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Abstract
A sufficient condition is obtained for the existence of nontrivial weak homoclinic
orbits of second-order impulsive differential equations by employing the mountain
pass theorem, a weak convergence argument and a weak version of Lieb’s lemma.

1 Introduction
Fečkan [], Battelli and Fečkan [] studied the existence of homoclinic solutions for im-
pulsive differential equations by using perturbation methods. Tang et al. [–] studied
the existence of homoclinic solutions for Hamiltonian systems via variational methods.
In recent years, many researchers have paid much attention to multiplicity and exis-
tence of solutions of impulsive differential equations via variational methods (for example,
see [–]). However, few papers have been published on the existence of homoclinic so-
lutions for second-order impulsive differential equations via variational methods.
In this paper, we consider the following impulsive differential equations:

q′′(t) +V ′(t,q(t)) = , a.e. t ∈ (tj, tj+), j ∈ Z, (.)

q′(t+j ) – q′(t–j )
= I

(
q(tj)

)
, j ∈ Z, (.)

where V :R×R → R is of class C, V (t, ) = V ′(t, ) =  with V ′(t,x) = (∂V /∂x)(t,x), and
I ∈ C(R,R) with I() = . Z denotes the set of all integers, and tj (j ∈ Z) are impulsive
points. Moreover, there exist a positive integer p and a positive constant T such that  <
t < t < · · · < tp– < T , tl+kp = tl + kT , ∀k ∈ Z, l = , , . . . ,p– . q′(t+j ) = limh→+ q′(tj + h) and
q′(t–j ) = limh→+ q′(tj – h) represent the right and left limits of q′(t) at t = tj respectively.
We say that a function q(t) is a weak homoclinic orbit of Eqs. (.) and (.) if q satisfies

(.) and

q ∈
{
q ∈ C(R,R) :

+∞∑
j=–∞

∣∣q(tj)∣∣ < +∞,q′ ∈ L(R),q(±∞) = ,q(kT) = ,k ∈ Z

}
.

Motivated by the works of Nieto and Regan [], Smets andWillem [], in this paper we
study the existence of nontrivial weak homoclinic orbits of (.)-(.) by using the moun-
tain pass theorem, a weak version of Lieb’s lemma and a weak convergence argument. Our
method is different from those of [, ].
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The main result is the following.

Theorem . Assume that Eqs. (.) and (.) satisfy the following conditions:

(H) There exists a positive number T such that

V ′(t + T ,x) = V ′(t,x), V (t + T ,x) = V (t,x), ∀(t,x) ∈R
;

(H) limx→
V ′(t,x)

x =  uniformly for t ∈R;
(H) There exists a constant μ >  such that

xV ′(t,x)≥ μV (t,x) > , ∀(t,x) ∈R×R \ {};

(H) There exist constants a >  and a >  such that

V (t,x)≥ a|x|μ, for any |x| ≥ , t ∈R;

V (t,x)≤ a|x|μ, for any |x| ≤ , t ∈R;

(H) There exists a constant b, with  < b < μ–
(μ+)Tp , such that

∣∣I(x)∣∣ ≤ b|x|,

and


∫ x


I(t)dt – I(x)x≤ .

Then there exists a nontrivial weak homoclinic orbit of Eqs. (.) and (.).

Remark . (H) implies that q(t) ≡  is an equilibrium of (.)-(.).

Remark . Set V (t,x) = ( + sin t)x, I(x) = x
πp . It is easy to see that V (t,x), I(x) satisfy

(H)-(H).

2 Proof of main results
Lemma . (Mountain pass lemma []) Let E be a Banach space and ϕ ∈ C(E,R), e ∈ E,
r >  be such that ‖e‖ > r and

b := inf‖y‖=rϕ(y) > ϕ() ≥ ϕ(e).

Let

� =
{
γ ∈ C

(
[, ],E

)
: γ () = ,γ () = e

}
,

d := inf
γ∈�

sup
t∈[,]

ϕ
(
γ (t)

)
.

Then, for each ε > , δ > , there exists y ∈ E such that
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(V) d – ε ≤ ϕ(y) ≤ d + ε;
(V) dist(y,E)≤ δ;
(V) ‖ϕ′(y)‖ ≤ ε

δ
.

In what follows, l denotes the space of sequences whose second powers are summable
on Z (the set of all integers), that is,

∑
j∈Z

|aj| < +∞, ∀a = {aj}+∞
j=–∞ ∈ l.

The space l is equipped with the following norm:

‖a‖l =
(∑

j∈Z
|aj|

) 

.

We now prove some technical lemmas.

Lemma . The space

H :=
{
q ∈ C(R,R) :

{
q(tj)

}+∞
j=–∞ ∈ l,q′ ∈ L(R),q(±∞) = ,q(kT) = ,k ∈ Z

}
(.)

is a Hilbert space with the inner product

(q,q)H =
∫
R

q′
(t)q

′
(t)dt, (.)

and the corresponding norm

‖q‖H =
(∫

R

∣∣q′(t)
∣∣ dt) 


. (.)

Proof Let {qn} be a Cauchy sequence in H , then {q′
n} is a Cauchy sequence in L(R) and

there exists y ∈ L(R) such that {q′
n} converges to y in L(R). Define the function q(t) as

follows:

q(t) =
∫ t

kT
y(s)ds, kT ≤ t < (k + )T ,k ∈ Z.

It is easy to see that

lim
h→+

q(kT – h) =
∫ kT

(k–)T
y(s)ds.

Since qn(kT) = , k ∈ Z, we have

∣∣∣∣
∫ kT

(k–)T
y(s)ds

∣∣∣∣ =
∣∣∣∣
∫ kT

(k–)T
y(s)ds –

[
qn(kT) – qn

(
(k – )T

)]∣∣∣∣
=

∣∣∣∣
∫ kT

(k–)T

[
y(s) – q′

n(s)
]
ds

∣∣∣∣

http://www.boundaryvalueproblems.com/content/2012/1/138
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≤
∫ kT

(k–)T

∣∣y(s) – q′
n(s)

∣∣ds
≤ T




[∫ kT

(k–)T

∣∣y(s) – q′
n(s)

∣∣ ds] 


≤ T



[∫
R

∣∣y(s) – q′
n(s)

∣∣ ds] 

,

which implies that
∫ kT
(k–)T y(s)ds = , that is, q(kT–) = , k ∈ Z. Therefore, q is continuous.

Thus, q ∈ C(R,R) and q′ = y.
Noticing that, for kT ≤ t < (k + )T , we have

∣∣q(t)∣∣ =
∣∣∣∣
∫ t

kT
y(s)ds

∣∣∣∣


≤
[∫ (k+)T

kT

∣∣y(s)∣∣ds]

≤ T
∫ (k+)T

kT

∣∣y(s)∣∣ ds = T
∫ +∞

kT

∣∣y(s)∣∣ ds – T
∫ +∞

(k+)T

∣∣y(s)∣∣ ds,
which implies q(±∞) = . On the other hand, since

+∞∑
j=–∞

∣∣q(tj)∣∣ = p–∑
l=

+∞∑
k=–∞

∣∣q(tl+kp)∣∣,

and kT < tl+kp = tl + kT < (k + )T (l = , , . . . ,p – ), we have

∣∣q(tl+kp)∣∣ =
∣∣∣∣
∫ tl+kp

kT
y(s)ds

∣∣∣∣


≤ T
∫ (k+)T

kT

∣∣y(s)∣∣ ds.
Therefore,

+∞∑
j=–∞

∣∣q(tj)∣∣ ≤
p–∑
l=

+∞∑
k=–∞

T
∫ (k+)T

kT

∣∣y(s)∣∣ ds = pT
∫
R

∣∣y(s)∣∣ ds < +∞.

Consequently, q ∈H and {qn} converges to q in H . The proof is complete. �

Lemma . For any q ∈H , the following inequalities hold:

|q|∞ := sup
t∈R

∣∣q(t)∣∣ ≤ T

 ‖q‖H , |q| :=

[∫
R

∣∣q(t)∣∣ dt] 
 ≤ T‖q‖H .

Furthermore, q ∈H(R) and

‖q‖H :=
[∫

R

(∣∣q(t)∣∣ + ∣∣q′(t)
∣∣)dt] 

 ≤ [
T + 

] 
 ‖q‖H ,

+∞∑
j=–∞

∣∣q(tj)∣∣ ≤ Tp‖q‖H .
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Proof For any t ∈ R, there exists an integer k such that (k – )T ≤ t < kT . Then it follows
from Cauchy-Schwarz inequality that

∣∣q(t)∣∣ = ∣∣q(kT) – q(t)
∣∣ ≤

∫ kT

t

∣∣q′(s)
∣∣ds≤

∫ kT

(k–)T

∣∣q′(s)
∣∣ds

≤ T



(∫ kT

(k–)T

∣∣q′(s)
∣∣ ds) 

 ≤ T

 ‖q‖H ,

which implies |q|∞ ≤ T 
 ‖q‖H .

Furthermore, from the above argument, we have

+∞∑
k=–∞

∫ kT

(k–)T

∣∣q(t)∣∣ dt ≤ T
+∞∑

k=–∞

∫ kT

(k–)T

∣∣q′(t)
∣∣ dt = T‖q‖H ,

that is, |q| ≤ T‖q‖H .
Since

∣∣q′∣∣
 =

(∫
R

∣∣q′(t)
∣∣ dt) 


= ‖q‖H ,

‖q‖H =
[∫

R

(∣∣q(t)∣∣ + ∣∣q′(t)
∣∣)dt] 

 ≤ [
T + 

] 
 ‖q‖H .

Finally, we obtain that

+∞∑
j=–∞

∣∣q(tj)∣∣ =
p–∑
l=

+∞∑
k=–∞

∣∣q(tl + kT)
∣∣ = p–∑

l=

+∞∑
k=–∞

∣∣∣∣
∫ (k+)T

tl+kT
q′(s)ds

∣∣∣∣


≤
p–∑
l=

+∞∑
k=–∞

[∫ (k+)T

kT

∣∣q′(s)
∣∣ds]

≤ pT
+∞∑

k=–∞

∫ (k+)T

kT

∣∣q′(s)
∣∣ ds

= pT‖q‖H .

The proof is complete. �

Define the functional ϕ :H →R as follows:

ϕ(q) =



∫
R

∣∣q′(t)
∣∣ dt – ∫

R

V
(
t,q(t)

)
dt +

+∞∑
j=–∞

∫ q(tj)


I(s)ds, q ∈ H . (.)

Lemma . If (H)-(H) hold, then ϕ ∈ C(H ,R) and

〈
ϕ′(q),h

〉
=

∫
R

q′(t)h′(t)dt –
∫
R

V ′(t,q(t))h(t)dt + +∞∑
j=–∞

I
(
q(tj)

)
h(tj), ∀h ∈ H . (.)
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Proof From the continuity of V , V ′ and (H)-(H), we see that, for each γ > , there exists
Cγ > , such that

∣∣V ′(t,x)
∣∣ ≤ Cγ |x|, ∣∣V (t,x)

∣∣ ≤ 

Cγ |x|, ∀t ∈ R, |x| ≤ γ .

Since q(t) →  as t → ∞, there exists ργ >  such that

∣∣q(t)∣∣ ≤ γ , whenever |t| ≥ ργ .

Therefore, we have

∣∣V ′(t,q(t))∣∣ ≤ Cγ

∣∣q(t)∣∣, ∣∣V (
t,q(t)

)∣∣ ≤ 

Cγ

∣∣q(t)∣∣, for all |t| ≥ ργ .

It follows from (H) that, ∀q,h ∈H ,
∣∣∣∣∣
+∞∑
j=–∞

I
(
q(tj)

)
h(tj)

∣∣∣∣∣ ≤
+∞∑
j=–∞

∣∣I(q(tj))∣∣∣∣h(tj)∣∣ ≤
+∞∑
j=–∞

b
∣∣q(tj)∣∣∣∣h(tj)∣∣

≤ b

( +∞∑
j=–∞

∣∣q(tj)∣∣
) 


( +∞∑
j=–∞

∣∣h(tj)∣∣
) 



< +∞,

and

+∞∑
j=–∞

∣∣∣∣
∫ q(tj)


I(s)ds

∣∣∣∣ ≤
+∞∑
j=–∞

∫ max{,q(tj)}

min{,q(tj)}

∣∣I(s)∣∣ds≤ b


+∞∑
j=–∞

∣∣q(tj)∣∣ < +∞. (.)

Thus, ϕ and the right hand of (.) is well defined onH . By the definition of Fréchet deriva-
tive, it is easy to see that ϕ ∈ C(H ,R) and (.) holds. �

Lemma . If q ∈H is a critical point of the functional ϕ, then q satisfies (.).

Proof If q ∈H is a critical point of the functional ϕ, then for any h ∈ C∞
 (R), we have

 =
〈
ϕ′(q),h

〉
=

∫
R

q′(t)h′(t)dt –
∫
R
V ′(t,q(t))h(t)dt + +∞∑

j=–∞
I
(
q(tj)

)
h(tj).

∀j ∈ Z, take h ∈ C∞
 (R) such that h(t) =  for any t ∈ (–∞, tj] ∪ [tj+, +∞), and h ∈

C∞
 ([tj, tj+]). Therefore, we have

 =
∫ tj+

tj
q′(t)h′(t)dt –

∫ tj+

tj
V ′(t,q(t))h(t)dt,

by the definition of the weak derivative, which implies

q′′(t) +V ′(t,q(t)) =  a.e. on (tj, tj+). (.)

Hence, the critical point q ∈ H of the functional ϕ satisfies (.). The proof is complete.
�
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Lemma . Under the assumptions (H)-(H), there exists e ∈ H and r >  such that
‖e‖H > r and

b := inf‖y‖H=r
ϕ(y) > ϕ()≥ ϕ(e).

Proof If q ∈ H and ‖q‖H ≤ 

T


, then, by Lemma ., |q|∞ ≤ . Hence, by (H) and

Lemma ., we have

+∞∑
j=–∞

∫ q(tj)


I(s)ds ≥ –

+∞∑
j=–∞

∫ max{,q(tj)}

min{,q(tj)}

∣∣I(s)∣∣ds

≥ –



+∞∑
j=–∞

b
∣∣q(tj)∣∣ ≥ –



bTp‖q‖H , (.)

and

+∞∑
j=–∞

I
(
q(tj)

)
q(tj) ≤

+∞∑
j=–∞

∣∣I(q(tj))∣∣∣∣q(tj)∣∣ ≤
+∞∑
j=–∞

b
∣∣q(tj)∣∣ ≤ bTp‖q‖H . (.)

It follows from (.), (H) and Lemma . that

ϕ(q) =


‖q‖H –

∫
R

V
(
t,q(t)

)
dt +

+∞∑
j=–∞

∫ q(tj)


I(s)ds

≥ 

‖q‖H – a

∫
R

∣∣q(t)∣∣μ dt – 

bTp‖q‖H

≥ 

‖q‖H – a|q|μ–∞

∫
R

∣∣q(t)∣∣ dt – 

bTp‖q‖H

≥ 

( – bTp)‖q‖H – aT

μ+
 ‖q‖μ

H .

Therefore, as μ >  and b < μ–
(μ+)Tp <


Tp , there exists r >  such that inf‖q‖H=r ϕ(q) > .

Now, let v ∈ H \ {} and λ > . Then there exists a subset (a,b) of R and λ large enough
such that

λ
∣∣v(t)∣∣ > , for all t ∈ (a,b).

Since V (t,λv(t))≥ , by (.), (H) and Lemma ., we have

ϕ(λv) ≤ λ



∫
R

∣∣v′(t)
∣∣ dt – ∫ b

a
V

(
t,λv(t)

)
dt +

+∞∑
j=–∞

∫ λv(tj)


I(s)ds

≤ λ


‖v‖H – aλμ

∫ b

a

∣∣v(t)∣∣μ dt + λ


bTp‖v‖H

=
λ


( + bTp)‖v‖H – aλμ

∫ b

a

∣∣v(t)∣∣μ dt.
Since μ > , the right-hand member is negative of λ sufficiently large, and there exists
e := λv ∈H such that ‖e‖H > r, ϕ(e) ≤ . The proof is complete. �
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Lemma . Under the assumptions (H)-(H), there exists a bounded sequence {qn} in H
such that

ϕ(qn) → d, ϕ′(qn) → , dist(qn,H) → ,

where d := infγ∈� supt∈[,] ϕ(γ (t)), � = {γ ∈ C([, ],H) : γ () = ,γ () = e}. Furthermore,
qn does not converge to  in measure.

Proof Allwe have to prove is that any sequence {qn} obtained by taking ε = /n and δ = /n
in Lemma . is bounded and qn does not converge to  inmeasure. For n sufficiently large,
it follows from (H), (H), (.), (.), (.) and (.) that

d +  + ‖qn‖H ≥ ϕ(qn) –

μ

〈
ϕ′(qn),qn

〉

=
(


–


μ

)∫
R

∣∣q′
n(t)

∣∣ dt – ∫
R

[
V

(
t,qn(t)

)
–


μ
V ′(t,qn(t))qn(t)

]
dt

+
+∞∑
j=–∞

∫ qn(tj)


I(s)ds –


μ

+∞∑
j=–∞

I
(
qn(tj)

)
qn(tj)

=
(


–


μ

)
‖qn‖H –


μ

∫
R

[
μV

(
t,qn(t)

)
–V ′(t,qn(t))qn(t)]dt

+
+∞∑
j=–∞

∫ qn(tj)


I(s)ds –


μ

+∞∑
j=–∞

I
(
qn(tj)

)
qn(tj)

≥
(


–


μ

)
‖qn‖H –

bTp


‖qn‖H –
bTp
μ

‖qn‖H

=
(


–


μ

–
bTp


–
bTp
μ

)
‖qn‖H .

Since b < μ–
(μ+)Tp , {qn} is bounded in H .

Let a := supn∈N{‖qn‖H}. By (H) and (H), we have



V ′(t,u)u –V (t,u) = o

(
u

)
, as u→ ,

which implies

a := sup
|u|≤T


 a


V

′(t,u)u –V (t,u)
u

<∞.

For any ε > , there exists δ >  such that, for |u| ≤ δ, we have∣∣∣∣ V ′(t,u)u –V (t,u)
∣∣∣∣ ≤ εu.

Therefore, by Lemma ., we have
∫
R

[


V ′(t,qn)qn –V (t,qn)

]
dt

=
[∫

|qn(t)|>δ

+
∫

|qn(t)|≤δ

][


V ′(t,qn)qn –V (t,qn)

]
dt

http://www.boundaryvalueproblems.com/content/2012/1/138
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≤ meas
{∣∣qn(t)∣∣ > δ

}
a|qn|∞ + ε|qn|

≤ meas
{∣∣qn(t)∣∣ > δ

}
Taa + εTa. (.)

If qn converges to  in measure on R, then it follows from (H) and (.) that

 < d = ϕ(qn) –


〈
ϕ′(qn),qn

〉
+ o()

=
∫
R

[


V ′(t,qn)qn –V (t,qn)

]
dt +

+∞∑
j=–∞

∫ qn(tj)


I(s)ds –




+∞∑
j=–∞

I
(
qn(tj)

)
qn(tj) + o()

≤ meas
{∣∣qn(t)∣∣ > δ

}
Taa + εTa

+



+∞∑
j=–∞

[

∫ qn(tj)


I(s)ds – I

(
qn(tj)

)
qn(tj)

]
+ o()

≤ meas
{∣∣qn(t)∣∣ > δ

}
Taa + εTa + o()

= o(),

a contradiction. The proof is complete. �

The following lemma is similar to a weak version of Lieb’s lemma [], which will play
an important role in the proof of Theorem ..

Lemma . If {un} is bounded in H and un does not converge to  in measure, then there
exist a sequence {xnk } ⊂ Z and a subsequence {unk } of {un} such that

unk (· + xnkT) ⇀ u =  in H(R).

Proof If

lim
n→∞ sup

q∈Z
sup

t∈[qT–T ,qT+T]

∣∣un(t)∣∣ = ,

then, for any ε > , there exists n >  such that, for n≥ n, we have

sup
q∈Z

sup
t∈[qT–T ,qT+T]

∣∣un(t)∣∣ ≤ ε.

Therefore, for all t ∈R and n≥ n, we have

∣∣un(t)∣∣ ≤ ε,

which implies

lim
n→∞meas

{
t ∈R :

∣∣un(t)∣∣ > ε
}
= ,

a contradiction. Therefore, there exist a constant ρ >  and a subsequence {nk} of {n} such
that

sup
x∈Z

sup
t∈[xT–T ,xT+T]

∣∣unk (t)∣∣ > ρ, k ∈ N,

http://www.boundaryvalueproblems.com/content/2012/1/138
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whereN denotes the set of all positive integers. So, for k ∈N, there exists xnk ∈ Z such that

sup
t∈[xnk T–T ,xnk T+T]

∣∣unk (t)∣∣ > ρ.

Let vnk (t) = unk (t + xnkT), t ∈R. Since {un} is bounded inH , by Lemma ., it is easy to see
that {vnk } is bounded inH(R). Therefore, {vnk } has a subsequencewhichweakly converges
to u inH(R). Without loss of generality, we assume that vnk ⇀ u inH(R). Thus, vnk ⇀ u
in H([–T ,T]). Therefore, vnk uniformly converges to u in [–T ,T]. Noticing that

sup
t∈[–T ,T]

∣∣vnk (t)∣∣ = sup
t∈[–T ,T]

∣∣unk (t + xnkT)
∣∣ = sup

t∈[xnk T–T ,xnk T+T]

∣∣unk (t)∣∣ > ρ,

we have

sup
t∈[–T ,T]

∣∣u(t)∣∣ ≥ ρ,

that is, u = . �

Proof of Theorem . By Lemma ., there exists a bounded {qn} in H such that

ϕ(qn) → d, ϕ′(qn) → , dist(qn,H) → ,

and {qn} does not converge to  in measure on R, where d is the mountain pass value. By
Lemma ., there exists a sequence {xnk } in Z such that

ωk := qnk (· + xnkT)⇀ ω =  in H(R).

For any fixed k ∈N, set s = t + xnkT and hk(s) := h(s– xnkT). Then sj := tj + xnkT (j ∈ Z) are
impulsive points and

‖hk‖H =
(∫

R

∣∣h′
k(s)

∣∣ ds) 

=

(∫
R

∣∣h′(s)
∣∣ ds) 


= ‖h‖H .

For any h ∈ C∞
 (R) with h(kT) = , we have

〈
ϕ′(ωk),h

〉
=

∫
R

ω′
k(t)h

′(t)dt –
∫
R

V ′(t,ωk(t)
)
h(t)dt +

+∞∑
j=–∞

I
(
ωk(tj)

)
h(tj)

=
∫
R

[
q′
nk (t + xnkT)h

′(t) –V ′(t,qnk (t + xnkT)
)
h(t)

]
dt

+
+∞∑
j=–∞

I
(
qnk (tj + xnkT)

)
h(tj)

=
∫
R

[
q′
nk (s)h

′(s – xnkT) –V ′(s – xnkT ,qnk (s)
)
h(s – xnkT)

]
ds

+
+∞∑
j=–∞

I
(
qnk (sj)

)
h(sj – xnkT)
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Fang and Duan Boundary Value Problems 2012, 2012:138 Page 11 of 13
http://www.boundaryvalueproblems.com/content/2012/1/138

=
∫
R

[
q′
nk (s)h

′(s – xnkT) –V ′(s,qnk (s))h(s – xnkT)
]
ds

+
+∞∑
j=–∞

I
(
qnk (sj)

)
h(sj – xnkT)

=
∫
R

[
q′
nk (s)h

′
k(s) –V ′(s,qnk (s))hk(s)]ds

+
+∞∑
j=–∞

I
(
qnk (sj)

)
hk(sj)

=
〈
ϕ′(qnk ),hk

〉
.

Hence, we have

∣∣〈ϕ′(ωk),h
〉∣∣ = ∣∣〈ϕ′(qnk ),hk

〉∣∣ ≤ ∥∥ϕ′(qnk )
∥∥ · ‖hk‖H =

∥∥ϕ′(qnk )
∥∥ · ‖h‖H ,

which implies

〈
ϕ′(ωk),h

〉 →  as k → ∞. (.)

Since H ⊂H(R), ωk ⇀ ω in H , therefore

∫
R

ω′
kh

′ →
∫
R

ω′h′. (.)

As ωk ⇀ ω in H(R), {ωk} is bounded in H(R) and hence |ωk|∞ ≤ c for some c >  and all
k ∈N. Also, {ωk} uniformly converges toω on supp(h) and,V ′ being uniformly continuous
on supp(h)× [–c, c],V ′(t,ωk)h uniformly converges toV ′(t,ω)h on supp(h)× [–c, c]. By the
Lebesgue dominated convergence theorem, this implies that

∫
R

V ′(t,ωk)h→
∫
R

V ′(t,ω)h. (.)

For any h ∈H and ε > , take J sufficiently large such that

( +∞∑
j=J+

∣∣h(tj)∣∣
) 



≤ ε,

(–J–∑
j=–∞

∣∣h(tj)∣∣
) 



≤ ε.

Since ωk ⇀ ω inH(R), ωk ⇀ ω inH([t–J , tJ ]), therefore ωk uniformly converges to ω in
[t–J , tJ ]. By the continuity of I , there exists K >  such that, when k > K , we have

∣∣∣∣∣
J∑

j=–J

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]
h(tj)

∣∣∣∣∣ ≤ ε.

Since

∣∣I(ωk(tj)
)∣∣ ≤ b

∣∣ωk(tj)
∣∣, ∣∣I(ω(tj))∣∣ ≤ b

∣∣ω(tj)∣∣,
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it follows from Lemma . that

( +∞∑
j=J+

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]) 


≤ √
b

( +∞∑
j=J+

[∣∣ωk(tj)
∣∣ + ∣∣ω(tj)∣∣]

) 


≤ √
b

[
Tp

(‖ωk‖H + ‖ω‖H
)] 



≤ b
√
Tpmax

{
sup
k

‖ωk‖H ,‖ω‖H
}
.

Similarly, we have

(–J–∑
j=–∞

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]) 


≤ b
√
Tpmax

{
sup
k

‖ωk‖H ,‖ω‖H
}
.

By the Cauchy-Schwarz inequality, we have
∣∣∣∣∣
+∞∑
j=–∞

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]
h(tj)

∣∣∣∣∣
≤

∣∣∣∣∣
+∞∑

j=J+

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]
h(tj)

∣∣∣∣∣ +
∣∣∣∣∣

J∑
j=–J

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]
h(tj)

∣∣∣∣∣
+

∣∣∣∣∣
–J–∑
j=–∞

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]
h(tj)

∣∣∣∣∣
≤

( +∞∑
j=J+

∣∣I(ωk(tj)
)
– I

(
ω(tj)

)∣∣)


( +∞∑
j=J+

∣∣h(tj)∣∣
) 



+

∣∣∣∣∣
J∑

j=–J

[
I
(
ωk(tj)

)
– I

(
ω(tj)

)]
h(tj)

∣∣∣∣∣
+

(–J–∑
j=–∞

∣∣I(ωk(tj)
)
– I

(
ω(tj)

)∣∣)


(–J–∑
j=–∞

∣∣h(tj)∣∣
) 



≤
[
 + b

√
Tpmax

{
sup
k

‖ωk‖H ,‖ω‖H
}]

ε, ∀k > K .

Therefore,

lim
k→∞

+∞∑
j=–∞

I
(
ωk(tj)

)
h(tj) =

+∞∑
j=–∞

I
(
ω(tj)

)
h(tj). (.)

From (.)-(.), we have

〈
ϕ′(ω),h

〉
= lim

k→∞
〈
ϕ′(ωk),h

〉
= .

Thus, ϕ′(ω) =  and ω is a nontrivial weak homoclinic orbit of (.)-(.). �
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