# Exact solutions and bifurcation curves of nonlocal elliptic equations with convolutional Kirchhoff functions

## Abstract

We study the one-dimensional nonlocal elliptic equation of Kirchhoff type with convolutional Kirchhoff functions. We establish the exact solutions $$u_{\lambda}$$ and bifurcation curves $$\lambda (\alpha )$$, where $$\alpha := \Vert u_{\lambda}\Vert _{\infty}$$.

## 1 Introduction

We consider the following one-dimensional nonlocal elliptic equation with convolutional Kirchhoff function:

$$\textstyle\begin{cases} - ({\int _{0}^{1}} f(x)u(x)^{q} \,dx ) u''(x)= \lambda u(x)^{p}, \quad x \in I:= (0,1), \\ u(x) > 0, \quad x\in I, \\ u(0) = u(1) = 0, \end{cases}$$
(1.1)

where $$f(x) = (1-x)^{n}$$ ($$n \in \mathbb{N}$$) and $$p, q > 1$$ are given constants. Further, $$\lambda > 0$$ is a bifurcation parameter.

Equation (1.1) is motivated by the convolution nonlocal elliptic problem of Kirchhoff type in [9]:

$$-J \bigl( \bigl(h *u^{q} \bigr) (1) \bigr)u''(x)= \lambda g \bigl(x, u(x) \bigr), \quad x \in I,$$
(1.2)

where J, h, and g are continuous functions and

$$\bigl(h * u^{q} \bigr) (t) := \int _{0}^{t} h(t-s)u(s)^{q}\,ds.$$

If we put $$J(y) = y$$, $$h(y) = y^{n}$$ and $$g(x, u) = u^{p}$$, then we obtain (1.1).

The purpose of this paper is to obtain the exact solutions and bifurcation curves of problem (1.1) by concentrating on the typical convolutional equation (1.1). Our results are novel since there seem to be few results to treat such problem as (1.1) from a viewpoint of bifurcation analysis, and the results obtained here will be the good first step to understand well the structures of solutions and bifurcation curves in the field of nonlocal elliptic problems. Moreover, as far as the author knows, the bifurcation phenomena of nonlocal problem with the coefficient coming from the convolution have not been considered before.

It is known that there are so many results concerning nonlocal and related problems. We refer to [1â€“4, 6â€“11, 13â€“18, 23, 25] and the references therein. In addition to this, there is much interesting and significant motivation to study this kind of nonlocal problems as (1.2). We refer to [9] and the references therein to understand the background of this problem. On the other hand, although the analysis of bifurcation diagram is a very popular problem in nonlinear elliptic problems, there are few results concerning the bifurcation problems for nonlocal problems. We refer to [19â€“22, 24].

Before stating our results, we explain some notations. For $$p> 1$$, let

$$\textstyle\begin{cases} {-}W''(x)= W(x)^{p}, \quad x \in I, \\ W(x) > 0, \quad x\in I, \\ W(0) = W(1) = 0. \end{cases}$$
(1.3)

We know from [5] that there exists a unique solution $$W_{p}(x)$$ of (1.3). For $$d, k\ge 0$$, we put

\begin{aligned} &L_{k,d}:= \int _{0}^{1} \frac{s^{d}}{\sqrt{1-s^{k+1}}}\,ds, \end{aligned}
(1.4)
\begin{aligned} &M_{k,d}:= \int _{0}^{1} (1-x)^{k}W_{p}(x)^{d} \,dx, \end{aligned}
(1.5)
\begin{aligned} &R_{k, d}:= \int _{0}^{1} x^{k} W_{p}(x)^{d}\,dx, \end{aligned}
(1.6)
\begin{aligned} &S_{k, d}:= \int _{0}^{1/2} x^{k} W_{p}(x)^{d}\,dx. \end{aligned}
(1.7)

Let $$\Vert \cdot \Vert _{\beta}$$ ($$1 \le \beta \le \infty$$) be the usual $$L^{\beta}$$-norm. We know from [22] that, for $$p > 1$$,

\begin{aligned} \xi _{p} := \Vert W_{p} \Vert _{\infty } =& \bigl(2(p+1) \bigr)^{1/(p-1)}L_{p,0}^{2/(p-1)}. \end{aligned}
(1.8)

Now, we state our results.

### Theorem 1.1

Let $$f(x) = (1-x)^{n}$$ $$(n \in \mathbb{N})$$. Further, $$\lambda > 0$$ is a given constant.

(i) Assume that $$p \neq q+1$$. Then the solution $$u_{\lambda}$$ is given by

\begin{aligned} u_{\lambda }= \biggl(\frac{\lambda}{M_{n,q}} \biggr)^{1/(q-p+1)}W_{p}(x). \end{aligned}
(1.9)

(ii) Assume that $$p = q+1$$.

(a) Suppose that $$\lambda = M_{n,q}$$. Then all the solutions $$u_{\lambda}$$ are represented as $$u_{\lambda }= tW_{p}$$, where $$t > 0$$ is an arbitrary constant.

(b) Assume that there exists a solution $$U_{\lambda}$$ of (1.1). Then $$U_{\lambda }= r_{\lambda }W_{p}$$, where $$r_{\lambda}:= (Q_{n,q}/\lambda )^{1/(p-1)}$$ and

\begin{aligned} Q_{n,q}:= \int _{0}^{1} (1-x)^{n}u_{\lambda}(x)^{q} \,dx. \end{aligned}
(1.10)

Moreover, $$\lambda = M_{n,q}$$ holds. Therefore, by (i) above, all the solutions $$u_{\lambda}$$ of (1.1) are obtained as $$u_{\lambda }= tW_{p}$$, where $$t > 0$$ is an arbitrary constant.

(c) Assume that $$\lambda \neq M_{n,q}$$. Then (1.1) has no solutions.

By TheoremÂ 1.1, we see that the essential point to obtain the solution $$u_{\lambda}$$ is to find $$M_{n,q}$$. In the following TheoremsÂ 1.2 and 1.3, by using TheoremÂ 1.1 (i), we obtain the exact solution $$u_{\lambda}$$ for given $$\lambda > 0$$ and show that Î» is parameterized by $$\alpha := \Vert u_{\lambda}\Vert _{\infty}$$, namely, $$\lambda =\lambda (\alpha )$$, and we establish the exact formula of $$\lambda (\alpha )$$.

### Theorem 1.2

Let $$f(x) = 1-x$$ in (1.1). Assume that $$p \neq q+1$$. Then, for any given $$\lambda > 0$$,

\begin{aligned} u_{\lambda}(x) &= \lambda ^{1/(q-p+1)} \\ &\quad \times \bigl\{ 2^{(q-p+1)/(p-1)}(p+1)^{q/(p-1)}L_{p,0}^{(2q-p+1)/(p-1)} L_{p,q} \bigr\} ^{-1/(q-p+1)} W_{p}(x), \end{aligned}
(1.11)
\begin{aligned} \lambda (\alpha ) =& (p+1)L_{p,0}L_{p,q}\alpha ^{q-p+1}. \end{aligned}
(1.12)

### Theorem 1.3

Let $$f(x) = (1-x)^{2}$$. Assume that $$q = m(p+1)$$ or $$q = m(p+1)+p$$, where $$m \in \mathbb{N}$$. Then

(i)

\begin{aligned} &u_{\lambda}(x) = \biggl(\frac{\lambda}{M_{2,q}} \biggr)^{1/(q-p+1)}W_{p}(x), \end{aligned}
(1.13)
\begin{aligned} &\lambda (\alpha ) = M_{2,q}\xi _{p}^{-(q-p+1)} \alpha ^{q-p+1}, \end{aligned}
(1.14)

where

\begin{aligned} &M_{2,q} := C_{0,m} + C_{0,1,m}S_{1,0} + C_{0,2,m}S_{2, 0}, \quad \bigl(q = m(p+1) \bigr), \end{aligned}
(1.15)
\begin{aligned} &M_{2,q} := C_{1,m} + C_{1,1,m}S_{1,p} + C_{1,2,m}S_{2, p}, \quad \bigl(q = m(p+1)+p \bigr), \end{aligned}
(1.16)

$$C_{0,m}$$, $$C_{0,1,m}$$, $$C_{1,2,m}$$, $$C_{1,m}$$, $$C_{1,1,m}$$, $$C_{1,2,m}$$ are constants that depend on $$\xi _{p}$$ and are obtained inductively. Here,

\begin{aligned} &S_{1,0} =\frac{1}{8}, \end{aligned}
(1.17)
\begin{aligned} &S_{2,0} = \frac{1}{24}, \end{aligned}
(1.18)
\begin{aligned} &S_{1,p} =\xi _{p}, \end{aligned}
(1.19)
\begin{aligned} &S_{2,p} = \xi _{p} - \sqrt{2(p+1)}\xi _{p}^{(3-p)/2}L_{p,1}. \end{aligned}
(1.20)

For the special case $$m = 1$$, the following (ii) and (iii) hold:

(ii) Let $$q = p + 1$$. Then

\begin{aligned} M_{2,p+1} =& R_{2,p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi _{p}^{(p+3)/2}L_{p,p+1} - \frac{1}{3(p+1)}\xi _{p}^{p+1} - \frac{p+1}{p+3}\sqrt{2(p+1)}\xi _{p}^{(5-p)/2}L_{p,1}. \end{aligned}
(1.21)

(iii) Let $$q = 2p+1 (= p+1 + p)$$. Then

\begin{aligned} M_{2, 2p+1} =& R_{2,2p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi _{p}^{3(p+1)/2}L_{p, 2p+1} - \frac{2}{3} \sqrt{2(p+1)}\xi _{p}^{(p+5)/2} \biggl(\frac{1}{p+2}L_{p,p+2} + 2L_{p,1} \biggr). \end{aligned}
(1.22)

Now, we consider the case $$p = q$$.

### Theorem 1.4

Let $$p = q > 1$$.

(i) Assume that $$n \ge 2$$. Then $$u_{\lambda}$$ is obtained inductively by using $$S_{k,1}$$ ($$1 \le k \le n-2$$).

(ii) Especially, let $$n = 3$$. Then

\begin{aligned} M_{3,p} = \sqrt{\frac{2}{p+1}}\xi ^{(p+1)/2} - 3 \sqrt{2(p+1)} \xi _{p}^{(3-p)/2}L_{p,1} \end{aligned}
(1.23)

and (1.12), (1.13) hold by replacing $$M_{2,q}$$ and q with $$M_{3,p}$$ and p, respectively.

Remarks. (i) The case $$n = 1$$ in TheoremÂ 1.4 is contained in TheoremÂ 1.1.

(ii) The novelty of TheoremÂ 1.4 is to give a scheme to obtain $$u_{\lambda}$$ inductively. Unfortunately, we are not able to calculate the concrete value of $$S_{k,1}$$ for $$k \ge 1$$. We only find that $$M_{n,p}$$ is expressed by $$S_{k,1}$$ ($$1 \le k \le n-2$$). Exceptionally, we have (cf. (4.3))

\begin{aligned} S_{0,1} = \sqrt{\frac{p+1}{2}}\xi _{p}^{(3-p)/2}L_{p,1}. \end{aligned}
(1.24)

The remainder of this paper is organized as follows. In Sect.Â 2, we first prove TheoremÂ 1.1. Next, we explain the existence of $$u_{\lambda}$$ for $$\lambda > 0$$ and the fundamental properties of $$W_{p}$$. In Sects.Â 3, 4, and 5, the proofs of TheoremsÂ 1.2, 1.3, and 1.4 will be given respectively. The main tools of the proofs are time map argument and complicated direct calculation.

## 2 Proof of TheoremÂ 1.1 and preliminaries

In what follows, we write $$\xi = \xi _{p}$$ for simplicity. In this section, we consider the case $$f(x) = (1-x)^{n}$$, where $$n \in \mathbb{N}$$. For given $$\lambda > 0$$, we look for the solution $$u_{\lambda}$$ of the form $$u_{\lambda }= tW_{p}$$ ($$t > 0$$).

### Proof of TheoremÂ 1.1

(i) Let $$p \neq q+1$$. We look for the solution of (1.1) of the form $$u_{\lambda }= t_{\lambda }W_{p}$$, where $$t_{\lambda }> 0$$ is a suitable constant determined in (2.2). By (1.1), we have

\begin{aligned} -t_{\lambda}^{q+1} \biggl( \int _{0}^{1} (1-x)^{n}W_{p}(x)^{q} \,dx \biggr)W_{p}''(x) = \lambda t_{\lambda}^{p} W_{p}(x)^{p}. \end{aligned}
(2.1)

Then there exists unique $$t_{\lambda }> 0$$ satisfying

\begin{aligned} t_{\lambda} = \biggl(\frac{\lambda}{M_{n,q}} \biggr)^{1/(q-p+1)}, \end{aligned}
(2.2)

and we find that $$u_{\lambda }= t_{\lambda }W_{p}$$ satisfies (1.1). We next show that, if there exists a solution $$u_{\lambda}$$ of (1.1), then $$u_{\lambda }= t_{\lambda }W_{p}$$, where $$t_{\lambda}$$ is a constant given in (2.2). Indeed, we put $${r_{\lambda}:= (\frac{Q_{n,q}}{\lambda} )^{1/(p-1)}}$$ and $$w_{\lambda}:= r_{\lambda}^{-1} u_{\lambda}$$. Then we see from (1.1) and (1.10) that $$w_{\lambda}$$ satisfies (1.3). Namely, $$w_{\lambda }= W_{p}$$. Then, by the definition of $$r_{\lambda}$$ and (1.10), we obtain

\begin{aligned} \lambda r_{\lambda}^{p-1} =& Q_{n,q} = \int _{0}^{1} (1-x)^{n} u_{ \lambda}(x)^{q}\,dx \\ =& \int _{0}^{1} (1-x)^{n} r_{\lambda}^{q} W_{p}(x)^{q}\,dx = r_{ \lambda}^{q} M_{n,q}. \end{aligned}
(2.3)

By this and (2.2), we see that $${r_{\lambda }= (\frac{\lambda}{M_{n,q}} )^{1/(q-p+1)} = t_{\lambda}}$$ and $$u_{\lambda }= t_{\lambda }W_{p}$$. Thus the proof is complete.â€ƒâ–¡

(ii) Now assume that $$p = q+1$$.

(a) Assume that $$\lambda = M_{n,q}$$. For $$t > 0$$, we put $$U_{\lambda }:= tW_{p}$$ and substitute it into (1.1). Then we obtain

\begin{aligned} -t^{q+1} \biggl( \int _{0}^{1} (1-x)^{n}W_{p}(x)^{q} \,dx \biggr)W_{p}''(x) = \lambda t^{p} W_{p}(x)^{p}. \end{aligned}
(2.4)

Then we see that (2.4) drives us to (1.3). Therefore, $$U_{\lambda }= tW_{p}$$ is a solution of (1.1). Thus the proof of (ii) (a) is complete. â€ƒâ–¡

(b) The proof of (ii) (b) is the same as that of TheoremÂ 1.1 (i). So, we omit the proof. â€ƒâ–¡

(c) By (a) and (b) above, a solution $$u_{\lambda}$$ of (1.1) exists if and only if the equality $$\lambda = M_{n,q}$$ holds. Therefore, if $$\lambda \neq M_{n,q}$$, then (1.1) has no solutions. Thus the proof of TheoremÂ 1.1 is complete.â€ƒâ–¡

To calculate $$M_{n,q}$$, we need some fundamental properties of $$W_{p}$$. Since (1.3) is autonomous, we know from [5] that

\begin{aligned} &W_{p}(x) = W_{p}(1-x), \quad 0 \le x \le \frac{1}{2}, \end{aligned}
(2.5)
\begin{aligned} &\xi = \Vert W_{p} \Vert _{\infty }= \max _{0\le x \le 1}W_{p}(x) = W_{p} \biggl( \frac{1}{2} \biggr), \end{aligned}
(2.6)
\begin{aligned} &W_{p}'(x) > 0, \quad 0 \le x < \frac{1}{2}. \end{aligned}
(2.7)

By (1.3), for $$0 \le x \le 1$$, we have

\begin{aligned} \bigl\{ W_{p}''(x) + W_{p}(x)^{p} \bigr\} W_{p}'(x) = 0. \end{aligned}
(2.8)

By this and (2.6), we have

\begin{aligned} \frac{1}{2}W_{p}'(x)^{2} + \frac{1}{p+1}W_{p}(x)^{p+1} = \text{constant} = \frac{1}{p+1} W_{p} \biggl(\frac{1}{2} \biggr)^{p+1} = \frac{1}{p+1}\xi ^{p+1}. \end{aligned}
(2.9)

By this and (2.8), for $$0 \le x \le 1/2$$, we have, using $$\theta = \xi _{p} s$$,

\begin{aligned} W_{p}'(x) = \sqrt{\frac{2}{p+1} \bigl(\xi ^{p+1} - W_{p}(x)^{p+1} \bigr)}. \end{aligned}
(2.10)

By (2.5)â€“(2.7), (2.10) and putting $$W_{p}(x) = \xi s$$, we have

\begin{aligned} \Vert W_{p} \Vert _{q}^{q} =& 2 \int _{0}^{1/2} W_{p}(x)^{q} \,dx \\ =& 2 \int _{0}^{1/2} W_{p}(x)^{q} \frac{W_{p}'(x)}{ \sqrt{\frac{2}{p+1}(\xi ^{p+1} - W_{p}(x)^{p+1})}}\,dx \\ =& 2\sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2} \int _{0}^{1} \frac{s^{q}}{\sqrt{1-s^{p+1}}}\,ds \\ =& 2\sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2}L_{p,q}. \end{aligned}
(2.11)

## 3 Proof of TheoremÂ 1.2

Now we put $$n = 1$$ and consider the case $$f(x) = 1-x$$. By (1.6), (2.5), (2.11) and putting $$s = 1-t$$, we have

\begin{aligned} R_{1,q} =& \int _{0}^{1} sW_{p}(s)^{q} \,ds \\ =& \int _{0}^{1/2} sW_{p}(s)^{q} \,ds + \int _{1/2}^{1} sW_{p}(s)^{q} \,ds \\ =& \int _{0}^{1/2} sW_{p}(s)^{q} \,ds + \int _{0}^{1/2} (1-t)W_{p}(t)^{q} \,dt \\ =& \int _{0}^{1/2} W_{p}(s)^{q} \,ds \\ =& \sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2}L_{p,q}. \end{aligned}
(3.1)

By this, (1.5), and (2.11), we obtain

\begin{aligned} M_{1,q} =& \Vert W_{p} \Vert _{q}^{q} - R_{1,q} = \sqrt{\frac{p+1}{2}} \xi ^{(2q-p+1)/2}L_{p,q}. \end{aligned}
(3.2)

By this and (2.2), we have

\begin{aligned} u_{\lambda}(x) =& \biggl(\frac{\lambda}{M_{1,q}} \biggr)^{1/(q-p+1)}W_{p}(x) \\ =& \lambda ^{1/(q-p+1)} \biggl\{ \sqrt{\frac{p+1}{2}}\xi ^{(2q-p+1)/2}L_{p,q} \biggr\} ^{-1/(q-p+1)} W_{p}(x). \end{aligned}
(3.3)

This along with (1.8) implies (1.11). Now, we put $$x = 1/2$$ in (3.3). Then we have

\begin{aligned} \alpha =& \lambda ^{1/(q-p+1)} \biggl\{ \sqrt{\frac{p+1}{2}}L_{p,q} \biggr\} ^{-1/(q-p+1)}\xi ^{-(p-1)/(2(q-p+1))}. \end{aligned}
(3.4)

This along with (1.8) implies (1.12). Thus the proof of TheoremÂ 1.2 is complete. â€ƒâ–¡

## 4 Proof of TheoremÂ 1.3

In this section, let $$n = 2$$, namely, $$f(x) = (1-x)^{2}$$. As in Sect.Â 3, we look for the solution of (1.1) of the form $$u_{\lambda }= t_{\lambda }W_{p}$$, where $$t_{\lambda }> 0$$ is a constant defined by (2.4). By (1.5), (1.6), (2.11), and (3.1), we have

\begin{aligned} M_{2,q} =& \int _{0}^{1} W_{p}(x)^{q} \,dx -2 \int _{0}^{1} xW_{p}(x)^{q} \,dx + \int _{0}^{1} x^{2}W_{p}(x)^{q} \,dx \\ =& \int _{0}^{1} x^{2} W_{p}(x)^{q}\,dx = R_{2,q}. \end{aligned}
(4.1)

### Lemma 4.1

Assume that $$q = m(p+1)$$ or $$q = m(p+1)+ p$$, where $$m \in \mathbb{N}$$. Then $$R_{2,q}$$ is explicitly determined inductively.

### Proof

By (1.7), (2.5), (4.1) and putting $$x = 1-t$$, we have

\begin{aligned} R_{2,q} =& \int _{0}^{1/2} x^{2}W_{p}(x)^{q} \,dx + \int _{1/2}^{1} x^{2}W_{p}(x)^{q} \,dx \\ =& \int _{0}^{1/2} x^{2}W_{p}(x)^{q} \,dx + \int _{0}^{1/2} \bigl(1 - 2t + t^{2} \bigr)W_{p}(t)^{q}\,dt \\ =& \int _{0}^{1/2} W_{p}(x)^{q} \,dx - 2 \int _{0}^{1/2} xW_{p}(x)^{q} \,dx + 2 \int _{0}^{1/2} x^{2}W_{(}x)^{q} \,dx \\ =& S_{0,q} - 2S_{1,q} + 2S_{2,q}. \end{aligned}
(4.2)

By (2.6), we have $$W_{p}'(1/2) = 0$$. By this, (1.1), (1.3), (2.10), (2.11) and integration by parts, we have

\begin{aligned} &S_{0,q} = \int _{0}^{1/2} W_{p}(x)^{q} \,dx = \sqrt{\frac{p+1}{2}} \xi ^{(2q-p+1)/2}L_{p,q}, \end{aligned}
(4.3)
\begin{aligned} &S_{1,q} = \int _{0}^{1/2} xW_{p}(x)^{q-p}W_{p}(x)^{p} \,dx \\ &\hphantom{S_{1,q}} = - \int _{0}^{1/2} xW_{p}(x)^{q-p}W_{p}''(x) \,dx \\ &\hphantom{S_{1,q}}= - \bigl[xW_{p}(x)^{q-p}W_{p}'(x) \bigr]_{0}^{1/2} + \int _{0}^{1/2} \bigl(xW_{p}(x)^{q-p} \bigr)'W_{p}'(x)\,dx \\ &\hphantom{S_{1,q}}= \int _{0}^{1/2} \bigl\{ W_{p}(x)^{q-p} + x(q-p)W_{p}(x)^{q-p-1}W_{p}'(x) \bigr\} W_{p}'(x)\,dx \\ &\hphantom{S_{1,q}}= \frac{1}{q-p+1} \bigl[W_{p}(x)^{q-p+1} \bigr]_{0}^{1/2} + (q-p) \int _{0}^{1/2}xW_{p}(x)^{q-p-1} \bigl(W_{p}'(x) \bigr)^{2}\,dx \\ &\hphantom{S_{1,q}}= \frac{1}{q-p+1}\xi ^{q-p+1} + (q-p) \int _{0}^{1/2} xW_{p}(x)^{q-p-1} \frac{2}{p+1} \bigl(\xi ^{p+1} - W_{p}(x)^{p+1} \bigr)\,dx \\ &\hphantom{S_{1,q}}= \frac{1}{q-p+1}\xi ^{q-p+1} + \frac{2(q-p)}{p+1}\xi ^{p+1} \int _{0}^{1/2}xW_{p}(x)^{q-p-1} \,dx - \frac{2(q-p)}{p+1}S_{1,q}. \end{aligned}
(4.4)

By this, we obtain

\begin{aligned} S_{1,q} =& \frac{p+1}{2q-p+1} \biggl\{ \frac{1}{q-p+1}\xi ^{q-p+1} + \frac{2(q-p)}{p+1} \xi ^{p+1}S_{1, q-p-1} \biggr\} . \end{aligned}
(4.5)

Similar to the argument to derive (4.5), we obtain

\begin{aligned} S_{2,q} =& \int _{0}^{1/2} x^{2}W_{p}(x)^{q-p}W_{p}(x)^{p} \,dx \\ =& - \int _{0}^{1/2} x^{2}W_{p}(x)^{q-p}W_{p}''(x) \,dx \\ =& - \bigl[x^{2}W_{p}(x)^{q-p}W_{p}'(x) \bigr]_{0}^{1/2} + \int _{0}^{1/2} \bigl(x^{2}W_{p}(x)^{q-p} \bigr)'W_{p}'(x)\,dx \\ =& \int _{0}^{1/2} \bigl\{ 2xW_{p}(x)^{q-p} + x^{2}(q-p)W_{p}(x)^{q-p-1}W_{p}'(x) \bigr\} W_{p}'(x)\,dx \\ =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx + (q-p) \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \bigl(W_{p}'(x) \bigr)^{2}\,dx \\ =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx \\ &{} + (q-p) \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \frac{2}{p+1} \bigl(\xi ^{p+1} - W_{p}(x)^{p+1} \bigr)\,dx \\ =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx + \frac{2(q-p)}{p+1} \xi ^{p+1} \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \,dx - \frac{2(q-p)}{p+1}S_{2,q}. \end{aligned}
(4.6)

By this, we have

\begin{aligned} \frac{2q-p+1}{p+1}S_{2,q} =& 2 \int _{0}^{1/2} xW_{p}(x)^{q-p} W_{p}'(x)\,dx \\ &{}+ \frac{2(q-p)}{p+1}\xi ^{p+1} \int _{0}^{1/2}x^{2}W_{p}(x)^{q-p-1} \,dx \\ :=& 2U_{1} + \frac{2(q-p)}{p+1}\xi ^{p+1}S_{2, q-p-1}. \end{aligned}
(4.7)

By (4.3) and integration by parts, we have

\begin{aligned} U_{1} =& \int _{0}^{1/2} x \biggl(\frac{1}{q-p+1}W_{p}(x)^{q-p+1} \biggr)'\,dx \\ =& \biggl[ x\frac{1}{q-p+1}W_{p}(x)^{q-p+1} \biggr]_{0}^{1/2} - \int _{0}^{1/2}\frac{1}{q-p+1} W_{p}(x)^{q-p+1}\,dx \\ =& \frac{1}{2(q-p+1)}\xi ^{q-p+1}-\frac{1}{q-p+1}S_{0,q-p+1} \\ =& \frac{1}{q-p+1} \biggl(\frac{1}{2}\xi ^{q-p+1}- \sqrt{\frac{p+1}{2}} \xi ^{(2q-3p+3)/2}L_{p,q-p+1} \biggr). \end{aligned}
(4.8)

By this and (4.7), we have

\begin{aligned} S_{2,q} =& \frac{p+1}{2q-p+1} \biggl\{ \frac{1}{q-p+1} \bigl(\xi ^{q-p+1}- \sqrt{2(p+1)}\xi ^{(2q-3p+3)/2}L_{p,q-p+1} \bigr) \\ &{} + \frac{2(q-p)}{p+1}\xi ^{p+1}S_{2,q-p-1} \biggr\} . \end{aligned}
(4.9)

We repeat the calculation (4.2)â€“(4.9). Then we obtain $$R_{2,q}$$ for $$q = m(p+1)$$ and $$q = m(p+1) + p$$ inductively. Indeed, assume that $$q = m(p+1)$$ (resp. $$q = m(p+1)+p$$). Then, by repeating m times the argument above, we have

\begin{aligned} &R_{2,q} := C_{0,m} + C_{0,1,m}S_{1,0} + C_{0,2,m}S_{2, 0}, \quad \bigl(q = m(p+1) \bigr), \end{aligned}
(4.10)
\begin{aligned} &R_{2,q} := C_{1,m} + C_{1,1,m}S_{1,p} + C_{1,2,m}S_{2, p}, \quad \bigl(q = m(p+1)+p \bigr), \end{aligned}
(4.11)

where $$C_{0,m}$$, $$C_{0,1,m}$$, $$C_{1,2,m}$$, $$C_{1,m}$$, $$C_{1,1,m}$$, $$C_{1,2,m}$$ are explicit constants containing Î¾, which are obtained inductively. According to the case where $$q = m(p+1)$$, or $$q = m(p+1)+p$$, (4.10) and (4.11) are determined by

\begin{aligned} &S_{1,0} = \int _{0}^{1/2} x\,dx = \frac{1}{8}, \end{aligned}
(4.12)
\begin{aligned} &S_{2,0} = \int _{0}^{1/2} x^{2}\,dx = \frac{1}{24}, \end{aligned}
(4.13)
\begin{aligned} &S_{0,p} = \int _{0}^{1/2} W_{p}(x)^{p} \,dx = - \int _{0}^{1/2} W_{p}''(x) \,dx \end{aligned}
(4.14)
\begin{aligned} &\hphantom{S_{0,p}}= - \bigl[W_{p}'(x) \bigr]_{0}^{1/2} = W_{p}'(0) = \sqrt{ \frac{2}{p+1}}\xi ^{(p+1)/2}, \\ &S_{1,p} = \int _{0}^{1/2} xW_{p}(x)^{p} \,dx = \int _{0}^{1/2} x \bigl(-W_{p}''(x) \bigr)\,dx \end{aligned}
(4.15)
\begin{aligned} &\hphantom{S_{0,p}}= \bigl[x \bigl(-W_{p}'(x) \bigr) \bigr]_{0}^{1/2} + \int _{0}^{1/2} W_{p}'(x) \,dx \\ &\hphantom{S_{0,p}}= \bigl[W_{p}(x) \bigr]_{0}^{1/2} \\ &\hphantom{S_{0,p}}= \xi , \\ &S_{2,p} = \int _{0}^{1/2} x^{2}W_{p}(x)^{p} \,dx = \int _{0}^{1/2} x^{2} \bigl(-W_{p}''(x) \bigr)\,dx \\ &\hphantom{S_{0,p}}= \bigl[-x^{2} W_{p}'(x) \bigr]_{0}^{1/2} + \int _{0}^{1/2}2xW_{p}'(x) \,dx \\ &\hphantom{S_{0,p}}= \bigl[2xW_{p}(x) \bigr]_{0}^{1/2} - 2 \int _{0}^{1/2} W_{p}(x)\,dx \\ &\hphantom{S_{0,p}}= \xi - \sqrt{2(p+1)}\xi ^{(3-p)/2}L_{p,1}. \end{aligned}
(4.16)

Since $$M_{2,q} = R_{2,q}$$ by (4.1), we see from (4.12)â€“(4.16) that $$M_{2,q}$$ is explicitly determined inductively. Thus the proof is complete.â€ƒâ–¡

### Proof of TheoremÂ 1.3.

(i) The proof of TheoremÂ 1.3 follows from LemmaÂ 4.1 immediately.

(ii) Let $$q = p + 1$$. Then by (4.3), (4.5), (4.9), (4.12), (4.13) and direct calculation, we have

\begin{aligned} &S_{0,p+1} =\sqrt{\frac{p+1}{2}}\xi ^{(p+3)/2}L_{p,p+1}, \end{aligned}
(4.17)
\begin{aligned} &S_{1,p+1} = \frac{p+1}{p+3} \biggl\{ \frac{1}{2}\xi ^{2} + \frac{1}{4(p+1)}\xi ^{p+1} \biggr\} , \end{aligned}
(4.18)
\begin{aligned} &S_{2,p+1} = \frac{p+1}{p+3} \biggl\{ \frac{1}{2} \bigl(\xi ^{2} - \sqrt{2(p+1)}\xi ^{(5-p)/2}L_{p,2} \bigr) + \frac{1}{12(p+1)}\xi ^{p+1} \biggr\} . \end{aligned}
(4.19)

By (4.17)â€“(4.19), we have

\begin{aligned} M_{2,p+1} =& R_{2,p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi ^{(p+3)/2}L_{p,p+1} - \frac{1}{3(p+3)} \xi ^{p+1} - \frac{p+1}{p+3}\sqrt{2(p+1)} \xi ^{(5-p)/2}L_{p,2}. \end{aligned}
(4.20)

(iii) Let $$q = 2p+1 (= p+1 + p)$$. Then, by a similar calculation as above, we have

\begin{aligned} &S_{0,2p+1} =\sqrt{\frac{p+1}{2}}\xi ^{3(p+1)/2}L_{p, 2p+1}, \end{aligned}
(4.21)
\begin{aligned} &S_{1,2p+1} = \frac{2p+5}{3(p+2)}\xi ^{p+2}, \end{aligned}
(4.22)
\begin{aligned} &S_{2,2p+1} = \frac{2p+5}{3(p+2)}\xi ^{p+2} - \frac{1}{3}\sqrt{2(p+1)} \xi ^{(p+5)/2} \biggl( \frac{1}{p+2}L_{p,p+2} + 2L_{p,1} \biggr). \end{aligned}
(4.23)

By (4.22)â€“(4.24), we have

\begin{aligned} M_{2, 2p+1} =& R_{2,2p+1} = S_{0,q} - 2S_{1,q} + 2S_{2,q} \\ =& \sqrt{\frac{p+1}{2}}\xi ^{3(p+1)/2}L_{p, 2p+1} - \frac{2}{3}\sqrt{2(p+1)} \xi ^{(p+5)/2} \biggl( \frac{1}{p+2}L_{p,p+2} + 2L_{p,1} \biggr). \end{aligned}
(4.24)

Thus the proof of TheoremÂ 1.3 is complete.â€ƒâ–¡

## 5 Proof of TheoremÂ 1.4

In this section we consider the case $$p = q > 1$$ and $$f(x) = (1-x)^{n}$$ for $$n \in \mathbb{N}$$ with $$n \ge 2$$. We show that we are able to obtain $$M_{n,p}$$ inductively by using the constants $$S_{m,1}$$ ($$m \ge 0$$).

### Proof of TheoremÂ 1.4 (i)

CaseÂ 1. Assume that $$n = 2k + 1$$, where $$k \in \mathbb{N}$$. We put $$t = 1-s$$. By (2.6), we have

\begin{aligned} M_{2k+1,p} =& \int _{0}^{1} (1 - s)^{2k+1} W_{p}(s)^{p}\,ds \\ =& \int _{0}^{1/2} (1 - s)^{2k+1} W_{p}(s)^{p}\,ds + \int _{1/2}^{1}(1-s)^{2k+1}W_{p}(s)^{p} \,ds \\ =& \sum_{r = 0}^{2k} (-1)^{r}{}_{2k+1}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds - \int _{0}^{1/2} s^{2k+1}W_{p}(s)^{p} \,ds + \int _{0}^{1/2} t^{2k+1} W_{p}(t)^{p}\,dt \\ =& \sum_{r = 0}^{2k} (-1)^{r}{}_{2k+1}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds. \end{aligned}
(5.1)

Therefore, $$M_{2k+1,p}$$ is obtained by $$S_{r, p}$$ ($$0 \le r \le 2k$$).

CaseÂ 2. Assume that $$n = 2k$$, where $$k \in \mathbb{N}$$. Then

\begin{aligned} M_{2k,p} =& \int _{0}^{1} (1 - s)^{2k} W_{p}(s)^{p}\,ds \\ =& \int _{0}^{1/2} (1 - s)^{2k} W_{p}(s)^{p}\,ds + \int _{1/2}^{1}(1-s)^{2k+1}W_{p}(s)^{p} \,ds \\ =& \sum_{r = 0}^{2k-1} (-1)^{r}{}_{2k}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds + \int _{0}^{1/2} s^{2k}W_{p}(s)^{p} \,ds + \int _{1/2}^{1} t^{2k} W_{p}(t)^{p}\,dt \\ =& \sum_{r = 0}^{2k-1} (-1)^{r}{}_{2k}C_{r} \int _{0}^{1/2}s^{r} W_{p}(s)^{p}\,ds + 2 \int _{0}^{1/2} s^{2k}W_{p}(s)^{p} \,ds. \end{aligned}
(5.2)

By (5.1) and (5.2), we find that $$M_{2k,p}$$ is obtained by $$S_{r, p}$$ ($$0 \le r \le 2k$$). By (2.7), for $$r \ge 2$$, we have

\begin{aligned} S_{r,p} =& \int _{0}^{1/2} x^{r} W_{p}(x)^{p}\,dx \\ =& \int _{0}^{1/2} x^{r} \bigl(-W_{p}(x)'' \bigr)\,dx = \bigl[x^{r} \bigl(-W_{p}'(x) \bigr) \bigr]_{0}^{1/2} + \int _{0}^{1/2} rx^{r-1}W_{p}'(x) \,dx \\ =& r \bigl[x^{r-1}W_{p}(x) \bigr]_{0}^{1/2} - r(r-1) \int _{0}^{1/2}x^{r-2}W_{p}(x) \,dx \\ =& r \biggl(\frac{1}{2} \biggr)^{r-1}\xi - r(r-1)S_{r-2, 1}. \end{aligned}
(5.3)

By this, we see that $$S_{r,p}$$ ($$r \ge 2$$) is represented by $$S_{r-2, 1}$$. By (5.2) and (5.3), we have

\begin{aligned} &M_{2k+1,p} = \sum_{r = 0}^{2k} (-1)^{r}{}_{2k+1}C_{r} \biggl\{ r \biggl( \frac{1}{2} \biggr)^{r-1}\xi - r(r-1)S_{r-2,1} \biggr\} , \end{aligned}
(5.4)
\begin{aligned} &M_{2k,p} = \sum_{r = 0}^{2k-1} (-1)^{r}{}_{2k}C_{r} \biggl\{ r \biggl( \frac{1}{2} \biggr)^{r-1}\xi - r(r-1)S_{r-2,1} \biggr\} \\ & \hphantom{M_{2k,p}}\quad + 2 \biggl\{ 2k \biggl(\frac{1}{2} \biggr)^{2k-1}\xi - 2k(2k-1)S_{2k-2,1} \biggr\} . \end{aligned}
(5.5)

By (5.4) and (5.5), we obtain our conclusion. Thus the proof is complete.â€ƒâ–¡

### Proof of TheoremÂ 1.4 (ii)

By (4.14), (4.15), and (4.16) and putting $$t = 1-x$$, we have

\begin{aligned} M_{3,p} =& \int _{0}^{1} (1-x)^{3}W_{p}(x)^{p} \,dx \\ =& \int _{0}^{1/2} (1-x)^{3}W_{p}(x)^{p} \,dx + \int _{1/2}^{1} (1-x)^{3}W_{p}(x)^{p} \,dx \\ =& \int _{0}^{1/2} \bigl(1-3x+3x^{3}-x^{3} \bigr)W_{p}(x)^{p}\,dx + \int _{0}^{1/2} t^{3}W_{p}(t) \,dt \\ =& \int _{0}^{1/2} \bigl(1-3x+3x^{3} \bigr)W_{p}(x)^{p}\,dx = S_{0,p} - 3S_{1,p} + 3S_{2,p} \\ =& \sqrt{\frac{2}{p+1}}\xi ^{(p+1)/2} - 3\sqrt{2(p+1)}\xi ^{(3-p)/2}L_{p,1}. \end{aligned}
(5.6)

Thus the proof is complete.â€ƒâ–¡

## Data Availability

No datasets were generated or analysed during the current study.

## References

1. Alves, C.O., CorrÃ©a, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85â€“93 (2005)

2. Cheng, B.: New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems. J. Math. Anal. Appl. 394(2), 488â€“495 (2012)

3. CorrÃªa, F.J.S.A.: On positive solutions of nonlocal and nonvariational elliptic problems. Nonlinear Anal. 59, 1147â€“1155 (2004)

4. CorrÃªa, F.J.S.A.D., de Morais Filho, C.: On a class of nonlocal elliptic problems via Galerkin method. J. Math. Anal. Appl. 310(1), 177â€“187 (2005)

5. Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Commun. Math. Phys. 68, 209â€“243 (1979)

6. Goodrich, C.S.: A topological approach to nonlocal elliptic partial differential equations on an annulus. Math. Nachr. 294, 286â€“309 (2021)

7. Goodrich, C.S.: A topological approach to a class of one-dimensional Kirchhoff equations. Proc. Am. Math. Soc. 8, 158â€“172 (2021)

8. Goodrich, C.S.: A one-dimensional Kirchhoff equation with generalized convolution coefficients. J. Fixed Point Theory Appl. 23, 73 (2021)

9. Goodrich, C.S.: Nonexistence and parameter range estimates for convolution differential equations. Proc. Am. Math. Soc. 9, 254â€“265 (2022)

10. Guo, B., Ding, H., Wang, R., Zhou, J.: Blowup for a Kirchhoff-type parabolic equation with logarithmic nonlinearity. Anal. Appl. 20(5), 1089â€“1101 (2022)

11. Infante, G., Pietramala, P., AdriÃ¡n, F., Tojo, F.: Non-trivial solutions of local and non-local Neumann boundary-value problems. Proc. R. Soc. Edinb. A 146(2), 337â€“369 (2016)

12. Laetsch, T.: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J. 20, 1â€“13 (1970)

13. Li, Q., Nie, J., Zhang, W.: Existence and asymptotics of normalized ground states for a Sobolev critical Kirchhoff equation. J. Geom. Anal. 33(4), 126 (2023)

14. Li, Q., Radulescu, V.D., Zhang, W.: Normalized ground states for the Sobolev critical SchrÃ¶dinger equation with at least mass critical growth. Nonlinearity 37(2), 025018 (2024)

15. Li, Q., Zou, W.: Normalized ground states for Sobolev critical nonlinear SchrÃ¶dinger equation in the L2-supercritical case. Discrete Contin. Dyn. Syst. 44(1), 205â€“227 (2024)

16. Liang, Z., Li, F., Shi, J.: Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior. Ann. Inst. Henri PoincarÃ©, Anal. Non LinÃ©aire 31(1), 155â€“167 (2014)

17. MÃ©ndez, O.: On the eigenvalue problem for a class of Kirchhoff-type equations. J. Math. Anal. Appl. 494(2), 124671 (2021)

18. Shao, X., Tang, G.: Blow-up phenomena for a Kirchhoff-type parabolic equation with logarithmic nonlinearity. Appl. Math. Lett. 116, 106969 (2021)

19. Shibata, T.: Global and asymptotic behaviors of bifurcation curves of one-dimensional nonlocal elliptic equations. J. Math. Anal. Appl. 516(2), 126525 (2022)

20. Shibata, T.: Asymptotic behavior of solution curves of nonlocal one-dimensional elliptic equations. Bound. Value Probl. 2022, 63 (2022)

21. Shibata, T.: Bifurcation diagrams of one-dimensional Kirchhoff type equations. Adv. Nonlinear Anal. 12, 356â€“368 (2023)

22. Shibata, T.: Asymptotics of solution curves of Kirchhoff type elliptic equations with logarithmic Kirchhoff function. Qual. Theory Dyn. Syst. 22(2), 64 (2023)

23. StaÅ„czy, R.: Nonlocal elliptic equations. Nonlinear Anal. 47, 3579â€“3584 (2001)

24. Wang, W., Tang, W.: Bifurcation of positive solutions for a nonlocal problem. Mediterr. J. Math. 13, 3955â€“3964 (2016)

25. Zhang, J., Zhou, H., Mi, H.: Multiplicity of semiclassical solutions for a class of nonlinear Hamiltonian elliptic system. Adv. Nonlinear Anal. 13(1), 20230139 (2024)

## Funding

This work was supported by JSPS KAKENHI Grant Number JP21K03310.

## Author information

Authors

### Contributions

This manuscript is written by Tetsutaro Shibata.

### Corresponding author

Correspondence to Tetsutaro Shibata.

## Ethics declarations

Not applicable.

### Competing interests

The authors declare no competing interests.

### Publisherâ€™s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Reprints and permissions

Shibata, T. Exact solutions and bifurcation curves of nonlocal elliptic equations with convolutional Kirchhoff functions. Bound Value Probl 2024, 63 (2024). https://doi.org/10.1186/s13661-024-01871-1