda > 0\),

$$\begin{aligned} u_{\lambda}(x) &= \lambda ^{1/(q-p+1)} \\ &\quad \times \bigl\{ 2^{(q-p+1)/(p-1)}(p+1)^{q/(p-1)}L_{p,0}^{(2q-p+1)/(p-1)} L_{p,q} \bigr\} ^{-1/(q-p+1)} W_{p}(x), \end{aligned}$$
(1.11)
$$\begin{aligned} \lambda (\alpha ) =& (p+1)L_{p,0}L_{p,q}\alpha ^{q-p+1}. \end{aligned}$$
(1.12)

Theorem 1.3

Let \(f(x) = (1-x)^{2}\). Assume that \(q = m(p+1)\) or \(q = m(p+1)+p\), where \(m \in \mathbb{N}\). Then

(i)

$$\begin{aligned} &u_{\lambda}(x) = \biggl(\frac{\lambda}{M_{2,q}} \biggr)^{1/(q-p+1)}W_{p}(x), \end{aligned}$$
(1.13)
$$\begin{aligned} &\lambda (\alpha ) = M_{2,q}\xi _{p}^{-(q-p+1)} \alpha ^{q-p+1}, \end{aligned}$$
(1.14)

where

$$\begin{aligned} &M_{2,q} := C_{0,m} + C_{0,1,m}S_{1,0} + C_{0,2,m}S_{2, 0}, \quad \bigl(q = m(p+1) \bigr), \end{aligned}$$
(1.15)
$$\begin{aligned} &M_{2,q} := C_{1,m} + C_{1,1,m}S_{1,p} + C_{1,2,m}S_{2, p}, \quad \bigl(q = m(p+1)+p \bigr), \end{aligned}$$
(1.16)

\(C_{0,m}\), \(C_{0,1,m}\), \(C_{1,2,m}\), \(C_{1,m}\), \(C_{1,1,m}\), \(C_{1,2,m}\) are constants that depend on \(\xi _{p}\) and are obtained inductively. Here,

$$\begin{aligned} &S_{1,0} =\frac{1}{8}, \end{aligned}$$
(1.17)
$$\begin{aligned} &S_{2,0} = \frac{1}{24}, \end{aligned}$$
(1.18)
$$\begin{aligned} &S_{1,p} =\xi _{p}, \end{aligned}$$
(1.19)
$$\begin{aligned} &S_{2,p} = \xi _{p} - \sqrt{2(p+1)}\xi _{p}^{(3-p)/2}L_{p,1}. \end{aligned}$$
(1.20)

For the special case \(m = 1\), the following (ii) and (iii) hold:

(ii) Let \(q = p + 1\). Then

$$\begin{aligned} M_{2,p+1} =& R_{2,p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi _{p}^{(p+3)/2}L_{p,p+1} - \frac{1}{3(p+1)}\xi _{p}^{p+1} - \frac{p+1}{p+3}\sqrt{2(p+1)}\xi _{p}^{(5-p)/2}L_{p,1}. \end{aligned}$$
(1.21)

(iii) Let \(q = 2p+1 (= p+1 + p)\). Then

$$\begin{aligned} M_{2, 2p+1} =& R_{2,2p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi _{p}^{3(p+1)/2}L_{p, 2p+1} - \frac{2}{3} \sqrt{2(p+1)}\xi _{p}^{(p+5)/2} \biggl(\frac{1}{p+2}L_{p,p+2} + 2L_{p,1} \biggr). \end{aligned}$$
(1.22)

Now, we consider the case \(p = q\).

Theorem 1.4

Let \(p = q > 1\).

(i) Assume that \(n \ge 2\). Then \(u_{\lambda}\) is obtained inductively by using \(S_{k,1}\) (\(1 \le k \le n-2\)).

(ii) Especially, let \(n = 3\). Then

$$\begin{aligned} M_{3,p} = \sqrt{\frac{2}{p+1}}\xi ^{(p+1)/2} - 3 \sqrt{2(p+1)} \xi _{p}^{(3-p)/2}L_{p,1} \end{aligned}$$
(1.23)

and (1.12), (1.13) hold by replacing \(M_{2,q}\) and q with \(M_{3,p} \) and p, respectively.

Remarks. (i) The case \(n = 1\) in Theorem 1.4 is contained in Theorem 1.1.

(ii) The novelty of Theorem 1.4 is to give a scheme to obtain \(u_{\lambda}\) inductively. Unfortunately, we are not able to calculate the concrete value of \(S_{k,1}\) for \(k \ge 1\). We only find that \(M_{n,p}\) is expressed by \(S_{k,1}\) (\(1 \le k \le n-2\)). Exceptionally, we have (cf. (4.3))

$$\begin{aligned} S_{0,1} = \sqrt{\frac{p+1}{2}}\xi _{p}^{(3-p)/2}L_{p,1}. \end{aligned}$$
(1.24)

The remainder of this paper is organized as follows. In Sect. 2, we first prove Theorem 1.1. Next, we explain the existence of \(u_{\lambda}\) for \(\lambda > 0\) and the fundamental properties of \(W_{p}\). In Sects. 3, 4, and 5, the proofs of Theorems 1.2, 1.3, and 1.4 will be given respectively. The main tools of the proofs are time map argument and complicated direct calculation.

2 Proof of Theorem 1.1 and preliminaries

In what follows, we write \(\xi = \xi _{p}\) for simplicity. In this section, we consider the case \(f(x) = (1-x)^{n}\), where \(n \in \mathbb{N}\). For given \(\lambda > 0\), we look for the solution \(u_{\lambda}\) of the form \(u_{\lambda }= tW_{p}\) (\(t > 0\)).

Proof of Theorem 1.1

(i) Let \(p \neq q+1\). We look for the solution of (1.1) of the form \(u_{\lambda }= t_{\lambda }W_{p}\), where \(t_{\lambda }> 0\) is a suitable constant determined in (2.2). By (1.1), we have

$$\begin{aligned} -t_{\lambda}^{q+1} \biggl( \int _{0}^{1} (1-x)^{n}W_{p}(x)^{q} \,dx \biggr)W_{p}''(x) = \lambda t_{\lambda}^{p} W_{p}(x)^{p}. \end{aligned}$$
(2.1)

Then there exists unique \(t_{\lambda }> 0\) satisfying

$$\begin{aligned} t_{\lambda} = \biggl(\frac{\lambda}{M_{n,q}} \biggr)^{1/(q-p+1)}, \end{aligned}$$
(2.2)

and we find that \(u_{\lambda }= t_{\lambda }W_{p}\) satisfies (1.1). We next show that, if there exists a solution \(u_{\lambda}\) of (1.1), then \(u_{\lambda }= t_{\lambda }W_{p}\), where \(t_{\lambda}\) is a constant given in (2.2). Indeed, we put \({r_{\lambda}:= (\frac{Q_{n,q}}{\lambda} )^{1/(p-1)}}\) and \(w_{\lambda}:= r_{\lambda}^{-1} u_{\lambda}\). Then we see from (1.1) and (1.10) that \(w_{\lambda}\) satisfies (1.3). Namely, \(w_{\lambda }= W_{p}\). Then, by the definition of \(r_{\lambda}\) and (1.10), we obtain

$$\begin{aligned} \lambda r_{\lambda}^{p-1} =& Q_{n,q} = \int _{0}^{1} (1-x)^{n} u_{ \lambda}(x)^{q}\,dx \\ =& \int _{0}^{1} (1-x)^{n} r_{\lambda}^{q} W_{p}(x)^{q}\,dx = r_{ \lambda}^{q} M_{n,q}. \end{aligned}$$
(2.3)

By this and (2.2), we see that \({r_{\lambda }= (\frac{\lambda}{M_{n,q}} )^{1/(q-p+1)} = t_{\lambda}}\) and \(u_{\lambda }= t_{\lambda }W_{p}\). Thus the proof is complete. □

(ii) Now assume that \(p = q+1\).

(a) Assume that \(\lambda = M_{n,q}\). For \(t > 0\), we put \(U_{\lambda }:= tW_{p}\) and substitute it into (1.1). Then we obtain

$$\begin{aligned} -t^{q+1} \biggl( \int _{0}^{1} (1-x)^{n}W_{p}(x)^{q} \,dx \biggr)W_{p}''(x) = \lambda t^{p} W_{p}(x)^{p}. \end{aligned}$$
(2.4)

Then we see that (2.4) drives us to (1.3). Therefore, \(U_{\lambda }= tW_{p}\) is a solution of (1.1). Thus the proof of (ii) (a) is complete.  □

(b) The proof of (ii) (b) is the same as that of Theorem 1.1 (i). So, we omit the proof.  □

(c) By (a) and (b) above, a solution \(u_{\lambda}\) of (1.1) exists if and only if the equality \(\lambda = M_{n,q}\) holds. Therefore, if \(\lambda \neq M_{n,q}\), then (1.1) has no solutions. Thus the proof of Theorem 1.1 is complete. □

To calculate \(M_{n,q}\), we need some fundamental properties of \(W_{p}\). Since (1.3) is autonomous, we know from [5] that

$$\begin{aligned} &W_{p}(x) = W_{p}(1-x), \quad 0 \le x \le \frac{1}{2}, \end{aligned}$$
(2.5)
$$\begin{aligned} &\xi = \Vert W_{p} \Vert _{\infty }= \max _{0\le x \le 1}W_{p}(x) = W_{p} \biggl( \frac{1}{2} \biggr), \end{aligned}$$
(2.6)
$$\begin{aligned} &W_{p}'(x) > 0, \quad 0 \le x < \frac{1}{2}. \end{aligned}$$
(2.7)

By (1.3), for \(0 \le x \le 1\), we have

$$\begin{aligned} \bigl\{ W_{p}''(x) + W_{p}(x)^{p} \bigr\} W_{p}'(x) = 0. \end{aligned}$$
(2.8)

By this and (2.6), we have

$$\begin{aligned} \frac{1}{2}W_{p}'(x)^{2} + \frac{1}{p+1}W_{p}(x)^{p+1} = \text{constant} = \frac{1}{p+1} W_{p} \biggl(\frac{1}{2} \biggr)^{p+1} = \frac{1}{p+1}\xi ^{p+1}. \end{aligned}$$
(2.9)

By this and (2.8), for \(0 \le x \le 1/2\), we have, using \(\theta = \xi _{p} s\),

$$\begin{aligned} W_{p}'(x) = \sqrt{\frac{2}{p+1} \bigl(\xi ^{p+1} - W_{p}(x)^{p+1} \bigr)}. \end{aligned}$$
(2.10)

By (2.5)–(2.7), (2.10) and putting \(W_{p}(x) = \xi s\), we have

$$\begin{aligned} \Vert W_{p} \Vert _{q}^{q} =& 2 \int _{0}^{1/2} W_{p}(x)^{q} \,dx \\ =& 2 \int _{0}^{1/2} W_{p}(x)^{q} \frac{W_{p}'(x)}{ \sqrt{\frac{2}{p+1}(\xi ^{p+1} - W_{p}(x)^{p+1})}}\,dx \\ =& 2\sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2} \int _{0}^{1} \frac{s^{q}}{\sqrt{1-s^{p+1}}}\,ds \\ =& 2\sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2}L_{p,q}. \end{aligned}$$
(2.11)

3 Proof of Theorem 1.2

Now we put \(n = 1\) and consider the case \(f(x) = 1-x\). By (1.6), (2.5), (2.11) and putting \(s = 1-t\), we have

$$\begin{aligned} R_{1,q} =& \int _{0}^{1} sW_{p}(s)^{q} \,ds \\ =& \int _{0}^{1/2} sW_{p}(s)^{q} \,ds + \int _{1/2}^{1} sW_{p}(s)^{q} \,ds \\ =& \int _{0}^{1/2} sW_{p}(s)^{q} \,ds + \int _{0}^{1/2} (1-t)W_{p}(t)^{q} \,dt \\ =& \int _{0}^{1/2} W_{p}(s)^{q} \,ds \\ =& \sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2}L_{p,q}. \end{aligned}$$
(3.1)

By this, (1.5), and (2.11), we obtain

$$\begin{aligned} M_{1,q} =& \Vert W_{p} \Vert _{q}^{q} - R_{1,q} = \sqrt{\frac{p+1}{2}} \xi ^{(2q-p+1)/2}L_{p,q}. \end{aligned}$$
(3.2)

By this and (2.2), we have

$$\begin{aligned} u_{\lambda}(x) =& \biggl(\frac{\lambda}{M_{1,q}} \biggr)^{1/(q-p+1)}W_{p}(x) \\ =& \lambda ^{1/(q-p+1)} \biggl\{ \sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2}L_{p,q} \biggr\} ^{-1/(q-p+1)} W_{p}(x). \end{aligned}$$
(3.3)

This along with (1.8) implies (1.11). Now, we put \(x = 1/2\) in (3.3). Then we have

$$\begin{aligned} \alpha =& \lambda ^{1/(q-p+1)} \biggl\{ \sqrt{\frac{p+1}{2}}L_{p,q} \biggr\} ^{-1/(q-p+1)}\xi ^{-(p-1)/(2(q-p+1))}. \end{aligned}$$
(3.4)

This along with (1.8) implies (1.12). Thus the proof of Theorem 1.2 is complete.  □

4 Proof of Theorem 1.3

In this section, let \(n = 2\), namely, \(f(x) = (1-x)^{2}\). As in Sect. 3, we look for the solution of (1.1) of the form \(u_{\lambda }= t_{\lambda }W_{p}\), where \(t_{\lambda }> 0\) is a constant defined by (2.4). By (1.5), (1.6), (2.11), and (3.1), we have

$$\begin{aligned} M_{2,q} =& \int _{0}^{1} W_{p}(x)^{q} \,dx -2 \int _{0}^{1} xW_{p}(x)^{q} \,dx + \int _{0}^{1} x^{2}W_{p}(x)^{q} \,dx \\ =& \int _{0}^{1} x^{2} W_{p}(x)^{q}\,dx = R_{2,q}. \end{aligned}$$
(4.1)

Lemma 4.1

Assume that \(q = m(p+1)\) or \(q = m(p+1)+ p\), where \(m \in \mathbb{N}\). Then \(R_{2,q}\) is explicitly determined inductively.

Proof

By (1.7), (2.5), (4.1) and putting \(x = 1-t\), we have

$$\begin{aligned} R_{2,q} =& \int _{0}^{1/2} x^{2}W_{p}(x)^{q} \,dx + \int _{1/2}^{1} x^{2}W_{p}(x)^{q} \,dx \\ =& \int _{0}^{1/2} x^{2}W_{p}(x)^{q} \,dx + \int _{0}^{1/2} \bigl(1 - 2t + t^{2} \bigr)W_{p}(t)^{q}\,dt \\ =& \int _{0}^{1/2} W_{p}(x)^{q} \,dx - 2 \int _{0}^{1/2} xW_{p}(x)^{q} \,dx + 2 \int _{0}^{1/2} x^{2}W_{(}x)^{q} \,dx \\ =& S_{0,q} - 2S_{1,q} + 2S_{2,q}. \end{aligned}$$
(4.2)

By (2.6), we have \(W_{p}'(1/2) = 0\). By this, (1.1), (1.3), (2.10), (2.11) and integration by parts, we have

$$\begin{aligned} &S_{0,q} = \int _{0}^{1/2} W_{p}(x)^{q} \,dx = \sqrt{\frac{p+1}{2}} \xi ^{(2q-p+1)/2}L_{p,q}, \end{aligned}$$
(4.3)
$$\begin{aligned} &S_{1,q} = \int _{0}^{1/2} xW_{p}(x)^{q-p}W_{p}(x)^{p} \,dx \\ &\hphantom{S_{1,q}} = - \int _{0}^{1/2} xW_{p}(x)^{q-p}W_{p}''(x) \,dx \\ &\hphantom{S_{1,q}}= - \bigl[xW_{p}(x)^{q-p}W_{p}'(x) \bigr]_{0}^{1/2} + \int _{0}^{1/2} \bigl(xW_{p}(x)^{q-p} \bigr)'W_{p}'(x)\,dx \\ &\hphantom{S_{1,q}}= \int _{0}^{1/2} \bigl\{ W_{p}(x)^{q-p} + x(q-p)W_{p}(x)^{q-p-1}W_{p}'(x) \bigr\} W_{p}'(x)\,dx \\ &\hphantom{S_{1,q}}= \frac{1}{q-p+1} \bigl[W_{p}(x)^{q-p+1} \bigr]_{0}^{1/2} + (q-p) \int _{0}^{1/2}xW_{p}(x)^{q-p-1} \bigl(W_{p}'(x) \bigr)^{2}\,dx \\ &\hphantom{S_{1,q}}= \frac{1}{q-p+1}\xi ^{q-p+1} + (q-p) \int _{0}^{1/2} xW_{p}(x)^{q-p-1} \frac{2}{p+1} \bigl(\xi ^{p+1} - W_{p}(x)^{p+1} \bigr)\,dx \\ &\hphantom{S_{1,q}}= \frac{1}{q-p+1}\xi ^{q-p+1} + \frac{2(q-p)}{p+1}\xi ^{p+1} \int _{0}^{1/2}xW_{p}(x)^{q-p-1} \,dx - \frac{2(q-p)}{p+1}S_{1,q}. \end{aligned}$$
(4.4)

By this, we obtain

$$\begin{aligned} S_{1,q} =& \frac{p+1}{2q-p+1} \biggl\{ \frac{1}{q-p+1}\xi ^{q-p+1} + \frac{2(q-p)}{p+1} \xi ^{p+1}S_{1, q-p-1} \biggr\} . \end{aligned}$$
(4.5)

Similar to the argument to derive (4.5), we obtain

$$\begin{aligned} S_{2,q} =& \int _{0}^{1/2} x^{2}W_{p}(x)^{q-p}W_{p}(x)^{p} \,dx \\ =& - \int _{0}^{1/2} x^{2}W_{p}(x)^{q-p}W_{p}''(x) \,dx \\ =& - \bigl[x^{2}W_{p}(x)^{q-p}W_{p}'(x) \bigr]_{0}^{1/2} + \int _{0}^{1/2} \bigl(x^{2}W_{p}(x)^{q-p} \bigr)'W_{p}'(x)\,dx \\ =& \int _{0}^{1/2} \bigl\{ 2xW_{p}(x)^{q-p} + x^{2}(q-p)W_{p}(x)^{q-p-1}W_{p}'(x) \bigr\} W_{p}'(x)\,dx \\ =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx + (q-p) \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \bigl(W_{p}'(x) \bigr)^{2}\,dx \\ =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx \\ &{} + (q-p) \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \frac{2}{p+1} \bigl(\xi ^{p+1} - W_{p}(x)^{p+1} \bigr)\,dx \\ =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx + \frac{2(q-p)}{p+1} \xi ^{p+1} \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \,dx - \frac{2(q-p)}{p+1}S_{2,q}. \end{aligned}$$
(4.6)

By this, we have

$$\begin{aligned} \frac{2q-p+1}{p+1}S_{2,q} =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx \\ &{}+ \frac{2(q-p)}{p+1}\xi ^{p+1} \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \,dx \\ :=& 2U_{1} + \frac{2(q-p)}{p+1}\xi ^{p+1}S_{2, q-p-1}. \end{aligned}$$
(4.7)

By (4.3) and integration by parts, we have

$$\begin{aligned} U_{1} =& \int _{0}^{1/2} x \biggl(\frac{1}{q-p+1}W_{p}(x)^{q-p+1} \biggr)'\,dx \\ =& \biggl[ x\frac{1}{q-p+1}W_{p}(x)^{q-p+1} \biggr]_{0}^{1/2} - \int _{0}^{1/2}\frac{1}{q-p+1} W_{p}(x)^{q-p+1}\,dx \\ =& \frac{1}{2(q-p+1)}\xi ^{q-p+1}-\frac{1}{q-p+1}S_{0,q-p+1} \\ =& \frac{1}{q-p+1} \biggl(\frac{1}{2}\xi ^{q-p+1}- \sqrt{\frac{p+1}{2}} \xi ^{(2q-3p+3)/2}L_{p,q-p+1} \biggr). \end{aligned}$$
(4.8)

By this and (4.7), we have

$$\begin{aligned} S_{2,q} =& \frac{p+1}{2q-p+1} \biggl\{ \frac{1}{q-p+1} \bigl(\xi ^{q-p+1}- \sqrt{2(p+1)}\xi ^{(2q-3p+3)/2}L_{p,q-p+1} \bigr) \\ &{} + \frac{2(q-p)}{p+1}\xi ^{p+1}S_{2,q-p-1} \biggr\} . \end{aligned}$$
(4.9)

We repeat the calculation (4.2)–(4.9). Then we obtain \(R_{2,q}\) for \(q = m(p+1)\) and \(q = m(p+1) + p\) inductively. Indeed, assume that \(q = m(p+1)\) (resp. \(q = m(p+1)+p\)). Then, by repeating m times the argument above, we have

$$\begin{aligned} &R_{2,q} := C_{0,m} + C_{0,1,m}S_{1,0} + C_{0,2,m}S_{2, 0}, \quad \bigl(q = m(p+1) \bigr), \end{aligned}$$
(4.10)
$$\begin{aligned} &R_{2,q} := C_{1,m} + C_{1,1,m}S_{1,p} + C_{1,2,m}S_{2, p}, \quad \bigl(q = m(p+1)+p \bigr), \end{aligned}$$
(4.11)

where \(C_{0,m}\), \(C_{0,1,m}\), \(C_{1,2,m}\), \(C_{1,m}\), \(C_{1,1,m}\), \(C_{1,2,m}\) are explicit constants containing ξ, which are obtained inductively. According to the case where \(q = m(p+1)\), or \(q = m(p+1)+p\), (4.10) and (4.11) are determined by

$$\begin{aligned} &S_{1,0} = \int _{0}^{1/2} x\,dx = \frac{1}{8}, \end{aligned}$$
(4.12)
$$\begin{aligned} &S_{2,0} = \int _{0}^{1/2} x^{2}\,dx = \frac{1}{24}, \end{aligned}$$
(4.13)
$$\begin{aligned} &S_{0,p} = \int _{0}^{1/2} W_{p}(x)^{p} \,dx = - \int _{0}^{1/2} W_{p}''(x) \,dx \end{aligned}$$
(4.14)
$$\begin{aligned} &\hphantom{S_{0,p}}= - \bigl[W_{p}'(x) \bigr]_{0}^{1/2} = W_{p}'(0) = \sqrt{ \frac{2}{p+1}}\xi ^{(p+1)/2}, \\ &S_{1,p} = \int _{0}^{1/2} xW_{p}(x)^{p} \,dx = \int _{0}^{1/2} x \bigl(-W_{p}''(x) \bigr)\,dx \end{aligned}$$
(4.15)
$$\begin{aligned} &\hphantom{S_{0,p}}= \bigl[x \bigl(-W_{p}'(x) \bigr) \bigr]_{0}^{1/2} + \int _{0}^{1/2} W_{p}'(x) \,dx \\ &\hphantom{S_{0,p}}= \bigl[W_{p}(x) \bigr]_{0}^{1/2} \\ &\hphantom{S_{0,p}}= \xi , \\ &S_{2,p} = \int _{0}^{1/2} x^{2}W_{p}(x)^{p} \,dx = \int _{0}^{1/2} x^{2} \bigl(-W_{p}''(x) \bigr)\,dx \\ &\hphantom{S_{0,p}}= \bigl[-x^{2} W_{p}'(x) \bigr]_{0}^{1/2} + \int _{0}^{1/2}2xW_{p}'(x) \,dx \\ &\hphantom{S_{0,p}}= \bigl[2xW_{p}(x) \bigr]_{0}^{1/2} - 2 \int _{0}^{1/2} W_{p}(x)\,dx \\ &\hphantom{S_{0,p}}= \xi - \sqrt{2(p+1)}\xi ^{(3-p)/2}L_{p,1}. \end{aligned}$$
(4.16)

Since \(M_{2,q} = R_{2,q}\) by (4.1), we see from (4.12)–(4.16) that \(M_{2,q}\) is explicitly determined inductively. Thus the proof is complete. □

Proof of Theorem 1.3.

(i) The proof of Theorem 1.3 follows from Lemma 4.1 immediately.

(ii) Let \(q = p + 1\). Then by (4.3), (4.5), (4.9), (4.12), (4.13) and direct calculation, we have

$$\begin{aligned} &S_{0,p+1} =\sqrt{\frac{p+1}{2}}\xi ^{(p+3)/2}L_{p,p+1}, \end{aligned}$$
(4.17)
$$\begin{aligned} &S_{1,p+1} = \frac{p+1}{p+3} \biggl\{ \frac{1}{2}\xi ^{2} + \frac{1}{4(p+1)}\xi ^{p+1} \biggr\} , \end{aligned}$$
(4.18)
$$\begin{aligned} &S_{2,p+1} = \frac{p+1}{p+3} \biggl\{ \frac{1}{2} \bigl(\xi ^{2} - \sqrt{2(p+1)}\xi ^{(5-p)/2}L_{p,2} \bigr) + \frac{1}{12(p+1)}\xi ^{p+1} \biggr\} . \end{aligned}$$
(4.19)

By (4.17)–(4.19), we have

$$\begin{aligned} M_{2,p+1} =& R_{2,p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi ^{(p+3)/2}L_{p,p+1} - \frac{1}{3(p+3)} \xi ^{p+1} - \frac{p+1}{p+3}\sqrt{2(p+1)} \xi ^{(5-p)/2}L_{p,2}. \end{aligned}$$
(4.20)

(iii) Let \(q = 2p+1 (= p+1 + p)\). Then, by a similar calculation as above, we have

$$\begin{aligned} &S_{0,2p+1} =\sqrt{\frac{p+1}{2}}\xi ^{3(p+1)/2}L_{p, 2p+1}, \end{aligned}$$
(4.21)
$$\begin{aligned} &S_{1,2p+1} = \frac{2p+5}{3(p+2)}\xi ^{p+2}, \end{aligned}$$
(4.22)
$$\begin{aligned} &S_{2,2p+1} = \frac{2p+5}{3(p+2)}\xi ^{p+2} - \frac{1}{3}\sqrt{2(p+1)} \xi ^{(p+5)/2} \biggl( \frac{1}{p+2}L_{p,p+2} + 2L_{p,1} \biggr). \end{aligned}$$
(4.23)

By (4.22)–(4.24), we have

$$\begin{aligned} M_{2, 2p+1} =& R_{2,2p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi ^{3(p+1)/2}L_{p, 2p+1} - \frac{2}{3}\sqrt{2(p+1)} \xi ^{(p+5)/2} \biggl( \frac{1}{p+2}L_{p,p+2} + 2L_{p,1} \biggr). \end{aligned}$$
(4.24)

Thus the proof of Theorem 1.3 is complete. □

5 Proof of Theorem 1.4

In this section we consider the case \(p = q > 1\) and \(f(x) = (1-x)^{n}\) for \(n \in \mathbb{N}\) with \(n \ge 2\). We show that we are able to obtain \(M_{n,p}\) inductively by using the constants \(S_{m,1}\) (\(m \ge 0\)).

Proof of Theorem 1.4 (i)

Case 1. Assume that \(n = 2k + 1\), where \(k \in \mathbb{N}\). We put \(t = 1-s\). By (2.6), we have

$$\begin{aligned} M_{2k+1,p} =& \int _{0}^{1} (1 - s)^{2k+1} W_{p}(s)^{p}\,ds \\ =& \int _{0}^{1/2} (1 - s)^{2k+1} W_{p}(s)^{p}\,ds + \int _{1/2}^{1}(1-s)^{2k+1}W_{p}(s)^{p} \,ds \\ =& \sum_{r = 0}^{2k} (-1)^{r}{}_{2k+1}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds - \int _{0}^{1/2} s^{2k+1}W_{p}(s)^{p} \,ds + \int _{0}^{1/2} t^{2k+1} W_{p}(t)^{p}\,dt \\ =& \sum_{r = 0}^{2k} (-1)^{r}{}_{2k+1}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds. \end{aligned}$$
(5.1)

Therefore, \(M_{2k+1,p}\) is obtained by \(S_{r, p}\) (\(0 \le r \le 2k\)).

Case 2. Assume that \(n = 2k\), where \(k \in \mathbb{N}\). Then

$$\begin{aligned} M_{2k,p} =& \int _{0}^{1} (1 - s)^{2k} W_{p}(s)^{p}\,ds \\ =& \int _{0}^{1/2} (1 - s)^{2k} W_{p}(s)^{p}\,ds + \int _{1/2}^{1}(1-s)^{2k+1}W_{p}(s)^{p} \,ds \\ =& \sum_{r = 0}^{2k-1} (-1)^{r}{}_{2k}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds + \int _{0}^{1/2} s^{2k}W_{p}(s)^{p} \,ds + \int _{1/2}^{1} t^{2k} W_{p}(t)^{p}\,dt \\ =& \sum_{r = 0}^{2k-1} (-1)^{r}{}_{2k}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds + 2 \int _{0}^{1/2} s^{2k}W_{p}(s)^{p} \,ds. \end{aligned}$$
(5.2)

By (5.1) and (5.2), we find that \(M_{2k,p}\) is obtained by \(S_{r, p}\) (\(0 \le r \le 2k\)). By (2.7), for \(r \ge 2\), we have

$$\begin{aligned} S_{r,p} =& \int _{0}^{1/2} x^{r} W_{p}(x)^{p}\,dx \\ =& \int _{0}^{1/2} x^{r} \bigl(-W_{p}(x)'' \bigr)\,dx = \bigl[x^{r} \bigl(-W_{p}'(x) \bigr) \bigr]_{0}^{1/2} + \int _{0}^{1/2} rx^{r-1}W_{p}'(x) \,dx \\ =& r \bigl[x^{r-1}W_{p}(x) \bigr]_{0}^{1/2} - r(r-1) \int _{0}^{1/2}x^{r-2}W_{p}(x) \,dx \\ =& r \biggl(\frac{1}{2} \biggr)^{r-1}\xi - r(r-1)S_{r-2, 1}. \end{aligned}$$
(5.3)

By this, we see that \(S_{r,p}\) (\(r \ge 2\)) is represented by \(S_{r-2, 1}\). By (5.2) and (5.3), we have

$$\begin{aligned} &M_{2k+1,p} = \sum_{r = 0}^{2k} (-1)^{r}{}_{2k+1}C_{r} \biggl\{ r \biggl( \frac{1}{2} \biggr)^{r-1}\xi - r(r-1)S_{r-2,1} \biggr\} , \end{aligned}$$
(5.4)
$$\begin{aligned} &M_{2k,p} = \sum_{r = 0}^{2k-1} (-1)^{r}{}_{2k}C_{r} \biggl\{ r \biggl( \frac{1}{2} \biggr)^{r-1}\xi - r(r-1)S_{r-2,1} \biggr\} \\ & \hphantom{M_{2k,p}}\quad + 2 \biggl\{ 2k \biggl(\frac{1}{2} \biggr)^{2k-1}\xi - 2k(2k-1)S_{2k-2,1} \biggr\} . \end{aligned}$$
(5.5)

By (5.4) and (5.5), we obtain our conclusion. Thus the proof is complete. □

Proof of Theorem 1.4 (ii)

By (4.14), (4.15), and (4.16) and putting \(t = 1-x\), we have

$$\begin{aligned} M_{3,p} =& \int _{0}^{1} (1-x)^{3}W_{p}(x)^{p} \,dx \\ =& \int _{0}^{1/2} (1-x)^{3}W_{p}(x)^{p} \,dx + \int _{1/2}^{1} (1-x)^{3}W_{p}(x)^{p} \,dx \\ =& \int _{0}^{1/2} \bigl(1-3x+3x^{3}-x^{3} \bigr)W_{p}(x)^{p}\,dx + \int _{0}^{1/2} t^{3}W_{p}(t) \,dt \\ =& \int _{0}^{1/2} \bigl(1-3x+3x^{3} \bigr)W_{p}(x)^{p}\,dx = S_{0,p} - 3S_{1,p} + 3S_{2,p} \\ =& \sqrt{\frac{2}{p+1}}\xi ^{(p+1)/2} - 3\sqrt{2(p+1)}\xi ^{(3-p)/2}L_{p,1}. \end{aligned}$$
(5.6)

Thus the proof is complete. □

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Alves, C.O., Corréa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005)

    Article  MathSciNet  Google Scholar 

  2. Cheng, B.: New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems. J. Math. Anal. Appl. 394(2), 488–495 (2012)

    Article  MathSciNet  Google Scholar 

  3. Corrêa, F.J.S.A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59, 1147–1155 (2004)

    Article  MathSciNet  Google Scholar 

  4. Corrêa, F.J.S.A.D., de Morais Filho, C.: On a class of nonlocal elliptic problems via Galerkin method. J. Math. Anal. Appl. 310(1), 177–187 (2005)

    Article  MathSciNet  Google Scholar 

  5. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209–243 (1979)

    Article  MathSciNet  Google Scholar 

  6. Goodrich, C.S.: A topological approach to nonlocal elliptic partial differential equations on an annulus. Math. Nachr. 294, 286–309 (2021)

    Article  MathSciNet  Google Scholar 

  7. Goodrich, C.S.: A topological approach to a class of one-dimensional Kirchhoff equations. Proc. Am. Math. Soc. 8, 158–172 (2021)

    Article  MathSciNet  Google Scholar 

  8. Goodrich, C.S.: A one-dimensional Kirchhoff equation with generalized convolution coefficients. J. Fixed Point Theory Appl. 23, 73 (2021)

    Article  MathSciNet  Google Scholar 

  9. Goodrich, C.S.: Nonexistence and parameter range estimates for convolution differential equations. Proc. Am. Math. Soc. 9, 254–265 (2022)

    Article  MathSciNet  Google Scholar 

  10. Guo, B., Ding, H., Wang, R., Zhou, J.: Blowup for a Kirchhoff-type parabolic equation with logarithmic nonlinearity. Anal. Appl. 20(5), 1089–1101 (2022)

    Article  MathSciNet  Google Scholar 

  11. Infante, G., Pietramala, P., Adrián, F., Tojo, F.: Non-trivial solutions of local and non-local Neumann boundary-value problems. Proc. R. Soc. Edinb. A 146(2), 337–369 (2016)

    Article  MathSciNet  Google Scholar 

  12. Laetsch, T.: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20, 1–13 (1970)

    Article  MathSciNet  Google Scholar 

  13. Li, Q., Nie, J., Zhang, W.: Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation. J. Geom. Anal. 33(4), 126 (2023)

    Article  MathSciNet  Google Scholar 

  14. Li, Q., Radulescu, V.D., Zhang, W.: Normalized ground states for the Sobolev critical Schrödinger equation with at least mass critical growth. Nonlinearity 37(2), 025018 (2024)

    Article  Google Scholar 

  15. Li, Q., Zou, W.: Normalized ground states for Sobolev critical nonlinear Schrödinger equation in the L2-supercritical case. Discrete Contin. Dyn. Syst. 44(1), 205–227 (2024)

    Article  MathSciNet  Google Scholar 

  16. Liang, Z., Li, F., Shi, J.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31(1), 155–167 (2014)

    Article  MathSciNet  Google Scholar 

  17. Méndez, O.: On the eigenvalue problem for a class of Kirchhoff-type equations. J. Math. Anal. Appl. 494(2), 124671 (2021)

    Article  MathSciNet  Google Scholar 

  18. Shao, X., Tang, G.: Blow-up phenomena for a Kirchhoff-type parabolic equation with logarithmic nonlinearity. Appl. Math. Lett. 116, 106969 (2021)

    Article  MathSciNet  Google Scholar 

  19. Shibata, T.: Global and asymptotic behaviors of bifurcation curves of one-dimensional nonlocal elliptic equations. J. Math. Anal. Appl. 516(2), 126525 (2022)

    Article  MathSciNet  Google Scholar 

  20. Shibata, T.: Asymptotic behavior of solution curves of nonlocal one-dimensional elliptic equations. Bound. Value Probl. 2022, 63 (2022)

    Article  MathSciNet  Google Scholar 

  21. Shibata, T.: Bifurcation diagrams of one-dimensional Kirchhoff type equations. Adv. Nonlinear Anal. 12, 356–368 (2023)

    Article  MathSciNet  Google Scholar 

  22. Shibata, T.: Asymptotics of solution curves of Kirchhoff type elliptic equations with logarithmic Kirchhoff function. Qual. Theory Dyn. Syst. 22(2), 64 (2023)

    Article  MathSciNet  Google Scholar 

  23. Stańczy, R.: Nonlocal elliptic equations. Nonlinear Anal. 47, 3579–3584 (2001)

    Article  MathSciNet  Google Scholar 

  24. Wang, W., Tang, W.: Bifurcation of positive solutions for a nonlocal problem. Mediterr. J. Math. 13, 3955–3964 (2016)

    Article  MathSciNet  Google Scholar 

  25. Zhang, J., Zhou, H., Mi, H.: Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system. Adv. Nonlinear Anal. 13(1), 20230139 (2024)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number JP21K03310.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript is written by Tetsutaro Shibata.

Corresponding author

Correspondence to Tetsutaro Shibata.

Ethics declarations

Ethics

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibata, T. Exact solutions and bifurcation curves of nonlocal elliptic equations with convolutional Kirchhoff functions. Bound Value Probl 2024, 63 (2024). https://doi.org/10.1186/s13661-024-01871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-024-01871-1

Mathematics Subject Classification

Keywords