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Abstract
In this paper, we approximate the solution of fractional Painlevé and Bagley-Torvik
equations in the Conformable (Co), Caputo (C), and Caputo-Fabrizio (CF) fractional
derivatives using hybrid hyperbolic and cubic B-spline collocation methods, which is
an extension of the third-degree B-spline function with more smoothness. The hybrid
B-spline function is flexible and produces a system of band matrices that can be
solved with little computational effort. In this method, three parametersm, η, and λ
play an important role in producing accurate results. The proposed methods reduce
to the system of linear or nonlinear algebraic equations. The stability and
convergence analysis of the methods have been discussed. The numerical examples
are presented to illustrate the applications of the methods and compare the
computed results with those obtained using other methods.
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1 Introduction
Studying fractional calculus is an old topic that goes back to Leibniz (1695) and Eu-
ler (1730) [1–3]. The analysis of noninteger derivatives and integrals offers an excellent
method to explain the memory and inherited properties of complex systems. Several ex-
isting arbitrary-order derivatives in fractional calculus are typically classified into singular
and nonsingular [4–8]. A new effective description of the nonsingular kernel was applied
in [8–14].

In general, an analytical solution of the fractional differential equation is difficult. Con-
sequently, the Painlevé and Bagley-Torvik equations do not always have solutions in closed
forms that can be obtained by analytical approaches. Numerical methods to find an ap-
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proximate solution and qualitative behaviors of the solution for fractional differential
equation have been investigated in [15–33] and some references therein.

In recent years, the search for numerical methods for approximating the solution to
fractional equations has become a topic of interest in applied sciences and engineering.
Several mathematicians have recently developed numerical methods for approximating
solutions to fractional differential equations involving Caputo-Fabrizio derivatives see [11,
13, 14], and [16].

The B-spline interpolator function is considered one of the most effective methods for
interpolating smooth functions, especially compared to other techniques, such as finite
element, finite volume, and finite difference methods [14, 34–37]. We also know that the
non-polynomial spline function has certain advantages over the polynomial spline func-
tion due to its increased smoothness and parameter dependence, leading to improved
approximation of solutions see [26, 33, 38–40], and the references therein.

If the solution of the differential equation is an exponential function, then the expo-
nential B-spline interpolator function provides a better approximation compared to the
polynomial B-spline function. The advantage of using the hybrid B-spline is that it has
three free parameters, λ, m, and κ , that can be determined so that the numerical method
produces results with better accuracy. The main reason for writing this article is to create
a B-spline function that is a combination of third-order B-spline and hyperbolic B-spline
function to approximate the solutions of Painlevé and Bagley-Torvik equations in the Con-
formable, Captuo, and Caputo-Fabrizio fractional derivative. It also studies of convergence
and stability of the numerical method.

We consider the Bagley-Torvik equation in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

η1(x)u′′(x) + η2(x)xDα
0 u(x) + η3(x)u′(x)

+ η4(x)xDβ
0 u(x) + η5(x)u(x) = f (x),

u′(0) – ω1 = u(1) – ω2 = 0,

(1)

where α = 1.5, β = 0.5, and fractional Painlevé of the first type as:

⎧
⎨

⎩

η1(x)xDα
0 u(x) – 6u2(x) – x = f (x),

u′(0) – ω1 = u(1) – ω2 = 0,
(2)

and also Painlevé fractional differential equation of the second type as follows:

⎧
⎨

⎩

η1(x)xDα
0 u(x) – 2u3(x) – xu(x) – x = f (x),

u′(0) – ω1 = u(1) – ω2 = 0,
(3)

where, xDα
0 and xDβ

0 are one of the derivatives of Conformable or Caputo or Caputo-
Fabrizio also x ∈ [0, 1], α ∈ (1, 2], and β ∈ (0, 1]. The functions of ηi(x), i = 1, 2, 3, 4, 5, and
f (x) ∈ C([0, 1]) are continuous, and the function u(x) is also the solution that must be
approximated. The fractional Bagley-Torvik equation with derivatives of order 0.5 or 1.5
determines the movement of real physical structures, a plate immersed in gas in fluid to-
gether with a Newtonian fluid, simultaneously [18] and [41]. In mathematical physics, such
as statistical mechanics, plasma physics, nonlinear waves, quantum gravity, quantum field
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theory, general relativity, nonlinear optics, and fiber optics, the Painlevé fractional differ-
ential equation appears in [19] and [20]. Some of the physical phenomena experienced
by physical laboratories do not always have solutions in closed forms, e.g, the fractional
Bagley-Torvik and Painleveé equations.

The cubic B-spline function for approximating the solution of Painlevé and Bagley-
Torvik equations in the Captuo, Caputo-Fabrizio, and Conformable fractional sense con-
cerning boundary set conditions has been studied in [14], but the convergence of the given
numerical method has not been discussed. Several good papers [28, 29, 33] have used
spline approximation methods to approximate the solution of fractional Bagley-Torvik
equation.

In [21], the reproducing kernel space method for approximating the solution of Bagley-
Trovick fractional differential equation is analyzed. A hybrid of block-pulse functions and
Chebyshev polynomials based on operational matrices for approximating the solution of
fractional differential equations has been studied and analyzed in [42].

The existence of positive and negative solutions of the Bagley-Torvik fractional differ-
ential equation and the derivative properties of these solutions have been studied in [22].
The Taylor matrix method for approximating the solution of Bagley-Trovick equation in
fluid mechanics is developed in [31]. Cubic spline method for approximating the solution
of fractional boundary value problems has been developed in [26]. The Chebyshev col-
location method for approximating the solution of fractional Bagley-Torvik equation is
introduced in [23].

In [24], the homotopy perturbation method was applied for approximating the solution
of Bagley-Torvik equation as a prototype fractional differential equation with two deriva-
tives. The exponential integrators method for numerical solution of the Bagley-Torvik
equation was discussed in [30].

The Adomian decomposition method for solving initial value problem of Bagley-Torvik
equation is also discussed in [32]. Fractional linear multistep method and a predictor-
corrector method of the Adams type, which was based on finite difference methods for
initial value problem of the Bagley-Torvik equation, are discussed in [27]. The Legen-
dre operational matrix method for fractional differential equation is applied in [43], and
the combination of collocation points and first-order Bessel functions, which is called the
Bessel-collocation method for boundary value problem of Bagley-Torvik equation, is dis-
cussed in [25]. Recently, some numerical methods have been employed for approximating
the solutions of the fractional two-point boundary value problems in both linear and non-
linear types, for example, the cubic B-spline interpolation method [34], the cubic B-spline
method, the finite difference technique [35], the B-spline collocation method for solv-
ing conformable initial value problems of nonsingular and singular types [36], and well-
posedness and numerical simulations employing Legendre-shifted spectral approach for
Caputo-Fabrizio fractional stochastic integro differential equations [13]. The solvability of
a nonlocal problem with integral transmitting condition for mixed type equation with the
Caputo fractional derivative [44] and an extended Caputo fractional derivative operator
with its applications [45] are also discussed. An approximate analytic view of physical and
biological models in the setting of the Caputo operator via the Elzaki transform decom-
position method is shown in [46].

In [15] and [16], iterative reproducing kernel and spline functions have been used to
study and develop Bagley-Torvik and Painlevé equations with fractional order.
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Many approaches have been developed for solving the fractional differential equations.
These methods include: solutions of variable-order fractional differential equations by re-
producing the kernel method [47], numerical solutions of fractional differential equations
of the Lane-Emden type by reproducing the kernel Hilbert space [48], the reproducing
kernel method for approximate solutions of fractional order boundary value problems
[49], a collocation shooting method [50], implicit finite difference approximation for time-
fractional diffusion equations [51], fractional model and numerical algorithms for predict-
ing COVID-19 with isolation and quarantine strategies [52], Sinc approximation for the
numerical solution of a nonlinear fractional pantograph equation [53], matrix approach
to discrete fractional calculus [54], and the weighted and shifted Grünwald difference op-
erators [55].

The main objective of this study is to utilize a hybrid of hyperbolic and cubic B-spline
functions to solve equations (1)-(3), which results are more accurate compared with some
other methods. The first aim of the present work is to explore the cubic hyperbolic B-spline
interpolation with multiple parameters and produce the error of approximate hyperbolic
spline. The second aim is to introduce a new approximate technique to find solutions
of fractional boundary value problem and demonstrate the convergence analysis for this
technique. Also, the main advantage of our algorithm is that it can be used directly without
using assumption or transformation formulae. The solutions can be obtained with high
accuracy compared with other numerical techniques. Also, the proposed method is easy
to implement.

This paper consists of four sections. In Sect. 2, we describe basic definitions and the
hybrid B-spline. The solutions of fractional Painlevé and Bagley-Torvik equations are ap-
proximated using the hybrid B-spline in Sect. 3. Stability and convergence analysis is
proved in Sect. 4. In Sect. 5, the numerical examples are given to illustrate the applica-
tions of the method, and the computed results are also compared with another known
method described in [14, 30, 54].

2 Basic definitions and description of the methods
In this section, we recall some definitions and properties of the fractional calculus the-
ory used in this paper. There are several definitions of a fractional derivative of or-
der α > 0, such as Riemann-Liouville, Grünwald-Letnikove, Caputo, Conformable, and
Caputo-Fabrizio fractional derivatives. In the present work, Caputo, Caputo-Fabrizio, and
Conformable fractional derivatives are used for formulating the problem. All these details
have been quoted in References [1–19] and [33–36].

The Sobolev space of one-order on (a, b) is defined as follows:

H1(a, b) =
{

u(x)|u(x) ∈ L2(a, b), u′ ∈ L2(a, b)
}

,

where the L2(a, b) is the square-integrable functions on (a, b).
Here, we give some required definitions and properties of the fractional derivative and

the B-spline function.
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Definition 1 Let u(x) be a function defined on (a, b), then the Riemann-Liouville frac-
tional derivative has the following form

⎧
⎨

⎩

R
x Dα

a (u(x)) = 1
�(m–α)

dm

dxm
∫ x

a (x – t)m–α–1u(t) dt,

α > 0, m – 1 < α < m,
(4)

where �(·) is the gamma function.

Definition 2 The right and left Riemann-Liouville fractional integrals

R
x D–α

a+ u(x) =
1

�(α)

∫ x

a
(x – t)α–1u(t) dt, α > 0,

R
x D–α

b– u(x) =
1

�(α)

∫ b

x
(t – x)α–1u(t) dt, α > 0.

Definition 3 Let u(x) be a function defined on (a, b), then the Caputo fractional derivative
has the following form

⎧
⎨

⎩

C
x Dα(u(x)) = 1

�(m–α)
∫ x

a (x – t)m–α–1u(m)(t) dt,

α > 0, m – 1 < α < m.
(5)

Definition 4 The Grünwald definition for the fractional derivative is defined in the fol-
lowing form:

Aα
h,p

(
u(x)

)
= lim

1
hα

∞∑

k=0

gα,ku
(
x – (k – p)h

)
, (6)

where Aα
h,p(u(x)) = R

x Dα
a (u(x)) + O(h), and gα,k = �(k–α)

�(–α)�(k+1) .

Definition 5 The weighted and shifted Grünwald difference operator is as follows.
Let u(x) ∈ L1(R), ∞Dα+2

x (u(x)), and its Fourier transform belongs to L1(R),

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

aDα
h,p,qu(x) = ϑ

hα

∑[ x–a
h ]+p

k=0 gα,ku(x – (k – p)h)

+ (1–ϑ)
hα

∑[ x–a
h ]+q

k=0 gα,ku(x – (k – q)h) + O(h2),

bDα
h,p,qu(x) = ϑ

hα

∑[ b–x
h ]+p

k=0 gα,ku(x + (k – p)h)

+ (1–ϑ)
hα

∑[ b–x
h ]+q

k=0 gα,ku(x + (k – q)h) + O(h2),

(7)

where x ∈ R, ϑ ∈ [0, 1], also p, and q, (p �= q) are integers and symmetric.

Definition 6 Let u(x) ∈ H1(a, b), α ∈ (m – 1, m], m ∈ N and α ≥ 0, then the Caputo-
Fabrizio fractional derivative of order α is written as:

⎧
⎨

⎩

CF
x Dα

a (u(x)) = 1
(m–α)

∫ x
a u(t)(m) exp( m–α–1

m–α
(x – t)) dt,

α > 0, m – 1 < α ≤ m, x ≥ a.
(8)
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Definition 7 If u(x) is m-differentiable for all x ≥ a > 0, then the Conformable fractional
derivative with order α is

⎧
⎨

⎩

Co
x Dα

a (u(x)) = limη→0
u(	α
–1)(x+ηx	α
–α )–u(	α
–1)(x)

η
,

a > 0, m – 1 < α ≤ m, m ∈ N ,
(9)

indeed,

Co
x Dα

a
(
u(x)

)
= x(	α
–α)u(	α
)(x), (10)

and the Conformable fractional integral is the following

CoJα
a u(x) =

∫ x

a
(t – a)α–1u(t) dt, (11)

where 0 < α ≤ 1, and 	α
 is the smallest integer greater than or equal to α.

Let us consider a mesh with nodal points xi on [a, b] such that:


 : a = x0 < x1 < x2 < · · · < xn–1 < xn = b,

where h = b–a
n , xi = a + ih, for i = 0(1)n. Suppose

· · · < x–2 < x–1 < x0 < x1 < x2 < · · ·

is a sequence of knots on R. Zero-order B-splines are piecewise constants defined by:

B0
i (x) =

⎧
⎨

⎩

1, xi ≤ x ≤ xi+1,

0, otherwise,
(12)

and polynomial B-splines of order k ≥ 1 are defined recursively in the following form:

Bk
i (x) =

(
x – xi

xi+k – xi

)

Bk–1
i (x) +

(
xi+k+1 – x

xi+k+1 – xi+1

)

Bk–1
i+1 (x). (13)

The hyperbolic B-splines are defined by:

H0
i (x) =

⎧
⎨

⎩

1, xi ≤ x ≤ xi+1,

0, otherwise,
(14)

generally, for k ≥ 1,

Hk
i (x) =

sinh(x)(m(x – xi))
sinh(x)(η(xi+k – xi))

Hk–1
i (x) +

sinh(x)(m(xi+k+1 – x))
sinh(x)(η(xi+k+1 – xi+1))

Hk–1
i+1 (x), (15)

where, m and η are the positive real numbers, and a hybrid cubic B-spline basis function
is also established using a linear combination of the cubic B-spline basis function and
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hyperbolic cubic B-spline basis as follows:

T3
i (x) = λBk

i (x) + (1 – λ)Hk
i (x), (16)

hither, the parameter λ ∈ R is a free parameter to control the global shape of curve. The
hybrid B-spline basis function reduces to cubic hyperbolic B-spline and cubic B-spline
function when λ = 0 and 1, respectively. The finite difference approach yields the solution
only at the selected points, but the spline function has the flexibility to get the approxima-
tion at any point in the domain with more accurate results compared to the usual finite
difference method. The advantage of using hybrid B-spline is the free parameters that play
an important role in the implementation of the method and also affect the results to be
obtained up to a desired level of accuracy. An appropriate choice of the parameter rises the
order of accuracy of the scheme. Suppose the estimate solution S(x) to the exact solution
u(x) at point xi, respectively, is defined as:

S(x) =
n+1∑

i=–1

CiT3
i (x), x ∈ [x0, xn], (17)

here, T3
i (x) are hybrid cubic B-spline basis functions, and Ci are unknown real coefficients.

The values of T3
i (x) and its derivatives T ′3

i (x), T ′′3
i (x) at the nodal points can be simplified

as:

⎧
⎪⎪⎨

⎪⎪⎩

S(xi) = p1Ci–1 + p2Ci + p1Ci+1,

S′(xi) = p3Ci–1 + p4Ci+1,

S′′(xi) = p5Ci–1 + p6Ci + p5Ci+1,

(18)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 = λ
6 – (–1 + λ)csch(hη)csch(2hη)csch(3hη)sinh3(hm),

p2 = 2λ
3 – 2(–1+λ)cosh(hm)csch3(hη)sinh3(hm)

2cosh(hη)+cosh(3hη) ,

p3 = λ
2h – 3m(–1+λ)csch3(hη)sinh(hm)sinh(2hm)

4(2cosh(hη)+cosh(3hη)) , p4 = –p3,

p5 = 8λ+16λcosh(2hη)+3h2m2(–1+λ)csch3(hη)sech(hη)(sinh(hm)–3sinh(3hm))
8h2(1+2cosh(2hη)) ,

p6 = – 2λ

h2 + 6m2(–1+λ)cosh3(hm)csch3(hη)sinh(hm)
2cosh(hη)+cosh(3hη) .

3 Hybrid B-spline solution for fractional Bagley-Torvik and Painlevé equations
3.1 Bagley-Torvik equation regarding Conformable fractional derivative

approach
Now, we are ready to start the implementation of our method using the properties of Con-
formable fractional derivative and Hybrid cubic B-spline functions. Let u(x) be the ana-
lytical and u(x) be the numerical solutions for Painlevé and Bagley-Torvik equations. The
value of u′′(x), Co

x D
3
2
0 u(x), u′(x), xD

1
2
0 u(x), u(x), approximate at x = xi where i = 0, 1, . . . , n, as
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follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(xi) = S(xi) = p1Ci–1 + p2Ci + p1Ci+1,
Co
x D

1
2
0 u(xi) = Co

x D
1
2
0 S(xi) = x 1

2 (p3Ci–1 + p4Ci+1),
Co
x Dβ

0 u(xi) = Co
x Dβ

0 S(xi) = x1–β(p3Ci–1 + p4Ci+1), β ∈ (0, 1]

u′(xi) = S′(xi) = p3Ci–1 + p4Ci+1,
Co
x D

3
2
0 u(xi) = Co

x D
3
2
0 S(xi) = x 1

2 (p5Ci–1 + p6Ci + p5Ci+1),

u′′(xi) = S′′(xi) = p5Ci–1 + p6Ci + p5Ci+1

Co
x Dα

0 u(xi) = Co
x Dα

0 S(xi) = x2–α(p5Ci–1 + p6Ci + p5Ci+1), α ∈ (1, 2].

(19)

To obtain the approximate solution (1) with boundary conditions by putting (17) in (1),
we use the following system for i = 0, 1, . . . , n,:

(
δ–1(xi)Ci–1 + δ0(xi)Ci + δ1(xi)Ci+1

)
= fi, (20)

and the boundary conditions as:
⎧
⎨

⎩

u′(0) = p3C–1 + p4C1 = ω1,

u(1) = p1Cn–1 + p2Cn + p1Cn+1 = ω2,
(21)

this system can be written in the following matrix-vector form:

AX = B, (22)

where,

X = [C–1, C0, . . . , Cn+1]t , B = [ω1, f0, . . . , fn,ω2]t , fi = f (xi), i = 0, 1, . . . , n,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

p3 0 p4

δ–1(x0) δ0(x0) δ1(x0)
δ–1(x1) δ0(x1) δ1(x1)

. . . . . . . . .
δ–1(xn) δ0(xn) δ1(xn)

p1 p2 p1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (23)

⎧
⎪⎪⎨

⎪⎪⎩

δ–1(xi) = η1(xi)p5 + η2(xi)(xi)0.5p5 + η3(xi)p3 + η4(xi)(xi)0.5p3 + η5(xi)p1,

δ0(xi) = η1(xi)p6 + η2(xi)(xi)0.5p6 + η5(xi)p2,

δ1(xi) = η1(xi)p5 + η2(xi)(xi)0.5p5 + η3(xi)p4 + η4(xi)(xi)0.5p4 + η5(xi)p1,

also, since A is strictly diagonally dominant [37], to find the values of C–1, C0, . . . , Cn+1 in
vector X, we can solve the system of equations (22) as follows:

X = A–1B. (24)

The numerical solution can be calculated after substituting the values of λ and Ci, for i =
–1, 0, 1, . . . , n, n + 1, in equation (17).
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3.2 Painlevé equations regarding Conformable fractional derivative approach
In this portion, we consider equations (2) and (3) regarding the Conformable approach.
Substituting the values of (17) in equations (2) and (3) of Painlevé equations at xi, we get:

⎧
⎪⎪⎨

⎪⎪⎩

∑n+1
i=–1 Ci(η1(xi)Co

x Dα
0 T3

i (x) – 6(T3
i (xi))2) – xi = f (xi),

p3C–1 + p4C1 = ω1,

p1Cn–1 + p2Cn + p1Cn+1 = ω2,

(25)

and

⎧
⎪⎪⎨

⎪⎪⎩

∑n+1
i=–1 Ci(η1(xi)Co

x Dα
0 T3

i (x) – 2(T3
i (xi))3 – xiT3

i (xi)) – xi = f (xi),

p3C–1 + p4C1 = ω1,

p1Cn–1 + p2Cn + p1Cn+1 = ω2,

(26)

equations (25) and (26) construct nonlinear systems, which can be solved by Newton’s
iteration method. We also used the software Mathematica 9.0 to obtain the numerical
solutions.

4 Stability and convergence analysis
System (22) obtained using the hybrid cubic hyperbolic B-spline and cubic B-spline func-
tions cannot be solved exactly. However, we can calculate the solutions that are close to
the exact solution when small errors are introduced into the input functions. Specifically,
we need to prove that the difference between these solutions always depends on the co-
efficients of the linear system; that means, the method is stable. Let δA and δB be small
perturbations in A and B. Let φ be the solution to the system

(A + δA)φ = B + δB, (27)

also let A be nonsingular and ‖δA‖ < 1
2‖A–1‖ , then A + δA is nonsingular and

∥
∥(A + δA)–1∥∥ ≤ 2

∥
∥(A)–1∥∥.

Using (22) and (27), we get

X – φ = A–1B – (A + δA)–1(B + δB), (28)

(A + δA)(X – φ) = (A + δA)A–1B – (B + δB), (29)

(A + δA)(X – φ) =
(
B + δAA–1B

)
– (B + δB), (30)

(A + δA)(X – φ) = δAX – δB, (31)

(X – φ) = (A + δA)–1(δAX – δB), (32)

and we know that A is strictly diagonally dominant and also

∥
∥A–1∥∥ ≤ ν < ∞. (33)
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It implies that

∥
∥(X – φ)

∥
∥ =

∥
∥(A + δA)–1∥∥

(‖δAX‖ + ‖δB‖) = 2ν
(‖δA‖‖X‖ + ‖δB‖).

This shows the stability of the system (the norm used is infinite norm).
Let u(x) be the exact solution of (1)-(3) and S(xi) = Si be an approximation to ui = u(xi)

obtained by the hybrid b-spline function Si(x) ∈ C∞[a, b], by algebraic manipulation of
relations (17) and (18), when λ = 0, we get the consistency relations between the spline
approximation and its derivatives at the nodal points in the following form:

⎧
⎨

⎩

h2

6 [S′′
i–1 + 4S′′

i + S′′
i+1] = ui+1 – 2ui + ui–1, i = 1, . . . , n – 1, (I)

–2h(S′
i–1 + 4S′

i + S′
i+1) = (6ui–1 – 6ui+1), i = 1, . . . , n – 1. (II)

(34)

Lemma 1 The local truncation errors xi associated with the equation (34) for i = 1, . . . , n –
1. are given by

∣
∣S′′

i – u′′
i
∣
∣ =

h2

12
u(4)

i + O
(
h4), (35)

∣
∣S′

i – u′
i
∣
∣ =

h4

180
u(5)

i + O
(
h5). (36)

Proof See [40]. �

4.1 The hybrid B-spline method for fractional Painlevé and Bagley-Trovik
equations in the Caputo fractional sense

Substitute the numerical point solution of Bagley-Trovik equation at x = xi, where i =
0, 1, . . . , n, is as follows

⎧
⎪⎪⎨

⎪⎪⎩

η1(xi)u(x)′′|x=xi + η2(xi)C
x Dα

0 (u(x))|x=xi + η3(xi)u(x)′|x=xi

+ η4(xi)C
x Dβ

0 (u(x))|x=xi + η5(xi)u(x)′|x=xi = fi,

u′(0) – ω1 = u(1) – ω2 = 0, i = 0, 2, 3, . . . , n – 1.

(37)

Considering each subinterval [xj–1, xj] of partition [0, xi], for t ∈ [xj–1, xj] and using the
properties of the Caputo fractional derivative and Hybrid cubic B-spline functions for 1 <
α < 2 gives

C
x Dα

0
(
u(x)

)|x=xi =
1

�(2 – α)

i∑

j=1

∫ xj

xj–1

(xi – t)1–αu′′(t) dt, (38)

and for 0 < β < 1, we also get

C
x Dβ

0
(
u(x)

)|x=xi =
1

�(1 – β)

i∑

j=1

∫ xj

xj–1

(xi – t)–βu′(t) dt. (39)

Using equation (17) and Lemma 1, we obtain the following relation
⎧
⎨

⎩

C
x Dα

0 (u(x))|x=xi = 1
�(2–α)

∑i
j=1

∫ jh
(j–1)h(

∑i+1
j=–1 Cj(T3

j (t))′′

+ O(h2))(xi – t)1–α dt,
(40)
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since (xi – t)1–α does not change sign on [(j – 1)h, jh], using the weighted mean value the-
orem to establish an integral formula and applying to each integration of the last summa-
tion, we get

⎧
⎪⎪⎨

⎪⎪⎩

∫ jh
(j–1)h(

∑i+1
j=–1 Cj(T3

j (t))′′ + O(h2))(xi – t)1–α dt

= (
∑i+1

j=–1 Cj(T3
j (η))′′ + O(h2))

∫ jh
(j–1)h(xi – t)1–α dt

=
∑i

j=1(p5Cj–1 + p6Cj + p5Cj+1) + O(h2))
∫ jh

(j–1)h(xi – t)1–α dt,

(41)

where η ∈ [(j – 1)h, jh]. After simple calculations, equations (40) and (41) become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C
x Dα

0 (u(x))|x=xi

= 1
�(3–α)

∑i
j=1((p5Cj–1 + p6Cj + p5Cj+1) + O(h2)))

((xi – jh + h)2–α – (xi – jh)2–α)

= 1
�(3–α)

∑i
j=1((xi – jh + h)2–α – (xi – jh)2–α)

((p5Cj–1 + p6Cj + p5Cj+1)))

+ 1
�(3–α)

∑i
j=1((xi – jh + h)2–α – (xi – jh)2–α)(O(h2))

= h2–α

�(3–α)
∑i

j=1((i – j + 1)2–α – (i – j)2–α)

(p5Cj–1 + p6Cj + p5Cj+1)

+ 1
�(3–α)

∑i
j=1((i – j + 1)2–α – (i – j)2–α)O(h4–α).

(42)

Following the same technique on 0 < β < 1, we get

⎧
⎪⎪⎨

⎪⎪⎩

Dβ (u(x))|x=xi

= h1–β

�(2–β)
∑i

j=1((i – j + 1)1–β – (i – j)1–β )(
∑i+1

j=–1 Cj(T3
j (t))′)

+ 1
�(2–α)

∑i
j=1((i – j + 1)1–β – (i – j)1–β )O(h5–β).

⎧
⎪⎪⎨

⎪⎪⎩

C
x Dβ

0 (u(x))|x=xi

= h1–β

�(2–β)
∑i

j=1((i – j + 1)1–β – (i – j)1–β )(p3Cj–1 + p4Cj+1)

+ 1
�(2–α)

∑i
j=1((i – j + 1)1–β – (i – j)1–β )O(h5–β).

(43)

To shorten a little the size of this section, we will omit truncation error here to approximate
the Painlevé and Bagley-Trovik regarding the Caputo fractional sense. Anyhow, substitut-
ing (42) and (43) in (37) at i = 0, 1, 2, . . . , n, where the attached linear or nonlinear systems
are obtained as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1(xi)((p5Ci–1 + p6Ci + p5Ci+1))

+ η2(xi) h2–α

�(3–α)
∑i

j=1((i – j + 1)2–α – (i – j)2–α)(p5Cj–1 + p6Cj + p5Cj+1)

+ η3(xi)(p3Ci–1 + p4Ci+1)

+ η4(xi) h1–β

�(2–β)
∑i

j=1((i – j + 1)1–β – (i – j)1–β )((p3Cj–1 + p4Cj+1))

+ η5(xi)(p1Ci–1 + p2Ci + p1Ci+1) = fi.

(44)
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Hither, substituting (42) in fractional Painlevé of the (I) and (II), we have the following
nonlinear systems

η1(xi)
h2–α

�(3 – α)

i∑

j=1

(
(i – j + 1)2–α – (i – j)2–α

)

(p5Cj–1 + p6Cj + p5Cj+1) – 6(ui)2 – xi = fi,

(45)

and

η1(xi)
h2–α

�(3 – α)

i∑

j=1

(
(i – j + 1)2–α – (i – j)2–α

)

(p5Cj–1 + p6Cj + p5Cj+1) – 2(ui)3 – xiui = fi,

(46)

for i = 0, 1, 2, . . . , n.
Relations (45) and (46) become nonlinear systems in the following form as:

F
[
xi, Si, S′′

i
]

= 0. (47)

Anyhow, in the general case, we have the following nonlinear systems

F
[
xi, Si, S′

i, S′′
i
]

= 0, i = 0, 1, 2, . . . , n. (48)

By the end of this subsection, we can obtain the approximate solutions by solving the linear
system or nonlinear system (48), and also to solve it, we use the Newton method or the
Mathematica command like (FindRoot).

4.2 Bagley-Torvik and Painlevé equations regarding Caputo-Fabrizio fractional
derivative approach

Using the Caputo-Fabrizio fractional derivative for 1 < α < 2 and considering each subin-
terval [xj–1, xj] of partition [0, xi], for t ∈ [xj–1, xj], we get

CF
x Dα

0
(
u(x)

)|x=xi =
1

(2 – α)

i∑

j=1

∫ xj

xj–1

e
1–α
2–α (xi–t)u′′(t) dt, (49)

and also for 0 < β < 1, we get

CF
x Dβ

0
(
u(x)

)|x=xi =
1

(1 – β)

i∑

j=1

∫ xj

xj–1

e
–β

1–β
(xi–t)u′(t) dt. (50)

Finally, we approximate the exact solution (1)-(3) by the hybrid B-spline function as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1(xi)(p5Ci–1 + p6Ci + p5Ci+1)

+ η2(xi) 1
(α–1)

∑i
j=1(e

(1–α)h
2–α (i–j)(1 – e 1–α

2–α h)(p5Cj–1 + p6Cj + p5Cj+1)

+ η3(xi)(p3Ci–1 + p4Ci+1)

+ η4(xi)( –1
(β) )

∑i
j=1(e

βh
1–β

(j–i)(1 – e
–β

1–β
h)(p3Cj–1 + p4Cj+1)

+ η5(xi)(p1Ci–1 + p2Ci + p1Ci+1) = fi, i = 0, 1, 2, . . . , n,

(51)
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⎧
⎨

⎩

η1(xi) 1
(α–1)

∑i
j=1(e

(1–α)h
2–α (i–j)(1 – e 1–α

2–α h)(p5Cj–1 + p6Cj + p5Cj+1)

– 6(p1Ci–1 + p2Ci + p1Ci+1)2 – xi = fi, i = 0, 1, 2, . . . , n,
(52)

⎧
⎪⎪⎨

⎪⎪⎩

η1(xi) 1
(α–1)

∑i
j=1(e

(1–α)h
2–α (i–j)(1 – e 1–α

2–α h)(p5Cj–1 + p6Cj + p5Cj+1)

– 2(p1Ci–1 + p2Ci + p1Ci+1)3 – xi(p1Ci–1 + p2Ci + p1Ci+1) – xi = fi,

i = 0, 1, 2, . . . , n.

(53)

However, the above systems with boundary conditions (21) convert to the following non-
linear system with n + 3 equations and n + 3 unknowns

F[xi, p1Ci–1 + p2Ci + p1Ci+1, p3Ci–1 + p4Ci+1, p5Ci–1 + p6Ci + p5Ci+1] = 0, (54)

for i = 0, 1, 2, . . . , n.

4.3 Convergence analysis
In this section, we discuss the convergence analysis of hybrid cubic and hyperbolic B-
spline. Let u(x) be the exact solution of the problem and S(x) ∈ C∞[0, T] be the hybrid
B-spline approximation to u(x) satisfying in S(xi) = u(xi), i = 0, 1, . . . , n – 1. We should
approximate the error ‖u(x) – S(x)‖. Let us assume that Ŝ(x) is the computed hybrid B-
spline approximation to S(x). To estimate ‖u(x) – S(x)‖, we will estimate ‖u(x) – Ŝ(x)‖ and
‖Ŝ(x) – S(x)‖ separately.

First, we consider the Painlevé equations with the Conformable derivative and then dis-
cretize it with the hybrid B-spline function as follows:

⎧
⎨

⎩

η1(xi)x2–α
i S′′(xi) – 6S2(xi) – xi = f (xi),

S′(0) – ω1 = S(1) – ω2 = 0,
(55)

⎧
⎨

⎩

η1(xi)x2–α
i S′′(xi) – 2S3(xi) – xiS(xi) – xi = f (xi),

S′(0) – ω1 = S(1) – ω2 = 0.
(56)

By discretizing the Bagley-Torvik equation with the Conformable derivative, the following
linear system is obtained.

⎧
⎪⎪⎨

⎪⎪⎩

η1(x)S′′(x) + η2(x)x 1
2 S′′(x) + η3(x)S′(x)

+ η4(x)x 1
2 S′(x) + η5(x)S(x) = f (x),

S′(0) – ω1 = S(1) – ω2 = 0.

(57)

We investigate the convergence analysis for the conformable fractional derivative and also
for Caputo and Caputo-Fabrizio fractional derivatives that are similar.

We also obtain a linear or nonlinear system of equations, the convergence of which we
analyzed on the nonlinear system. In general, we have the following system:

⎧
⎨

⎩

F(xi, u(xi), u′(xi), u′′(xi)) = 0, i = 0, 1, 2, . . . , n,

u′(x0) = ω1, u(xn) = ω2.
(58)
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By substituting (17) in (58) at xi, i = 0, 1, 2, . . . , n, the attached nonlinear system of order
(n + 3) is obtained as:

⎧
⎨

⎩

F(xi, S(xi), S′(xi), S′′(xi)) = 0, i = 0, 1, 2, . . . , n,

S′(x0) = ω1, S(xn) = ω2.
(59)

Equations (59) construct a nonlinear system, which can be solved by Newton’s iteration
method.

Lemma 2 Let Ŝ(x) be the unique spline interpolation to S(x), and also suppose that partial
derivatives of F exist and | ∂F

∂u | ≤ k1, | ∂F
∂u′ | ≤ k2, | ∂F

∂u′′ | ≤ k3, for some constants k1, k2 and k3.
Then for 0 ≤ i ≤ n, we have:

∣
∣F

(
xi, S(xi), S′(xi), S′′(xi)

)
– F

(
xi, Ŝ(xi), Ŝ′(xi), Ŝ′′(xi)

)∣
∣ ≤ O

(
h2). (60)

Proof For 0 ≤ i ≤ n, we get

F
(
xi, S(xi), S′(xi), S′′(xi)

)
– F

(
xi, Ŝ(xi), Ŝ′(xi), Ŝ′′(xi)

)

= F
(
xi, S(xi), S′(xi), S′′(xi)

)
– F

(
xi, Ŝ(xi), S′(xi), S′′(xi)

)

+ F
(
xi, Ŝ(xi), S′(xi), S′′(xi)

)
– F

(
xi, S(xi), Ŝ′(xi), S′′(xi)

)

+ F
(
xi, S(xi), Ŝ′(xi), S′′(xi)

)
+ F

(
xi, S(xi), S′(xi), Ŝ′′(xi)

)

– F
(
xi, S(xi), S′(xi), Ŝ′′(xi)

)
– F

(
xi, Ŝ(xi), Ŝ′(xi), Ŝ′′(xi)

)
. (61)

Now using the mean value theorem for there parts of the above relation there exist ξi, ςi

and νi such that

F
(
xi, S(xi), S′(xi), S′′(xi)

)
– F

(
xi, Ŝ(xi), S′(xi), S′′(xi)

)
=

∂F
∂u

(ξi)
(
S(xi) – Ŝ(xi)

)
,

F
(
xi, S(xi), S′(xi), S′′(xi)

)
– F

(
xi, S(xi), Ŝ′(xi), S′′(xi)

)
=

∂F
∂u′ (ςi)

(
S′(xi) – Ŝ′(xi)

)
,

F
(
xi, S(xi), S′(xi), S′′(xi)

)
+ F

(
xi, S(xi), S′(xi), Ŝ′′(xi)

)
=

∂F
∂u′′ (νi)

(
S′′(xi) – Ŝ′′(xi)

)
,

using Theorem 1 in [14], (42)-(43), and Lemma 1, one obtained:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(xi) = u(xi) + O(h4),
Co
x Dβ

0 u(x) = Co
x Dβ

0 u(x) + O(h5–β ), β ∈ (0, 1],

u′(x) = u′(x) + O(h4),
Co
x Dα

0 u(x) = Co
x Dα

0 u(x) + O(h4–α), α ∈ (1, 2],

u′′(xi) = u′′(xi) + O(h2),

the maximum truncation error for approximations is O(h2). From [56], we have |S(xi) –
Ŝ(xi)| ≡ O(h4), |S′(xi) – Ŝ′(xi)| ≡ O(h3), |S′′(xi) – Ŝ′′(xi)| ≡ O(h2), and taking the absolute
value of the above relationship, we get

∣
∣F

(
xi, S(xi), S′(xi), S′′(xi)

)
– F

(
xi, Ŝ(xi), Ŝ′(xi), Ŝ′′(xi)

)∣
∣
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≤ k1
∣
∣S(xi) – Ŝ(xi)

∣
∣ + k2

∣
∣S′(xi) – Ŝ′(xi)

∣
∣ + k3

∣
∣S′′(xi) – Ŝ′′(xi)

∣
∣

≤ k1O
(
h4) + k2O

(
h3) + k3O

(
h2) ≡ O

(
h2). (62)

�

Theorem 1 Let u(x) ∈ C∞[0, T] be the exact solution (1)-(3) and S(x) be the hyperbolic
B-spline approximation to u(x), then we have

∥
∥u(x) – S(x)

∥
∥ ≤ O

(
h2).

Proof Since Ŝ(x) is an interpolation to u(x), there is a finite constant �1 independent of h
that we get

∥
∥u(x) – Ŝ(x)

∥
∥ ≤ �1h2 ≡ O

(
h2),

now using the triangular inequality and Lemma 1, we can obtain the following results

∥
∥u(x) – S(x)

∥
∥ ≤ ∥

∥u(x) – Ŝ(x)
∥
∥ +

∥
∥Ŝ(x) – S(x)

∥
∥ ≡ O

(
h2).

�

5 Numerical results
In this section, we have implemented our methods for solving some of the Bagley-Torvik
and Painlevé fractional differential equations with different values of λ, m, η, h, and α.
We have obtained linear or nonlinear algebraic systems, and to solve it, we can employ
Mathematica command like “FindRoot”. The findroot command depends on the initial
guess of the interval that contains the value of the unknowns, which can be obtained from
boundary conditions or other methods such as a Bisection method. The maximum abso-
lute errors in solutions of the methods are tabulated in tables, and one can compare them
with the methods described in [14, 30, 54]. The convergence order (C.O.) is obtained by

C.O. = log2
E(h)
E( h

2 )
, (63)

where E(h) is the maximum absolute error. Numerical results derived by the proposed
method and MATHEMATICA 9 solver are seen in tables and graphs.

Example 1 Consider the following Bagley-Torvik fractional boundary value problem in
Caputo approach:

u′′(x) + D
3
2 u(x) + u(x) = γ (γ – 1)xγ –2 +

�(γ + 1)
�(γ – 1

2 )
xγ – 3

2 + xγ ,

x ∈ [0, 1], u(0) = 0, u′(0) = 0.

The exact solution is given by u(x) = xγ . The maximum absolute errors are compared
with the methods described in [30] and [54]. To compare the numerical results with [30]
and [54], we have taken n = 8, 16, 32, 64, 128, 256, 512, λ = 0, 5, 0.6, 0.9, and γ = 3, 4 in Ta-
bles 1 and 2. The convergence order of Example 1 for n = 10, λ = 0, 5, 0.6, is compared with
order 2 in Fig. 1.
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Table 1 Observed maximum absolute errors of Caputo fractional derivative for the Example 1, η = 1,
m = 1 and γ = 3

n λ = 0.5 λ = 0.6 [30] [54]

8 8.44 ×10–2 4.82 ×10–2 1.76 ×10–1 2.77 ×10–1

16 2.24 ×10–2 1.20 ×10–2 9.09 ×10–2 1.50 ×10–1

32 5.26 ×10–3 2.89 ×10–3 4.62 ×10–2 7.76 ×10–2

64 1.32 ×10–3 6.97 ×10–4 2.33 ×10–2 3.94 ×10–2

128 3.19 ×10–4 1,64 ×10–4 1.17 ×10–2 1.98 ×10–2

256 7.99 ×10–5 4.01 ×10–5 5.85 ×10–3 9.96 ×10–3

512 1.99 ×10–5 1.001 ×10–5 2.93 ×10–3 4.49 ×10–3

Table 2 Observed maximum absolute errors of Caputo fractional derivative for the Example 1, η = 1,
m = 1 and γ = 4

n λ = 0.9 [30] [54]

8 1.75 ×10–2 1.57 ×10–2 4.76 ×10–1

16 4.12 ×10–3 3.91 ×10–3 2.31 ×10–1

32 1.05 ×10–3 9.77 ×10–4 1.13 ×10–1

64 2.59 ×10–4 2.44 ×10–4 5.58 ×10–2

128 6.01 ×10–5 6.10 ×10–5 2.77 ×10–2

256 1,50 ×10–5 1.53 ×10–5 1.38 ×10–2

512 3.74 ×10–6 3.81 ×10–6 6.90 ×10–3

Figure 1 The convergence order of Example 1 for n = 10, λ = 0, 5, 0.6,m = 1, η = 1, is compared with order 2

Example 2 Consider the Bagley-Torvik fractional equation in Caputo, Conformable, and
Caputo-Fabrizio approaches:

The Bagley-Torvik equation in the Caputo approach:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u′′(x) + C
x D

3
2
0 u(x) + u′(x) + C

x D
1
2
0 u(x) + u(x)

= 6x + 3x2 + x3 – 8
√

x3
π

+ 16
5

√
x5
π

, x ∈ [0, 1],

u′(0) = 0, u(1) = 1.

(64)

The Bagley-Torvik equation in the Caputo-Fabrizio approach:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(x) + CF
x D

3
2
0 u(x) + u′(x) + CF

x D
1
2
0 u(x) + u(x)

= –42x + 3x2 + x3 + 88 – 96e–x, x ∈ [0, 1],

u′(0) = 0, u(1) = 1.

(65)
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Table 3 Observed absolute errors of Example 2, regarding λ = 0.5,m = 1 and η = 1

x C [14] CF [14] Co [14]

0 1.22 ×10–16 3.89 ×10–15 3.35 ×10–15 3.35 ×10–16 1.44 ×10–16 1.20 ×10–15

1
10 1.22 ×10–16 8.67 ×10–16 4.45 ×10–16 3.21 ×10–14 1.43 ×10–16 1.61 ×10–15

2
10 1.42 ×10–16 1.13 ×10–15 4.85 ×10–16 3.53 ×10–14 1.42 ×10–16 1.55 ×10–15

3
10 1.44 ×10–16 2.32 ×10–15 5.05 ×10–16 3.15 ×10–14 1.41 ×10–16 1.03 ×10–15

4
10 1.55 ×10–16 1.87 ×10–15 5.25 ×10–16 3.33 ×10–14 1.41 ×10–16 1.65 ×10–15

5
10 1.81 ×10–16 2.55 ×10–15 5.35 ×10–16 3.14 ×10–14 1.33 ×10–16 1.51 ×10–15

6
10 1.52 ×10–16 2.47 ×10–15 5.65 ×10–16 3.03 ×10–14 1.30 ×10–16 1.03 ×10–15

7
10 1.44 ×10–16 2.94 ×10–15 4.05 ×10–16 3.09 ×10–14 1.24 ×10–16 9.99 ×10–16

8
10 1.22 ×10–16 3.22 ×10–15 2.65 ×10–16 3.04 ×10–14 1.22 ×10–16 8.88 ×10–16

9
10 1.20 ×10–16 2.44 ×10–15 2.22 ×10–16 2.39 ×10–14 1.22 ×10–16 5.55 ×10–16

1 0 0 0 0 0 0

Figure 2 The relative errors of our method for n = 10, λ = 0, 5,m = 1, and η = 1 with the Conformable
derivative

The Bagley-Torvik equation in the Conformable approach:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(x) + Co
x D

3
2
0 u(x) + u′(x) + Co

x D
1
2
0 u(x) + u(x)

= 6x + 6x 3
2 + 3x2 + x3 + 3x 5

2 , x ∈ [0, 1],

u′(0) = 0, u(1) = 1.

(66)

The exact solution is given by u(x) = x3. The absolute errors of xi with h = 1
10 are com-

pared with the methods from [14] in Table 3. The relative errors of our method for n = 10,
λ = 0, 5, m = 1, and η = 1 with method in [14] are plotted in Fig. 2.

Example 3 Consider the Painlevé fractional equation in Caputo, Conformable, and
Caputo-Fabrizio approaches:

⎧
⎨

⎩

C
x Dα

0 u(x) – 6u2(x) = f (x), x ∈ [0, 1],

u′(0) = 0, u(1) = –α.
(67)

⎧
⎨

⎩

CF
x Dα

0 u(x) – 6u2(x) = f (x), x ∈ [0, 1],

u′(0) = 0, u(1) = –α.
(68)
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Table 4 Observed absolute errors of Example 3,regarding Conformable derivative by using our
method with λ = 0, n = 10,m = 1 and η = 1

x α = 1.5 α = 1.6 α = 1.7 α = 1.8 α = 1.9

0 0 0 0 0
1
10 1.24 ×10–5 1.33 ×10–5 1.43 ×10–5 1.51 ×10–5 8.36 ×10–6

2
10 1.22 ×10–5 1.26 ×10–5 1.28 ×10–5 1.28 ×10–5 1.70 ×10–5

3
10 3.52 ×10–6 5.30 ×10–6 7.43 ×10–6 9.97 ×10–6 2.42 ×10–6

4
10 3.37 ×10–5 3.89 ×10–5 4.47 ×10–5 5.10 ×10–5 3.32 ×10–5

5
10 7.38 ×10–5 8.32 ×10–5 9.33 ×10–5 1.04 ×10–4 8.60 ×10–5

6
10 1.13 ×10–4 1.27 ×10–4 1.41 ×10–4 1.57 ×10–4 1.46 ×10–4

7
10 1.30 ×10–4 1.45 ×10–4 1.61 ×10–4 1.78 ×10–4 2.09 ×10–4

8
10 1.11 ×10–4 9.30 ×10–5 1.03 ×10–4 1.14 ×10–4 1.69 ×10–4

9
10 4.57 ×10–5 2.22 ×10–5 5.56 ×10–5 6.22 ×10–5 6.84 ×10–5

1 0 0 0 0

Table 5 Observed absolute errors of Example 3 in [14] regarding Conformable derivative

x α = 1.5 α = 1.6 α = 1.7 α = 1.8 α = 1.9

0 0 0 0 4.44 ×10–16 2.22 ×10–16

1
10 1.56 ×10–4 1.69 ×10–4 2.01 ×10–4 1.81 ×10–4 1.92 ×10–4

2
10 1.55 ×10–4 1.60 ×10–4 1.60 ×10–4 1.63 ×10–4 1.63 ×10–4

3
10 4.25 ×10–5 6.44 ×10–5 1.59 ×10–4 9.09 ×10–5 1.22 ×10–4

4
10 4.22 ×10–4 4.87 ×10–4 7.24 ×10–4 5.58 ×10–4 6.37 ×10–4

5
10 9.25 ×10–4 1.04 ×10–3 1.45 ×10–3 1.17 ×10–3 1.31 ×10–3

6
10 1.42 ×10–3 1.59 ×10–3 2.17 ×10–3 1.77 ×10–3 1.97 ×10–3

7
10 1.72 ×10–3 1.92 ×10–3 2.61 ×10–3 2.14 ×10–3 2.36 ×10–3

8
10 1.63 ×10–3 1.82 ×10–3 2.46 ×10–3 2.02 ×10–3 2.24 ×10–3

9
10 1.05 ×10–3 1.17 ×10–3 1.57 ×10–3 1.30 ×10–4 1.43 ×10–3

1 0 0 0 0

⎧
⎨

⎩

Co
x Dα

0 u(x) – 6u2(x) = f (x), x ∈ [0, 1],

u′(0) = 0, u(1) = –α.
(69)

The exact solution is given by u(x) = α cos(πx). The absolute errors for h = 1
10 , λ = 0,

m = 1, η = 1, α = 1.5, 1.6, 1.7, 1.8, 1.9 are compared with the methods from [14] in Ta-
bles 4 and 5. The convergence orders (C.O.) with n = 4, 8, 16, 32, 64, 128, 256, 512, 1024,
and α = 1.1, 1.6, 1.9 are displayed in Table 6. The graphs of numerical solutions regarding
the Caputo-Fabrizio approach with different values of α = 1.2, 1.4, 1.6, 1.8, λ = 0.5, m = 1,
and η = 1, are plotted in Fig. 3.

Example 4 Consider the Painlevé fractional equation in Caputo, Conformable and
Caputo-Fabrizio approaches:

⎧
⎨

⎩

C
x Dα

0 u(x) – 2u3(x) – xu(x) = f (x), x ∈ [0, 1],

u′(0) = 0, u(1) = –α.
(70)

⎧
⎨

⎩

CF
x Dα

0 u(x) – 2u3(x) – xu(x) = f (x), x ∈ [0, 1],

u′(0) = 0, u(1) = –α.
(71)
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Table 6 Observed maximum absolute errors of the Example 3 for λ = 0.9,m = 1 and η = 1 regarding
Conformable derivative

n α = 1.1 C.O. α = 1.6 C.O. α = 1.9 C.O.

4 1.40 ×10–2 – 2.66 ×10–2 – 3.16 ×10–2 –
8 3.75 ×10–3 1.89 6.87 ×10–3 1.955 9.08 ×10–3 1.79
16 9.56 ×10–4 1.97 1.77 ×10–3 1.95 2.36 ×10–3 1.94
32 2.40 ×10–4 1.99 4.45 ×10–4 1.99 5.94 ×10–4 1.98
64 6.01 ×10–5 1.99 1.11 ×10–4 1.99 1.48 ×10–4 2.00
128 1.50 ×10–5 1.99 2.78 ×10–5 2.00 3.70 ×10–5 2.00
256 3.75 ×10–6 2.00 6.96 ×10–6 2.00 9.25 ×10–6 2.00
512 9.38 ×10–7 2.00 1.74 ×10–6 2.00 2.31 ×10–6 2.00
1024 2.35 ×10–7 2.00 4.35 ×10–7 2.00 5.79 ×10–7 2.00

Table 7 Observed absolute errors of Example 4, regarding Conformable derivative

x α = 1.5 α = 1.5 α = 1.9 α = 1.9
Our method [14] Our method [14]

0 0 4.44 ×10–16 0 0
1
10 0 4.44 ×10–16 0 0
2
10 0 2.22 ×10–16 0 0
3
10 2.22 ×10–16 2.22 ×10–16 2.22 ×10–16 0
4
10 0 2.22 ×10–16 0 2.22 ×10–16

5
10 0 2.22 ×10–16 0 0
6
10 0 0 0 2.22 ×10–16

7
10 0 0 0 2.22 ×10–16

8
10 2.22 ×10–16 0 2.22 ×10–16 2.22 ×10–16

9
10 0 2.22 ×10–16 4.44 ×10–16 2.22 ×10–16

1 0 0 0 0

Figure 3 The Exact and the numerical solutions regarding the Caputo-Fabrizio approach with different values
of α = 1.2, 1.4, 1.6, 1.8, λ = 0.5,m = 1, and η = 1

⎧
⎨

⎩

Co
x Dα

0 u(x) – 2u3(x) – xu(x) = f (x), x ∈ [0, 1],

u′(0) = 0, u(1) = –α.
(72)

The exact solution is given by u(x) = 2x3 – 3x2 + x + α. The absolute errors with different
values α = 1.5, 1.9, λ = 1, η = 1, m = 1 and h = 1

10 are compared with the method [14] in
Table 7.
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Figure 4 The numerical solutions regarding the Caputo approach with different values of
α = 1.1, 1.3, 1.5, 1.7, 1.9, λ = 0.5,m = 1, η = 1, and the exact solutions

The graphs of numerical solutions regarding Caputo approach with different value of
α = 1.1, 1.3, 1.5, 1.7, 1.9, λ = 0.5, m = 1, η = 1, and h = 1

20 , are plotted in Fig. 4.
Here, the algorithm of the hybrid B-spline method for Example 2 is given with the Con-

formable derivative, and the algorithm is written similarly for other derivatives such as
Caputo and Caputo-Fabrizio approaches.

Algorithm 1 Approximate solutions of equation (66) with Conformable approach using
the hybrid B-spline function.

ClearAll
In[1]: ω1 = 0;ω2 = 1;η1(x) = 1;η2(x) = 1;η3(x) = 1;η4(x) = 1;η5(x) = 1;λ = 0.5;η = 1; m = 1;
In[2]: u(x) = x3; f (x) = 6x + 6x 3

2 + 3x2 + x3 + 3x 5
2 ;

In[3]: Define the Conformable fractional derivative Co
x Dα

a (u(x)) using equation (10).
In[4]: Define the hybrid cubic B-spline basis functions T3

i (x). using equations (12)-(16).
In[5]: u(x) =

∑n+1
i=–1 CiT3

i (x).

In[6]: Do[xi = i ∗ h; equationsi = u′′(xi) + Co
x D

3
2
0 u(xi) + u′(xi) + Co

x D
1
2
0 u(xi) + u(xi) – f (xi) ==

0, {i = 0, n}];
In[7]: boundary1 =

∑n+1
i=–1 CiT3′

i (0) == 0;
Out[7]: –5C–1 + 5C1 == 0;
In[8]: boundary2 =

∑n+1
i=–1 CiT3

i (1) == 1;
Out[8]: 1

6 (C–1 + 4C0 + C1) == 1;
(∗Approximate solutions are obtained using the hybrid B-spline function by solving
the system of 13 equations and 13 unknowns with the help of Mathematica version 9
software.∗)
In[9]: Solutions=Solve[{boundary1, equations0, equations1, . . . , equations10, boundary2},
{C–1, C0, . . . , C10, C11}];
Out[9]: –9.5894539103510313295 × 10–21, –9.6375615386799582263 × 10–21,
–9.5894539103510313295 × 10–21, 0.0059999999999999999908,
0.023999999999999999991, 0.059999999999999999992, 0.11999999999999999999,
0.20999999999999999999, 0.33600000000000000000, 0.50400000000000000000,
0.72000000000000000000, 0.99000000000000000000.
(∗Approximate solutions u(x) are obtained∗)
End.
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6 Conclusion
Computational methods for solving the fractional Bagley-Torvik and Painlevé equations
were proposed with the conformable, Captuo, and Caputo-Fabrizio fractional sense con-
cerning boundary set conditions. The fractional differential equation term in the fractional
Painlevé and Bagley-Torvik equations were discretized using the hybrid B-spline function.
The first aim of the paper is to illuminate that the hybrid B-spline is a solver for several
appointed forms without using any transformation or limiting assumptions. This algo-
rithm is implemented straightforwardly. Second, this method is a simple method to apply
and includes some parameters, such as m, η, and λ, which increase the accuracy of the
method. Third, it could be applied to other types of linear and nonlinear or singular and
regular fractional problems. The novel approaches are applied to approximate the out-
comes for fractional-order and integral-order problems. The obtained results show that
the method used to approximate the solution of various problems of partial differential
equations and integral equations in the light of fractional derivative is effective and ap-
propriate. The feasibility of the numerical algorithm was illustrated with four examples,
and the approximated results were compared with the methods in [14, 30, 54].
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