Skip to main content

# Blow-up of solutions for a system of nonlocal singular viscoelastic equations with sources and distributed delay terms

## Abstract

In this paper, we investigate a scenario concerning a coupled nonlocal singular viscoelastic equation with sources and distributed delay terms. By establishing suitable conditions, we have proved that a finite-time blow-up occurs in the solution.

## 1 Introduction

In this paper, we examine the subsequent system comprising two singular nonlinear and nonlocal equations, inspired by a one-dimensional viscoelastic system:

$$\textstyle\begin{cases} u_{tt}-\frac{1}{x}(xu_{x})_{x}+\int _{0}^{t}g_{1}(t-s) \frac{1}{x}(xu_{x}(x,s))_{x}\,ds+\mu _{1} u_{t} \\ \quad {}+\int _{\tau _{1}}^{\tau _{2}}\mu _{2}(s)u_{t} ( x, t-s )\,ds=f_{1} ( u,v ) ,\quad \text{in }Q, \\ v_{tt}-\frac{1}{x}(xv_{x})_{x}+\int _{0}^{t}g_{2}(t-s) \frac{1}{x}(xv_{x}(x,s))_{x}\,ds+\mu _{3} v_{t} \\ \quad {}+\int _{\tau _{1}}^{\tau _{2}}\mu _{4}(s)v _{t} ( x, t-s )\,ds=f_{2} ( u,v ) ,\quad \text{in }Q, \\ u(x,0)=u_{0}(x),\qquad u_{t}(x,0)=u_{1}(x), \quad x\in (0,L), \\ v(x,0)=v_{0}(x),\qquad v_{t}(x,0)=v_{1}(x),\quad x\in (0,L), \\ u_{t}(x,-t)=h_{0}(x,t),\qquad v_{t}(x,-t)=k_{0}(x,t), \quad (x,t)\in (0,L)\times (0,\tau _{2}), \\ u(L,t)=v(L,t)=0,\qquad \int _{0}^{L}xu(x,t)\,dx=\int _{0}^{L}xv(x,t)\,dx=0,\end{cases}$$
(1)

where

$$\textstyle\begin{cases} f_{1}(u,v)=a_{1} \vert u+v \vert ^{2(r+1)}(u+v)+b_{1} \vert u \vert ^{r}.u. \vert v \vert ^{r+2}, \\ f_{2}(u,v)=a_{1} \vert u+v \vert ^{2(r+1)}(u+v)+b_{1} \vert v \vert ^{r}.v. \vert u \vert ^{r+2}. \end{cases}$$
(2)

and $$Q=(0,L)\times (0,T)\times (\tau _{1},\tau _{2}))$$, $$L<\infty$$, $$T<\infty$$, $$\mu _{1},\mu _{3} >0$$, $$g_{1}(.)$$, $$g_{2}(.): \mathbb{R} ^{+}\rightarrow \mathbb{R} ^{+}$$ and $$f_{1},f_{2}:\mathbb{R}^{2}\longrightarrow \mathbb{R}$$ are functions stated in (8).

These issues arise in one-dimensional or longitudinal elasticity when considering long-term memory viscosity. The second integral represents the distributed delay terms, where $$\tau _{1}, \tau _{2} >0$$ denote time delays, $$\mu _{2}$$, $$\mu _{4}$$ are $$L^{\infty}$$ functions.

Our work is motivated by the findings presented in the following papers:

In [13], the authors examined a model depicting the motion of a viscoelastic two-dimensional body on the unit disc, focusing on radial solutions. Furthermore, they established the uniqueness and existence of the generalized solution for the below stated nonlocal problem

$$\textstyle\begin{cases} u_{tt}-\frac {1}{x}(xu_{x})_{x}+\int _{0}^{t}g(t-s) \frac{1}{x}(xu_{x}(x,s))_{x}\,ds=f(x,t,u,u_{x}), \quad \text{in }Q, \\ u_{x}(1,t)=0, \qquad \int _{0}^{1}xu(x,t)\,dx=0, \quad t \in ( 0,T ) , \\ u(x,0)=\varphi (x),\qquad u_{t}(x,0)=\psi (x),\quad x\in (0,1),\end{cases}$$

where $$Q=(0,1)\times ( 0,T )$$ with right hand side f is a Lipshitzian function.

The findings presented in [14] indicate the occurrence of blow-up for large initial data and demonstrate decay outcomes for sufficiently small initial data, which are applicable to the subsequent nonlocal singular problem

$$\textstyle\begin{cases} u_{tt}-\frac{1}{x}(xu_{x})_{x}+\int _{0}^{t}g(t-s) \frac{1}{x}(xu_{x}(x,s))_{x}\,ds= \vert u \vert ^{p-2}u, \\ u(a,t)=0,\qquad \int _{0}^{a}xu(x,t)\,dx=0, \\ u(x,0)=\varphi (x),\qquad u_{t}(x,0)=\psi (x).\end{cases}$$

They acquired the blow-up properties of local solutions utilizing Georgievâ€“Todorova method, even with negative initial energy. Authors in [11], employed the direct method to prove blow-up of solutions under appropriate conditions on initial data [23]. The authors in [26], extended the previous result to systems with higher dimensions and get additional blow-up results. The authors in [15], substituted the source terms $$f_{1}(u,v)$$ and $$f_{2}(u,v)$$ in the studied system in [26], respectively by $$\vert v \vert ^{q+1} \vert u \vert ^{p-1}u$$, $$\vert u \vert ^{p+1} \vert v \vert ^{q-1}v$$ and the Bessel operator $$\frac {1}{x}\frac {\partial }{\partial x} ( x \frac {\partial }{\partial x} )$$ instead of Laplace operator Î” and considered the nonlocal boundary condition

$$\int _{0}^{L}xu(x,t)\,dx= \int _{0}^{L}xv(x,t)\,dx=0,\quad L< \infty , p, q>1$$

and with two different functions $$g(.)$$. Moreover, it is augmented by both nonlocal and classical condition. Furthermore, in [17], the authors investigated the identical problem presented in [15], where they derived a nonlinear source of polynomial nature. This source is capable of inducing solutions to blow up within a finite time frame, even in the existence of enhanced damping $$u_{t}$$. They considered three different cases regarding the sign of the initial energy. PiÅŸkin and Ekinci [22] have addressed problem (1) by substituting Bessel operator with the Kirchhoff operator featuring degenerate damping terms. They employed a technique identical to that used to establish the global existence and provide a decay rate for solutions, as well as demonstrate a finite-time blow-up when the behavior of decreasing relaxation functions is stated as:

$$\begin{gathered} g_{1}^{\prime }(t)\leq -\xi (t)g_{1}(t), \quad t\geq 0, \\ g_{2}^{\prime }(t)\leq -\xi (t)g_{2}(t),\quad t\geq 0,\end{gathered}$$

and $$\xi (t)$$ satisfies

$$\int _{0}^{\infty }\xi (s)\,ds=+\infty ,\quad \forall t>0.$$

Boulaaras et al. [18] investigated the subsequent system, which consists of two singular one-dimensional nonlinear equations arising in generalized viscoelasticity, featuring long-term memory, nonlocal boundary conditions, and general source terms

$$\textstyle\begin{cases} u_{tt}-\frac{1}{x}(xu_{x})_{x}+\int _{0}^{t}g_{1}(t-s) \frac{1}{x}(xu_{x}(x,s))_{x}\,ds=f_{1} ( u,v ) ,\quad \text{in }Q, \\ v_{tt}-\frac{1}{x}(xv_{x})_{x}+\int _{0}^{t}g_{2}(t-s) \frac{1}{x}(xv_{x}(x,s))_{x}\,ds=f_{2} ( u,v ) ,\quad \text{in }Q. \end{cases}$$

By employing potential-well theory the authors proved the existence of a global solution for the problem. And in the same vein, in [5] Boularaas and Mezouar proved the existence and decay of solutions of a singular nonlocal viscoelastic system featuring nonlocal boundary conditions, localized damping term and linear source term. In domain of blow-up phenomena, the authors in [27] investigated the finite-time blow-up of solutions for an initial boundary value problem with nonlocal boundary conditions, pertaining to a system of nonlinear singular viscoelastic equations. Other works in the same vein can be found here [1â€“4, 7, 10â€“12, 24, 25].

The influence of delay frequently emerges in numerous applications and practical issues, transforming various systems into distinct problems warranting investigation. Recently, numerous authors have examined asymptotic behavior, stability, and blow-up phenomena of solutions in evolution systems with time delay. Refer to works by [6, 8, 9, 19] for further details.

Motivated by the aforementioned works, in this study, we expand upon the earlier investigation outlined in [15] to encompass singular one-dimensional nonlinear viscoelastic equations with source and distributed delay terms. Specifically, we delve into the blow-up phenomenon of solutions with negative initial energy for problem (1).

In the following, let $$c,c_{i},C>0$$, are positive constants.

Our paper is structured as follows: In the subsequent section, we establish concepts, lemmas, and hypotheses essential for our analysis. In Sect.Â 3, we state and prove the blow-up phenomenon of solutions.

## 2 Preliminaries

In this section, we present the following definitions, symbols, spaces and lemmas that we utilize throughout the paper.

Let $$L_{x}^{p}=L_{x}^{p}(0,L)$$ represent the weighted Banach space having norm

$$\Vert u \Vert _{L_{x}^{p}}= \biggl( \int _{0}^{L }x \vert u \vert ^{p}\,dx \biggr) ^{\frac {1}{p}}.$$

Hilbert space of square integral functions is denoted by $$H=L_{x}^{2}(0,L)$$ having the finite norm

$$\Vert u \Vert _{H}= \biggl( \int _{0}^{L }xu^{2}\,dx \biggr) ^{ \frac {1}{2}}.$$

Hilbert space is represented by $$V=V_{x}^{1}((0,L))$$ equipped with the norm

$$\Vert u \Vert _{V}= \bigl( \Vert u \Vert _{H}^{2}+ \Vert u_{x} \Vert _{H}^{2} \bigr) ^{\frac {1}{2}},$$

and

$$V_{0}= \bigl\{ u\in V\text{ such that }u(L )=0 \bigr\} .$$

### Lemma 1

(Poincare-type inequality) For any v in $$V_{0}$$, we have

$$\int _{0}^{L }xv^{2}(x)\,dx\leq C_{p} \int _{0}^{L }x\bigl(v_{x}(x) \bigr)^{2}\,dx$$

and

$$V_{0}= \bigl\{ v\in V\textit{ such that }v(L )=0 \bigr\} .$$

### Remark 1

Clearly $$\Vert u \Vert _{V_{0}}= \Vert u_{x} \Vert _{H}$$ defines an equivalent norm on $$V_{0}$$.

### Theorem 1

(See [1]) For any v in $$V_{0}$$ and $$2< p<4$$, we have

$$\int _{0}^{L }x \vert v \vert ^{p}\,dx \leq C_{\ast } \Vert v_{x} \Vert _{H=L_{x}^{p}(0,L )}^{p},$$

where $$C_{\ast }$$ is a constant depending on L and p only.

We demonstrate the blow-up outcome given the following appropriate assumptions.

(A1) $$g_{1},g_{2}: \mathbb{R}_{+}\rightarrow \mathbb{R}_{+}$$ are decreasing and differentiable functions such that

\begin{aligned}& g_{1}(t)\geq 0 , 1- \int _{0}^{\infty }g_{1} ( s )\,ds=l_{1}>0, \\& g_{2}(t)\geq 0 , 1- \int _{0}^{\infty }g_{2} ( s )\,ds=l_{2}>0. \end{aligned}
(3)

(A2) There exists a constants $$\xi _{1},\xi _{2}>0$$ such that

\begin{aligned}& g_{1}^{\prime } ( t ) \leq -\xi _{1} g_{1} ( t ) , \quad t\geq 0, \\& g_{2}^{\prime } ( t ) \leq -\xi _{2} g_{2} ( t ) , \quad t\geq 0. \end{aligned}
(4)

(A3) $$\mu _{2},\mu _{4}:[\tau _{1}, \tau _{2}]\rightarrow \mathbb{R}$$ is a bounded function satisfying

\begin{aligned} \frac{2\delta +1}{2} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \,ds< \mu _{1}, \quad \text{and}\quad \frac{2\delta +1}{2} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \,ds< \mu _{3}, \quad \delta >\frac{1}{2}. \end{aligned}
(5)

By combining arguments of other studies [16, 20, 22] with used the Faedoâ€“Galerkin method, we get the local existence theorem.

### Theorem 2

Let (3), (4), and (5) hold. Assume that

$$\textstyle\begin{cases} -1< r< \frac {4-n}{n-2},\quad n\geq 3; \\ r\geq -1,\quad n=1,2 \end{cases}$$
(6)

Then, for any $$(u_{0},v_{0})\in V_{0}^{2}$$, $$(v_{1},v_{2})\in H^{2}$$ and $$(h_{0},k_{0})\in \mathcal{H,}$$ problem (1) has a unique local solution

$$u\in C\bigl(\bigl(0,T^{*}\bigr);V_{0}\bigr)\cap C^{1}\bigl(\bigl(0,T^{*}\bigr);H\bigr),$$

for $$T^{*}>0$$ small enough, where $$\mathcal{H}=L^{2}_{x}((0,L)\times (0,1)\times (\tau _{1},\tau _{2}))$$.

### Lemma 2

There exists a function $$F(u, v)$$ such that

\begin{aligned} F(u, v) =&\frac{1}{2(r+2)} \bigl[u f_{1}(u, v)+v f_{2}(u, v) \bigr] \\ =&\frac{1}{2(r+2)} \bigl[a_{1} \vert u+v \vert ^{2(r+2)}+2 b_{1} \vert u v \vert ^{r+2} \bigr] \geq 0, \end{aligned}

where

\begin{aligned} \frac{\partial F}{\partial u}=f_{1}(u, v), \qquad \frac{\partial F}{\partial v}=f_{2}(u, v). \end{aligned}

We take $$a_{1}=b_{1} = 1$$ for convenience.

### Lemma 3

[21] There exist two positive constants $$c_{0}$$ and $$c_{1}$$ such that

$$\frac{c_{0}}{2(r+2)} \bigl( \vert u \vert ^{2(r+2)}+ \vert v \vert ^{2(r+2)} \bigr) \leq F(u, v) \leq \frac{c_{1}}{2(r+2)} \bigl( \vert u \vert ^{2(r+2)}+ \vert v \vert ^{2(r+2)} \bigr)$$
(7)

Taking new variable as in [19],

\begin{aligned}& z(x, \rho , s, t)=u_{t}(x, t-s\rho ), \\& y(x, \rho , s, t)=v_{t}(x, t-s\rho ), \end{aligned}

so we get

$$\textstyle\begin{cases} sz_{t}(x, \rho , s, t)+z_{\rho}(x, \rho , s, t)=0, \\ sy_{t}(x, \rho , s, t)+y_{\rho}(x, \rho , s, t)=0, \\ z(x, 0, s, t)=u_{t}(x, t), \\ y(x, 0, s, t)=v_{t}(x, t). \end{cases}$$

Consequently, the problem (1) is equivalent to

$$\textstyle\begin{cases} u_{tt}-\frac{1}{x}(xu_{x})_{x}+\int _{0}^{t}g_{1}(t-s) \frac{1}{x}(xu_{x}(x,s))_{x}\,ds+\mu _{1} u_{t} \\ \quad {} +\int _{\tau _{1}}^{\tau _{2}}\mu _{2}(s)z ( x, 1,s,t )\,ds=f_{1} ( u,v ) ,\quad \text{in }Q, \\ v_{tt}-\frac{1}{x}(xv_{x})_{x}+\int _{0}^{t}g_{2}(t-s) \frac{1}{x}(xv_{x}(x,s))_{x}\,ds+\mu _{3} v_{t} \\ \quad {}+\int _{\tau _{1}}^{\tau _{2}}\mu _{4}(s)v _{t} ( x, 1,s,t )\,ds=f_{2} ( u,v ) ,\quad \text{in }Q, \\ sz_{t}(x, \rho , s, t)+z_{\rho}(x, \rho , s, t)=0, \\ sy_{t}(x, \rho , s, t)+y_{\rho}(x, \rho , s, t)=0, \\ u(x,0)=u_{0}(x),\qquad u_{t}(x,0)=u_{1}(x),\quad x\in (0,L), \\ v(x,0)=v_{0}(x), \qquad v_{t}(x,0)=v_{1}(x),\quad x\in (0,L), \\ z(x,\rho ,s,0)=h_{0}(x,\rho s), \qquad (x,\rho ,s)\in (0,L)\times (0,1)\times (0,\tau _{2}) \\ y(x,\rho ,s,0)=k_{0}(x,\rho s) \qquad (x,\rho ,s)\in (0,L)\times (0,1)\times (0,\tau _{2}) \\ u(L,t)=v(L,t)=0,\qquad \int _{0}^{L}xu(x,t)\,dx=\int _{0}^{L}xv(x,t)\,dx=0,\end{cases}$$
(8)

We define the energy functional.

### Lemma 4

Assume (3), (4), (5), and (6) hold, let $$(u,v)$$ be a solution of (1), then $$E(t)$$ is non-increasing, that is

\begin{aligned} E(t) =&\frac{1}{2} \Vert u_{t} \Vert _{H}^{2}+ \frac{1}{2} \Vert v_{t} \Vert _{H}^{2}+ \frac{1}{2}\biggl(1-\frac{1}{2} \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2} \\ &{}+\frac{1}{2}\biggl(1-\frac{1}{2} \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2}+ \frac{1}{2}(g_{1}o u_{x})+\frac{1}{2}(g_{2}o v_{x}) \\ &{}+\mathcal{G}(z,y)- \int _{0}^{L}xF(u,v)\,dx \end{aligned}
(9)

satisfies

\begin{aligned} E'(t) =&-C_{0} \biggl\{ \Vert u_{t} \Vert ^{2}_{H}+ \int _{\tau _{1}}^{ \tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \bigl\Vert z(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds \\ &{}+ \Vert v_{t} \Vert ^{2}_{H}+ \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \bigl\Vert y(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds \biggr\} \\ &{}+\frac{1}{2}g'_{1}\circ u_{x}+ \frac{1}{2}g'_{2}\circ v_{x}- \int _{0}^{t}g_{1}(s)\,ds \Vert u_{x} \Vert ^{2}_{H}- \int _{0}^{t}g_{2}(s)\,ds \Vert v_{x} \Vert ^{2}_{H} \\ \leq & 0, \end{aligned}
(10)

where

\begin{aligned}& \int _{0}^{L}xF(u,v)\,dx=\frac{1}{2(r+2)} \bigl( \Vert u+v \Vert ^{2(r+2)}_{L^{2(r+2)}_{x}}+2 \Vert uv \Vert ^{(r+2)}_{L^{(r+2)}_{x}} \bigr), \\& (g\circ u_{x}) (t)= \int _{0}^{L } \int _{0}^{t}xg(t-s) \bigl\vert u_{x}(x,t)-u_{x}(x,s) \bigr\vert ^{2}\,ds\,dx, \end{aligned}
(11)

and

$$\mathcal{G}(z,y):=\frac{1}{2} \int _{0}^{1 } \int _{\tau _{1}}^{\tau _{2}}s \bigl\{ \vert \mu _{2} \vert \bigl\Vert z(x,\rho ,s,t) \bigr\Vert ^{2}_{H}+ \vert \mu _{4} \vert \bigl\Vert y(x,\rho ,s,t) \bigr\Vert ^{2}_{H} \bigr\} \,ds\,dx,$$

### Proof

By multiplying (1)1, (1)2 by $$xu_{t}$$, $$xv_{t}$$, respectively, and integrating over $$(0,L)$$, we get

\begin{aligned}& \frac {d}{dt} \biggl\{ \frac{1}{2} \Vert u_{t} \Vert _{H}^{2}+ \frac{1}{2} \Vert v_{t} \Vert _{H}^{2}+\frac{1}{2}l_{1} \Vert u_{x} \Vert _{H}^{2}+\frac{1}{2}l_{2} \Vert v_{x} \Vert _{H}^{2} + \frac{1}{2}(g_{1} \circ u_{x}) \\& \qquad {}+\frac{1}{2}(g_{2}\circ u_{x})- \int _{0}^{L}xF(u,v)\,dx \biggr\} \\& \quad = -\mu _{1} \int _{0}^{L}x u_{t}^{2}\,dx-\mu _{3} \int _{0}^{L}x v_{t}^{2}\,dx+ \frac{1}{2}g'_{1}\circ u_{x}+ \frac{1}{2}g'_{2}\circ v_{x} \\& \qquad {} -\biggl( \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2}-\biggl( \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2} \\& \qquad {} - \int _{0}^{L}xu_{t} \int _{\tau _{1}}^{\tau _{2}} \mu _{2}(s) z ( x, 1, s, t )\,ds \,dx \\& \qquad {} - \int _{0}^{L}xv_{t} \int _{\tau _{1}}^{\tau _{2}} \mu _{2}(s) y ( x, 1, s, t )\,ds \,dx. \end{aligned}
(12)

Now, multiplying the Equation (8)3 by $$xz\vert \mu _{2}(s)\vert$$ and integrating the result over $$(0, L)\times (0, 1)\times (\tau _{1}, \tau _{2})$$

\begin{aligned}& \frac{d}{dt }\frac{1}{2} \int _{0}^{L} \int _{0}^{1} \int _{\tau _{1}}^{ \tau _{2}}xs \bigl\vert \mu _{2}(s) \bigr\vert z^{2}(x, \rho , s, t)\,ds \,d\rho \,dx \\& \quad = - \int _{0}^{L} \int _{0}^{1} \int _{\tau _{1}}^{\tau _{2}}x \bigl\vert \mu _{2}(s) \bigr\vert zz_{\rho } ( x, \rho , s, t )\,ds \,d\rho \,dx \\& \quad = -\frac{1 }{2 } \int _{0}^{L} \int _{0}^{1} \int _{\tau _{1}}^{\tau _{2}}x \bigl\vert \mu _{2}(s) \bigr\vert \frac{d}{ \,d\rho}z^{2} ( x, \rho , s, t )\,ds \,d\rho \,dx \\& \quad = \frac{1 }{2 } \int _{0}^{L} \int _{\tau _{1}}^{\tau _{2}}x \bigl\vert \mu _{2}(s) \bigr\vert \bigl(z^{2} ( x, 0 , s, t ) -z^{2}(x, 1, s, t) \bigr)\,ds \,dx \\& \quad = \frac{1 }{2 } \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \,ds \Vert u_{t} \Vert ^{2}_{H}- \frac{1 }{2} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \bigl\Vert z(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds, \end{aligned}
(13)

using Youngâ€™s inequality, we achieve

\begin{aligned}& - \int _{0}^{L}xu_{t} \int _{\tau _{1}}^{\tau _{2}} \mu _{2}(s) z( x, 1, s, t)\,ds\,dx \\& \quad \leq \delta \biggl( \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \,ds\biggr) \Vert u_{t} \Vert ^{2}_{H}+ \frac{1}{4\delta} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \bigl\Vert z(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds. \end{aligned}
(14)

Similarly, we get

\begin{aligned}& \frac{d}{dt }\frac{1}{2} \int _{0}^{L} \int _{0}^{1} \int _{\tau _{1}}^{ \tau _{2}}xs \bigl\vert \mu _{4}(s) \bigr\vert y^{2}(x, \rho , s, t)\,ds \,d\rho \,dx \\& \quad = \frac{1 }{2 } \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \,ds \Vert v_{t} \Vert ^{2}_{H}- \frac{1 }{2} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \bigl\Vert y(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds, \end{aligned}
(15)

and

\begin{aligned}& - \int _{0}^{L}xv_{t} \int _{\tau _{1}}^{\tau _{2}} \mu _{4}(s) y ( x, 1, s, t )\,ds \,dx \\& \quad \leq \delta \biggl( \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \,ds\biggr) \Vert v_{t} \Vert ^{2}_{H}+ \frac{1}{4\delta} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \bigl\Vert y(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds. \end{aligned}
(16)

By remplacing (13)â€“(16) into (12), we obtain (9) and

\begin{aligned} E'(t) =& - \biggl(\mu _{1}-\biggl(\delta + \frac{1}{2}\biggr) \int _{\tau _{1}}^{ \tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \,ds \biggr) \Vert u_{t} \Vert ^{2}_{H} \\ &{}- \biggl(\mu _{3}-\biggl(\delta +\frac{1}{2}\biggr) \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \,ds \biggr) \Vert v_{t} \Vert ^{2}_{H} \\ &{}- \biggl(\frac{2\delta -1}{4\delta} \biggr) \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \bigl\Vert z(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds \\ &{}- \biggl(\frac{2\delta -1}{4\delta} \biggr) \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \bigl\Vert y(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds \\ & - \int _{0}^{t}g_{1}(s)\,ds \Vert u_{x} \Vert ^{2}_{H}- \int _{0}^{t}g_{2}(s)\,ds \Vert v_{x} \Vert ^{2}_{H}+\frac{1}{2}g'_{1} \circ u_{x}+\frac{1}{2}g'_{2} \circ v_{x}. \end{aligned}
(17)

Hence, according to (4) and (5), we get (10), where $$C_{0}=\min \{\mu _{1}-(\delta +\frac{1}{2})\int _{\tau _{1}}^{ \tau _{2}}\vert \mu _{2}(s)\vert \,ds,\mu _{3}-(\delta +\frac{1}{2}) \int _{\tau _{1}}^{\tau _{2}}\vert \mu _{4}(s)\vert \,ds , \frac{2\delta -1}{4\delta} \}>0$$.

The proof is completed.â€ƒâ–¡

## 3 Blow-up

In this segment, we establish the blow-up outcome for the solution of problem (1).

Following this, we introduce the functional

\begin{aligned} \mathbb{H}(t) =&-E(t) \\ =&-\frac{1}{2} \Vert u_{t} \Vert _{H}^{2}- \frac{1}{2} \Vert v_{t} \Vert _{H}^{2}-\frac{1}{2}\biggl(1-\frac{1}{2} \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2} \\ &{}-\frac{1}{2}\biggl(1-\frac{1}{2} \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2}- \frac{1}{2}(g_{1}o u_{x})-\frac{1}{2}(g_{2}o v_{x}) \\ &{}+\mathcal{G}(z,y)+\frac{1}{2(r+2)} \bigl[ \Vert u+v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+2 \Vert uv \Vert _{L_{x}^{r+2}}^{r+2} \bigr]. \end{aligned}
(18)

### Theorem 3

Let (3)â€“(5), and (6) holds and $$E(0)<0$$, then solution of problem (1) blow-up in finite time.

### Proof

From (10), we have

$$E(t)\leq E(0)\leq 0.$$
(19)

Therefore

\begin{aligned} \mathbb{H}'(t)=-E'(t) \geq & 0, \end{aligned}
(20)

this implies that

\begin{aligned}& \mathbb{H}'(t) \geq C_{0} \biggl\{ \Vert u_{t} \Vert ^{2}_{H}+ \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \bigl\Vert z(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds \biggr\} \\& \mathbb{H}'(t) \geq C_{0} \biggl\{ \Vert v_{t} \Vert ^{2}_{H}+ \int _{ \tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \bigl\Vert y(x,1,s,t) \bigr\Vert ^{2}_{H}\,ds \biggr\} . \end{aligned}
(21)

From (11) and (7), we get

\begin{aligned} 0 \leq& \mathbb{H}(0)\leq \mathbb{H}(t) \\ \leq & \frac{1}{2(r+2)} \bigl[ \Vert u+v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+2 \Vert uv \Vert _{L_{x}^{(r+2)}}^{r+2} \bigr] \\ \leq & \frac{c_{1}}{2(r+2)} \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)} \bigr]. \end{aligned}
(22)

We set

\begin{aligned} \mathcal{K}(t) =&\mathbb{H}^{1-\alpha}+ \varepsilon \int _{0}^{L}x(uu_{t}+vv_{t})\,dx+ \frac{\varepsilon}{2} \int _{0}^{L}x\bigl(\mu _{1}u^{2}+ \mu _{3}v^{2}\bigr)\,dx, \end{aligned}
(23)

where

$$0< \alpha < \min \biggl\{ \frac{r+1}{r+2}, \frac {r+1}{2(r+2)} \biggr\} .$$
(24)

By multiplying (1)1, (1)2 by xu, xv and derivative of (23), we achieve

\begin{aligned} \mathcal{K}'(t) = &(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \varepsilon \bigl( \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}\bigr)- \varepsilon \bigl( \Vert u_{x} \Vert _{H}^{2}+ \Vert v_{x} \Vert _{H}^{2}\bigr) \\ & {}\underbrace{+\varepsilon \int _{0}^{L} u_{x} \int ^{t}_{0}g_{1}(t-s) x u_{x}(s)\,ds\,dx}_{I_{1}} \\ &{} \underbrace{+\varepsilon \int _{0}^{L} v_{x} \int ^{t}_{0}g_{2}(t-s) x v_{x}(s)\,ds\,dx}_{I_{2}} \\ & {}\underbrace{- \int _{0}^{L}xu \int _{\tau _{1}}^{\tau _{2}} \mu _{2}(s) z ( x, 1, s, t )\,ds \,dx}_{I_{3}} \\ &{} \underbrace{- \int _{0}^{L}xv \int _{\tau _{1}}^{\tau _{2}} \mu _{2}(s) y ( x, 1, s, t )\,ds \,dx}_{I_{4}} \\ &{}+\varepsilon \bigl[ \Vert u+v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+2 \Vert uv \Vert _{L_{x}^{(r+2)}}^{r+2} \bigr]. \end{aligned}
(25)

We have

\begin{aligned}& I_{1} = \varepsilon \int _{0}^{t}g_{1}(t-s)\,ds \int _{0}^{L} u_{x}.\bigl(x u_{x}(s)-x u_{x}(t)\bigr)\,dx\,ds+\varepsilon \biggl( \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2} \\& \hphantom{I_{1}} \geq \varepsilon \biggl(\frac{1}{2} \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2}-\frac{\varepsilon}{2}(g_{1} \circ u_{x}), \end{aligned}
(26)
\begin{aligned}& I_{2} = \varepsilon \int _{0}^{t}g_{2}(t-s)\,ds \int _{0}^{L} v_{x}.\bigl(x v_{x}(s)-x v_{x}(t)\bigr)\,dx\,ds+\varepsilon \biggl( \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2} \\& \hphantom{I_{2}}\geq \varepsilon \biggl(\frac{1}{2} \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2}-\frac{\varepsilon}{2}(g_{2} \circ u_{x}), \end{aligned}
(27)

Next, by Youngâ€™s inequality, we find for $$\delta _{1}>0$$

\begin{aligned} I_{3}\geq -\varepsilon \delta _{1}\mu _{1} \Vert u \Vert _{H}^{2}- \frac{\varepsilon}{4\delta _{1}} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \bigl\Vert z ( x, 1, s, t ) \bigr\Vert _{H}^{2}\,ds, \end{aligned}
(28)

and

\begin{aligned} I_{4}\geq -\varepsilon \delta _{1}\mu _{3} \Vert v \Vert _{H}^{2}- \frac{\varepsilon}{4\delta _{1}} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \bigl\Vert y ( x, 1, s, t ) \bigr\Vert _{H}^{2}\,ds, \end{aligned}
(29)

from (25), we get

\begin{aligned} \mathcal{K}'(t) \geq &(1-\alpha )\mathbb{H}^{-\alpha} \mathbb{H}'(t)+ \varepsilon \bigl( \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}\bigr) \\ &{}-\varepsilon \biggl(\biggl(1-\frac{1}{2} \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2}+\biggl(1- \frac{1}{2} \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2} \biggr) \\ &{}-\frac{\varepsilon}{2}(g_{1}\circ u_{x})- \frac{\varepsilon}{2}(g_{2} \circ v_{x})+\varepsilon \bigl[ \Vert u+v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+2 \Vert uv \Vert _{L_{x}^{(r+2)}}^{r+2} \bigr] \\ &{}-\varepsilon \delta _{1}\mu _{1} \Vert u \Vert _{H}^{2}- \frac{\varepsilon}{4\delta _{1}} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{2}(s) \bigr\vert \bigl\Vert z ( x, 1, s, t ) \bigr\Vert _{H}^{2}\,ds \\ &{}-\varepsilon \delta _{1}\mu _{3} \Vert v \Vert _{H}^{2}- \frac{\varepsilon}{4\delta _{1}} \int _{\tau _{1}}^{\tau _{2}} \bigl\vert \mu _{4}(s) \bigr\vert \bigl\Vert y ( x, 1, s, t ) \bigr\Vert _{H}^{2}\,ds. \end{aligned}
(30)

At this stage, we choose $$\delta _{1}$$ so that, for large Îº to be chosen later

$$\frac{1}{4\delta _{1}C_{0}}=\kappa \mathbb{H}^{-\alpha}(t),$$

by (21) and putting in (30), we get

\begin{aligned} \mathcal{K}'(t) \geq &\bigl[(1-\alpha )-\varepsilon \kappa \bigr] \mathbb{H}^{- \alpha}\mathbb{H}'(t)+\varepsilon \bigl( \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}\bigr) \\ &{}-\varepsilon \biggl(\biggl(1-\frac{1}{2} \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2}+\biggl(1- \frac{1}{2} \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2} \biggr) \\ &{}-\frac{\varepsilon}{2}(g_{1}\circ u_{x})- \frac{\varepsilon}{2}(g_{2} \circ v_{x})+\varepsilon \bigl[ \Vert u+v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+2 \Vert uv \Vert _{L_{x}^{(r+2)}}^{r+2} \bigr] \\ &{}-\frac{\varepsilon \mu _{1}\mathbb{H}^{\alpha}}{4\kappa C_{0}} \Vert u \Vert _{H}^{2}- \frac{\varepsilon \mu _{3}\mathbb{H}^{\alpha}}{4\kappa C_{0}} \Vert v \Vert _{H}^{2}. \end{aligned}
(31)

For $$0< a<1$$ and from (18), we obtain

\begin{aligned} \varepsilon \bigl[ \Vert u+v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+2 \Vert uv \Vert _{L_{x}^{(r+2)}}^{r+2} \bigr] =& \varepsilon a \bigl[ \Vert u+v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+2 \Vert uv \Vert _{L_{x}^{(r+2)}}^{r+2} \bigr] \\ &{}+ 2\varepsilon (r+2) (1-a)\mathbb{H}(t) \\ &{}+ \varepsilon (r+2) (1-a) \bigl( \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}\bigr) \\ &{}+\varepsilon (r+2) (1-a) \biggl(1- \int _{0}^{t}g_{1}(s)\,ds\biggr) \Vert u_{x} \Vert _{H}^{2} \\ &{}+ \varepsilon (p+2) (1-a) \biggl(1- \int _{0}^{t}g_{2}(s)\,ds\biggr) \Vert v_{x} \Vert _{H}^{2} \\ &{}+\varepsilon (r+2) (1-a) (g_{1}\circ u_{x}) \\ &{}+\varepsilon (r+2) (1-a) (g_{2}\circ v_{x}) \\ &{}+2\varepsilon (r+2) (1-a)\mathcal{G}(z,y). \end{aligned}
(32)

Substituting in (31) and by (7), we achieve

\begin{aligned} \mathcal{K}'(t) \geq &\bigl[(1-\alpha )-\varepsilon \kappa \bigr] \mathbb{H}^{- \alpha}\mathbb{H}'(t)+\varepsilon \bigl[(r+2) (1-a)+1\bigr]\bigl( \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}\bigr) \\ &{}+\varepsilon \biggl[(r+2) (1-a) \biggl(1- \int _{0}^{t}g_{1}(s)\,ds\biggr)-\biggl(1- \frac{1}{2} \int _{0}^{t}g_{2}(s)\,ds \biggr) \biggr] \Vert u_{x} \Vert _{H}^{2} \\ &{}+\varepsilon \biggl[(r+2) (1-a) \biggl(1- \int _{0}^{t}g_{2}(s)\,ds\biggr)-\biggl(1- \frac{1}{2} \int _{0}^{t}g_{2}(s)\,ds \biggr) \biggr] \Vert v_{x} \Vert _{H}^{2} \\ &{}+\varepsilon \biggl[(r+2) (1-a)-\frac{1}{2} \biggr](g_{1}o u_{x}+g_{2}o v_{x})+2 \varepsilon (r+2) (1-a) \mathcal{G}(z,y) \\ &{}+\frac{\varepsilon ac_{0}}{2r+4} \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)} \bigr]+ 2\varepsilon (r+2) (1-a) \mathbb{H}(t) \\ &{}-\frac{\varepsilon \mu _{1}\mathbb{H}^{\alpha}}{4\kappa C_{0}} \Vert u \Vert _{H}^{2}- \frac{\varepsilon \mu _{3}\mathbb{H}^{\alpha}}{4\kappa C_{0}} \Vert v \Vert _{H}^{2} \end{aligned}
(33)

According to (22), we get

\begin{aligned} \mathbb{H}^{\alpha} \Vert u \Vert _{H}^{2} \leq &c \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2) \alpha}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)\alpha} \bigr] \Vert u \Vert _{H}^{2}, \\ \leq &c \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)\alpha +2}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)\alpha} \Vert u \Vert _{H}^{2} \bigr], \end{aligned}

by using the fact that

$$\Phi ^{\varrho}\leq \Phi +1\leq \biggl(1+\frac{1}{a}\biggr) (\Phi +a), \quad \forall \Phi \geq 0, 0< \varrho \leq 1, a\geq 0,$$
(34)

we have

\begin{aligned} \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)\alpha +2} \Vert u \Vert _{H}^{2} \leq &d \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+\mathcal{H}(0) \bigr], \\ \leq &d \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+\mathcal{H}(t) \bigr], \end{aligned}

where $$d=(1+\frac{1}{\mathcal{H}(0)}$$.

On the other hand, using the following inequality

$$(\Psi +\Theta )^{\gamma}\leq c\bigl(\Psi ^{\gamma}+\Theta ^{\gamma}\bigr), \quad \forall \Psi ,\Theta \geq 0,$$

we have

\begin{aligned} \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)\alpha} \Vert u \Vert _{H}^{2} \leq &c \bigl[ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)\alpha} \Vert u \Vert _{L_{x}^{2(r+2)}}^{2} \bigr], \\ \leq &c \bigl[ \Vert v \Vert _{L_{x}^{2(r+2)}}^{\alpha} \Vert u \Vert _{L_{x}^{2(r+2)}}^{ \frac{2}{2(r+2)}} \bigr]^{2(r+2)}, \\ \leq &c \bigl[ \Vert v \Vert _{L_{x}^{2(r+2)}}^{ \frac{\alpha (2r+4)+2}{2(r+2)}}+ \Vert u \Vert _{L_{x}^{2(r+2)}}^{ \frac{2\alpha (r+2)+2}{2(r+2)}} \bigr]^{2(r+2)}, \end{aligned}

from (24), we get

\begin{aligned} \mathbb{H}^{\alpha}(t) \Vert u \Vert _{H}^{2} \leq &c_{2} \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \mathcal{H}(t) \bigr]. \end{aligned}
(35)

Similarly, we find

\begin{aligned} \mathbb{H}^{\alpha}(t) \Vert v \Vert _{H}^{2} \leq &c_{3} \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \mathcal{H}(t) \bigr]. \end{aligned}
(36)

Substituting (35) and (36) into (33), we get

\begin{aligned} \mathcal{K}'(t) \geq &\bigl[(1-\alpha )-\varepsilon \kappa \bigr] \mathbb{H}^{- \alpha}\mathbb{H}'(t)+\varepsilon \bigl[(r+2) (1-a)+1\bigr]\bigl( \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}\bigr) \\ &{}+\varepsilon \underbrace{ \biggl[ \bigl((r+2) (1-a)-1 \bigr)- \int _{0}^{t}g_{1}(s)\,ds \biggl((r+2) (1-a)-\frac{1}{2} \biggr) \biggr]}_{J_{1}} \Vert u_{x} \Vert _{H}^{2} \\ &{}+\varepsilon \underbrace{ \biggl[ \bigl((r+2) (1-a)-1 \bigr)- \int _{0}^{t}g_{2}(s)\,ds \biggl((r+2) (1-a)-\frac{1}{2} \biggr) \biggr]}_{J_{2}} \Vert v_{x} \Vert _{H}^{2} \\ &{}+\varepsilon \biggl[(r+2) (1-a)-\frac{1}{2} \biggr](g_{1}o u_{x}+g_{2}o v_{x})+2 \varepsilon (r+2) (1-a) \mathcal{G}(z,y) \\ &{}+\varepsilon \biggl(\frac{ac_{0}}{2r+4}-\frac{c_{4}}{4\kappa C_{0}} \biggr) \bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)} \bigr] \\ &{}+ \varepsilon \biggl(2(r+2) (1-a)-\frac{c_{4}}{4\kappa C_{0}} \biggr) \mathbb{H}(t), \end{aligned}
(37)

where $$c_{4}=\min \{c_{2}\mu _{1},c_{3}\mu _{3}\}$$.

Now, taking $$a>0$$ small enough such that

$$J_{0}=(r+2) (1-a)-1>0$$

let

$$\max \biggl\{ \int _{0}^{\infty}g_{1}(s)\,ds, \int _{0}^{\infty}g_{2}(s)\,ds \biggr\} < \frac {(r+2)(1-a)-1}{ ((r+2)(1-a)-\frac {1}{2} )}= \frac {2J_{0}}{2J_{0}+1},$$
(38)

gives

\begin{aligned}& J_{1} = \biggl\{ (r+2) (1-a)-1)- \int _{0}^{t}g_{1}(s)\,ds\biggl((r+2) (1-a)- \frac{1}{2}\biggr) \biggr\} >0, \\& J_{2} = \biggl\{ (r+2) (1-a)-1)- \int _{0}^{t}g_{2}(s)\,ds\biggl((r+2) (1-a)- \frac{1}{2}\biggr) \biggr\} >0. \end{aligned}

Next, we pick Îº in a way that

\begin{aligned} J_{3} =&2(r+2) (1-a)-\frac{c_{4}}{4\kappa C_{0}}>0, \\ J_{4} =&\frac{ac_{0}}{2r+4}-\frac{c_{4}}{4\kappa C_{0}}>0, \end{aligned}

Chose fixed values for Îº and a and select Îµ small enough such that

$$J_{5}=(1-\alpha )-\varepsilon \kappa >0,$$

and

$$\mathcal{K}(0)=\mathbb{H}^{1-\alpha}(0)+ \varepsilon \int _{0}^{L}x(u_{0}u_{1}+v_{0}v_{1})\,dx+ \frac{\varepsilon}{2} \int _{0}^{L}x\bigl(\mu _{1}u_{0}^{2}+ \mu _{3}v_{0}^{2}\bigr)\,dx>0.$$

Thus, for some $$\beta _{1}>0$$, estimate (37) becomes

\begin{aligned} \mathcal{K}'(t) \geq &\beta _{1} \bigl\{ \mathbb{H}(t)+ \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2} + \Vert u_{x} \Vert _{H}^{2}+ \Vert v_{x} \Vert _{H}^{2}+\mathcal{G}(z,y) \\ &{}+(g_{1}o u_{x})+(g_{2}o v_{x})+ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(p+2)}+ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)} \bigr\} . \end{aligned}
(39)

and

$$\mathcal{K}(t)\geq \mathcal{K}(0)>0, \quad t>0.$$
(40)

Now, utilizing Youngâ€™s and Holderâ€™s inequalities, we obtain

\begin{aligned} \biggl\vert \int _{0}^{L}x(uu_{t}+vv_{t})\,dx \biggr\vert ^{\frac{1}{1-\alpha}} \leq &c\bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{\frac{\theta}{1-\alpha}}+ \Vert u_{t} \Vert _{H}^{\frac{\mu}{1-\alpha}} \\ &{}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{\frac{\theta}{1-\alpha}}+ \Vert v_{t} \Vert _{H}^{\frac{\mu}{1-\alpha}}\bigr] , \end{aligned}
(41)

where $$\frac{1}{\mu}+\frac{1}{\theta}=1$$.

We chose $$\theta =2(1-\alpha )$$ to achieve

$$\frac{\mu}{1-\alpha}=\frac{2}{1-2\alpha}\leq 2(r+2).$$

For $$s=\frac{2}{(1-2\alpha )}$$ and by using (24) and (34), we obtain

\begin{aligned}& \Vert u \Vert _{L_{x}^{2(r+2)}}^{\frac{2}{1-2\alpha}} \leq \,d\bigl( \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+\mathbb{H}(t)\bigr) \\& \Vert v \Vert _{L_{x}^{2(r+2)}}^{\frac{2}{1-2\alpha}} \leq \,d\bigl( \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+\mathbb{H}(t)\bigr), \quad \forall t\geq 0. \end{aligned}

Therefore,

$$\biggl\vert \int _{0}^{L}x(uu_{t}+vv_{t})\,dx \biggr\vert ^{\frac{1}{1-\alpha}}\leq c\bigl[ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}+\mathbb{H}(t)\bigr].$$
(42)

Next,

\begin{aligned} \mathcal{K}^{\frac{1}{1-\alpha}}(t) =& \biggl(\mathbb{H}^{1-\alpha}+ \varepsilon \int _{0}^{L}x(uu_{t}+vv_{t})\,dx+ \frac{\varepsilon}{2} \int _{0}x\bigl(\mu _{1}u^{2}+\mu _{3}v^{2}\bigr)\,dx \biggr)^{\frac{1}{1-\alpha}} \\ \leq &c \biggl(\mathbb{H}(t)+ \biggl\vert \int _{0}^{L}x(uu_{t}+vv_{t})\,dx \biggr\vert ^{\frac{1}{1-\alpha}}+ \Vert u \Vert _{H}^{\frac{2}{1-\alpha}}+ \Vert v \Vert _{H}^{\frac{2}{1-\alpha}} \biggr) \\ \leq &c \bigl(\mathbb{H}(t)+ \Vert u_{t} \Vert _{H}^{2}+ \Vert v_{t} \Vert _{H}^{2}+ \Vert u_{x} \Vert _{H}^{2}+ \Vert v_{x} \Vert _{H}^{2}+(g_{1}o u_{x}) \\ &{}+(g_{2}o v_{x})+\mathcal{G}(z,y)+ \Vert u \Vert _{L_{x}^{2(r+2)}}^{2(r+2)}+ \Vert v \Vert _{L_{x}^{2(r+2)}}^{2(r+2)} \bigr) . \end{aligned}
(43)

From (39) and (43), we get

$$\mathcal{K}'(t)\geq \lambda \mathcal{K}^{\frac{1}{1-\alpha}}(t),$$
(44)

where $$\lambda > 0$$, which depends on c and $$\beta _{1}$$ only.

By integrating (44), we get

$$\mathcal{K}^{\frac{\alpha}{1-\alpha}}(t)\geq \frac{1}{\mathcal{K}^{\frac{-\alpha}{1-\alpha}}(0)-\lambda \frac{\alpha}{(1-\alpha )} t}.$$

Thus, the solution blows up in a finite time $$T^{*}$$, with

$$T^{*}\leq \frac{1-\alpha}{\lambda \alpha \mathcal{K}^{\alpha /(1-\alpha )}(0)}.$$

Then the proof is complete.â€ƒâ–¡

## Data Availability

No datasets were generated or analysed during the current study.

## References

1. Ball, J.: Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation. Q. J. Math. 28, 473â€“486 (1977)

2. Benaissa, A., Ouchenane, D., Zennir, K.: Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping and source terms. Nonlinear Stud. 19(4), 523â€“535 (2012)

3. Boulaaras, S., Choucha, A., Agarwal, P., Cherif, B., Idris, S.A., Abdalla, M.: Blow-up of solutions for a quasilinear system with degenerate damping terms. Adv. Differ. Equ. 2021, 446 (2021). https://doi.org/10.1186/s13662-021-03609-0

4. Boulaaras, S., Choucha, A., Cherif, B., Alharbi, A., Abdalla, M.: Blow up of solutions for a system of two singular nonlocal viscoelastic equations with damping, general source terms and a wide class of relaxation functions. AIMS Math. 6(5), 4664â€“4676 (2021). https://doi.org/10.3934/math.2021274

5. Boulaaras, S., Guefaifia, R., Mezouar, N.: Global existence and decay for a system of two singular one-dimentional nonlinear viscoelastic equations with general source terms. Appl. Anal. 101(3), 824â€“848 (2022)

6. Boulaaras, S., Jan, R., Choucha, A., Zarai, A., Benzahi, M.: Blow-up and lifespan of solutions for elastic membrane equation with distributed delay and logarithmic nonlinearity. Bound. Value Probl. 2024, 36 (2024). https://doi.org/10.1186/s13661-024-01843-5

7. Chen, Y.: Global dynamical behavior of solutions for finite degenerate fourth-order parabolic equations with mean curvature nonlinearity. Commun. Anal. Mech. 15(4), 658â€“694 (2023). https://doi.org/10.3934/cam.2023033

8. Choucha, A., Boulaaras, S., Jan, R., Alharbi, R.: Blow-up and decay of solutions for a viscoelastic Kirchhoff-type equation with distributed delay and variable exponents. Math. Meth. Appl. Sci. Early View, 1â€“18 (2024). https://doi.org/10.1002/mma.9950

9. Choucha, A., Boulaaras, S., Ouchenane, D., Allahem, A.: Global existence for two singular one-dimensional nonlinear viscoelastic equations with respect to distributed delay term. J. Funct. Spaces 2021, 6683465 (2021). https://doi.org/10.1155/2021/6683465

10. Lian, W., Md, S.A., Xu, R.: Global existence and blow up of solution for semi-linear hyperbolic equation with the product of logarithmic and power-type nonlinearity. Opusc. Math. 40(1), 111â€“130 (2020). https://doi.org/10.7494/OpMath.2020.40.1.111

11. Liu, W., Sun, Y., Li, G.: On decay and blow-up of solutions for a singular nonlocal viscoelastic problem with a nonlinear source term. Topol. Methods Nonlinear Anal. 49, 299â€“323 (2017)

12. Luo, Y., Xu, R., Yang, C.: Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities. Calc. Var. 61, 210 (2022). https://doi.org/10.1007/s00526-022-02316-2

13. Mesloub, S.: A nonlinear nonlocal mixed problem for a second order parabolic equation. J. Math. Anal. Appl. 316, 189â€“209 (2006)

14. Mesloub, S., Bouziani, A.: Mixed problem with a weighted integral condition for a parabolic equation with Bessel operator. J. Appl. Math. Stoch. Anal. 15(3), 291â€“300 (2002)

15. Mesloub, S., Lekrine, N.: On a nonlocal hyperbolic mixed problem. Acta Sci. Math. 70(1â€“2), 65â€“75 (2004)

16. Mesloub, S., Mesloub, F.: Solvability of a mixed nonlocal problem for a nonlinear singular viscoelastic equation. Acta Appl. Math. 110, 109â€“129 (2010)

17. Mesloub, S., Messaoudi, S.A.: Global existence, decay and blow up of solutions of a singular nonlocal viscoelastic problem. Acta Appl. Math. 110, 705â€“724 (2010)

18. Mezouar, N., Boulaaras, S.: Global existence, decay of solutions of a singular nonlocal viscoelastic system with damping terms. Topol. Methods Nonlinear Anal. 56(1), 283â€“312 (2020). https://doi.org/10.12775/TMNA.2020.014

19. Nicaise, A.S., Pignotti, C.: Stabilization of the wave equation with boundary or internal distributed delay. Diff. Int. Equ. 21(9â€“10), 935â€“958 (2008)

20. Ono, K.: Global existence decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equ. 137, 273â€“301 (1997)

21. Ouchenane, D., Zennir, K., Bayoud, M.: Global nonexistence of solutions for a system of nonlinear viscoelastic wave equation with degenerate damping and source terms. Ukr. Math. J. 65(7), 723â€“739 (2013)

22. PiÅŸkin, E., Ekinci, F.: General decay and blow up of solutions for coupled viscoelastic equation of Kirchhoff type with degenerate damping terms. Math. Methods Appl. Sci. 42(16), 5468â€“5488 (2019)

23. Pulkina, L.S.: A nonlocal problem with integral conditions for a hyperbolic equation. Differ. Uravn. 40(7), 887â€“892 (2004)

24. Shun-Tang, W., Long-Yi, T.: On global existence and blow-up of solutions or an integro-differential equation with strong damping. Taiwan. J. Math. 10, 979â€“1014 (2006)

25. Xu, H.: Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Commun. Anal. Mech. 15(2), 132â€“161 (2023). https://doi.org/10.3934/cam.2023008

26. Yurchuk, N.I.: Mixed problem with an integral condition for certain parabolic equations. Differ. Uravn. 22(19), 2117â€“2126 (1986)

27. Zarai, A., Draifia, A., Boulaaras, S.: Blow up of solutions for a system of nonlocal singular viscoelatic equations. Appl. Anal. 97(13), 2231â€“2245 (2018)

Download references

## Funding

There is no funding.

## Author information

Authors

### Contributions

All authors prepared the results, wrote the main manuscript text, and reviewed the manuscript.

### Corresponding author

Correspondence to Salah Boulaaras.

## Ethics declarations

Not applicable.

### Competing interests

The authors declare no competing interests.

## Additional information

### Publisherâ€™s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articleâ€™s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articleâ€™s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

## About this article

### Cite this article

Choucha, A., Shahrouzi, M., Jan, R. et al. Blow-up of solutions for a system of nonlocal singular viscoelastic equations with sources and distributed delay terms. Bound Value Probl 2024, 77 (2024). https://doi.org/10.1186/s13661-024-01888-6

Download citation

• Received:

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/s13661-024-01888-6