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Abstract
In this paper, we study fractional p1(x, ·)&p2(x, ·)-Laplacian Schrödinger-type equations
for Robin boundary conditions. Under some suitable assumptions, we show that two
solutions exist using the mountain pass lemma and Ekeland’s variational principle.
Then, the existence of infinitely many solutions is derived by applying the fountain
theorem and the Krasnoselskii genus theory, respectively. Different from previous
results, the topic of this paper is the Robin boundary conditions inR

N \ � for
fractional order p1(x, ·)&p2(x, ·)-Laplacian Schrödinger-type equations, including
concave-convex nonlinearities, which has not been studied before. In addition, two
examples are given to illustrate our results.

Keywords: Schrödinger equations; p1(x, ·)&p2(x, ·)-Laplacian; Robin boundary
conditions; Concave-convex nonlinearities; Krasnoselskii genus theory

1 Introduction and the main results
In this paper, we consider fractional p1(x, ·)&p2(x, ·)-Laplacian Schrödinger-type equa-
tions, including concave-convex nonlinearities with nonlocal Robin boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

∑2
i=1[(–�)s

pi(x,·)ϕ + Vi(x)|ϕ|p̄i(x)–2ϕ]

= λ1A1(x)|ϕ|r1(x)–2ϕ + λ2A2(x)|ϕ|r2(x)–2ϕ, x ∈ �,
∑2

i=1[Ns,pi(x,·)ϕ + β(x)|ϕ|p̄i(x)–2ϕ] =
∑2

i=1 gi(x), x ∈R
N \ �,

(1)

where Vi(x) (x ∈ �, i = 1, 2) is a potential function, � ⊂ R
N (N ≥ 2) is a bounded do-

main with the Lipschitz boundary ∂�, s ∈ (0, 1), pi(x, ·) : R2N → (1, +∞), pi(x) = pi(x, x),
r1(x), r2(x) are continuous functions, λ1, λ2 are positive constants, A1(x), A2(x) are positive
weighted functions, gi(x) ≥ 0 ∈ L1(RN \ �), β(x) ≥ 0 ∈ L∞(RN \ �),

Ns,pi(x,·)ϕ(x) =
∫

�

|ϕ(x) – ϕ(y)|pi(x,y)–2(ϕ(x) – ϕ(y))
|x – y|N+spi(x,y) dy, x ∈R

N \ �,
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and

(–�)s
pi(x,·)ϕ(x) := P.V .

∫

RN

|ϕ(x) – ϕ(y)|pi(x,y)–2(ϕ(x) – ϕ(y))
|x – y|N+spi(x,y) dy, x ∈ �,

where P.V . stands for the Cauchy principal value.
Equations (1) arise from general reaction-diffusion equation

ϕt = ∇ · [A(ϕ)∇ϕ
]

+ r(x,ϕ), (2)

where A(ϕ) = |∇ϕ|p–2 + |∇ϕ|q–2. Problem (2) has applications in biophysics, plasma
physics, and chemical reactions. For more details on equation (2), readers are referred
to [1, 2]. Combining with a Z2-symmetric version of the mountain pass lemma for even
functionals and some adequate variational methods, Mihăilescu [3] proved that the equa-
tions

⎧
⎨

⎩

– div((|∇ϕ|p1(x) + |∇ϕ|p2(x))∇ϕ) = f (x,ϕ), x ∈ �,

ϕ = 0, x ∈ ∂�
(3)

have infinitely many weak solutions. In addition, Chung and Toan [4] considered a class
of fractional Laplacian problems

⎧
⎪⎪⎨

⎪⎪⎩

(�)s
p1(x,·)ϕ(x) + (�)s

p2(x,·)ϕ(x) + |ϕ|q(x)–2ϕ

= λA1(x)|ϕ(x)|r1(x)–2ϕ(x) – μA2(x)|ϕ(x)|r2(x)–2ϕ(x), x ∈ �,

ϕ(x) = 0, x ∈ ∂�

(4)

using variational techniques and Ekeland’s variational principle. The authors used the vari-
ational techniques to discuss the results of the existence of solutions in fractional cases
[5–7]. In addition, Heidarkhani et al. [8–10] studied the existence results of variable expo-
nent equations using variational methods and established the critical point theory. Zuo et
al. [11] investigated the existence and multiplicity of solutions for the p(x, ·)&q(x, ·) frac-
tional Choquard problems with variable order. On a similar issue, a related study was con-
ducted by Biswas et al. For more details, see [12].

The classical Schrödinger equation is of the following form:

ih
∂

∂t
ϕ = –

h2

2m
∇2ϕ + Vϕ,

where V , ϕ denote the potential function and wave function, respectively, and i, h are
constants ([13]). Recently, Xiang et al. in [14] and Bu et al. in [15] discussed the fractional
Laplace operator Schrödinger equations with variable order and Schrödinger–Kirchhof-
type equations, respectively.

The critical local problem involving concave-convex nonlinearities was first studied by
Ambrosetti et al. in [16]. Subsequently, variational methods were used [17] to discuss the
following equations:

⎧
⎨

⎩

– div(ω(x)|∇ϕ|p(x)–2∇ϕ) = λa(x)|ϕ|q(x)–2ϕ + μb(x)|ϕ|h(x)–2ϕ, x ∈ �,

ϕ = 0, x ∈ ∂�
(5)
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with the variable order concave-convex term. For other similar types of equations, see
[18, 19] and the references therein.

The Robin and Neumann boundary problems are interesting topics [20]. Mugnai et al.
[21] investigated fractional p-Laplacian problems with nonlocal Neumann boundary con-
ditions. Moreover, Deng [22] considered the following equations:

⎧
⎨

⎩

–�p(x)ϕ = λf (x,ϕ), x ∈ �,

|∇ϕ|p(x)–2 ∂ϕ

∂η
+ β(x)|ϕ|p(x)–2ϕ = 0, x ∈ ∂�.

(6)

For double-phase problems depending on Robin and Steklov eigenvalues for the p-
Laplacian, Manouni et al. [23] proved the existence of solutions by variational tools, trun-
cation techniques, and comparison methods. In many papers, the Robin and Neumann
boundary problems of fractional equations were studied in different ways; e.g., the Morse
theory was used in [24, 25], the mountain pass lemma in [26, 27], Ekeland’s variational
principle in [28, 29], and the topological degree in [30].

To our knowledge, there is no previous work on the problem (1). This paper is de-
voted to this topic. We obtain new results by applying the mountain pass lemma, Eke-
land’s variational principle, the fountain theorem, and the Krasnoselskii genus theory. Our
problem differs from problems (3), (4), and (5) in that we discuss Robin boundary condi-
tions, and it also differs from problem the (6) in that we consider p1(x, ·)&p2(x, ·)-Laplacian
Schrödinger-type equations with concave-convex nonlinearities.

Before stating the main results, we introduce the basic assumptions.
(P) pi(x, y) is a symmetric and continuous function, that is,

pi(x, y) = pi(y, x), for all (x, y) ∈R
N ×R

N

with

1 < p–
i := min

(x,y)∈RN ×RN
pi(x, y) ≤ pi(x, y) ≤ p+

i := max
(x,y)∈RN ×RN

pi(x, y) < +∞,

and

1 < p–
1 ≤ p+

1 ≤ p–
2 ≤ p+

2 < +∞,

such that sp+
i < N . Let 0 < s < 1 < p(x, ·), the fractional critical exponent p∗

s (x) be
defined as p∗

s (x) = Np(x,x)
N–sp(x,x) and p(x, ·) < p∗

s (x) for all x ∈ �.
(G)

∫
gi(x)ϕ dx = –

∫
gi(x)ϕ dx.

(V) Vi(x) is a continuous function, satisfying infx∈� Vi(x) > Vi0 > 0, for all di > 0,
means({x ∈ � : Vi(x) < di}) < +∞.

(H) A1(x) and A2(x) are weighted functions in C(�) and satisfy A1(x) ∈ Ls1(x)(�) such
that 1 < s1(x) ∈ C(�) and 1 < s′

1(x)r1(x) < p∗
s (x) for all x ∈ �, A2(x) ∈ Ls2(x)(�) such

that 1 < s2(x) ∈ C(�) and 1 < s′
2(x)r2(x) < p∗

s (x) for all x ∈ �. Here, s′
1(x) and s′

2(x) are
conjugate exponents of the functions s1(x) and s2(x), respectively.

The main results of this paper are as follows:

Theorem 1.1 Assume that assumptions (P), (G), (V), and (H) hold. Equations (1) have two
nontrivial weak solutions.
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Theorem 1.2 Assume that assumptions (P), (G), (V), and (H) hold. Then, equations (1)
have infinitely many nontrivial weak solutions in X.

Theorem 1.3 Assume that assumptions (P), (G), (V), and (H) hold. Then, equations (1)
possess infinitely many solutions.

In Sect. 2, we state some basic results of the Lebesgue space Lq(x)(�). In Sect. 3, we intro-
duce the workspaces associated with equations (1). In Sect. 4, we verify the (PS) conditions
and prove Theorem 1.1 by the mountain pass lemma and Ekeland’s variational principle.
In Sect. 5, we prove Theorem 1.2 by applying the fountain theorem. Finally, using the
Krasnoselskii genus theory, we give the proof of Theorem 1.3.

2 Preliminaries
In this section, we recall some basic results of the Lebesgue space Lq(x)(�) with a variable
exponent. Assume that domain � is bounded in R

N with the Lipschitz boundary ∂�. Let

q– = min
x∈�

q(x), q+ = max
x∈�

q(x),

where C+(�) = {q ∈ C(�) : q(x) > 1, for all x ∈ �}.
The variable exponent Lebesgue space Lq(x)(�), which is defined by

Lq(x)(�) =
{

ϕ|ϕ : � →R is measurable and
∫

�

∣
∣ϕ(x)

∣
∣q(x) dx < ∞

}

,

equipped with the Luxemburg norm

‖ϕ‖q(x) = inf

{

ι > 0 :
∫

�

∣
∣
∣
∣
ϕ(x)q(x)

ι

∣
∣
∣
∣dx ≤ 1

}

,

where (Lq(x)(�),‖ · ‖q(x)) is a separable, uniformly convex, and reflexive Banach space [31].
Let Lq′(x)(�) be the conjugate space of Lq(x)(�) and 1/q(x) + 1/q′(x) = 1 (p(x) and q′(x) are

conjugate indices to each other). For ϕ ∈ Lq(x)(�) and v ∈ Lq′(x)(�), the Hölder inequality

∣
∣
∣
∣

∫

�

ϕ(x)v(x) dx
∣
∣
∣
∣ <
(

1
q– +

1
q′–

)

‖ϕ‖q(x)‖v‖q′(x) ≤ 2‖ϕ‖q(x)‖v‖q′(x) (7)

holds. If qi(x) ∈ C+(�) (i = 1, 2, . . . , n̂) and

1
q1(x)

+
1

q2(x)
+ · · · +

1
qn̂(x)

= 1,

for all ϕi(x) ∈ Lqi(x)(�), there exists

∣
∣
∣
∣

∫

�

ϕ1(x)ϕ2(x) · · ·ϕn̂(x) dx
∣
∣
∣
∣≤

(
1

q–
1

+
1

q–
2

+ · · · 1
q–

n̂

)

‖ϕ1‖q1(x)‖ϕ2‖q2(x) · · · ‖ϕn̂‖q̂n(x).

Lemma 2.1 ([32]) Let ρq(x) be the modular of the Lq(x)(�) space, and ρq(x) : Lq(x)(�) → R

defined by ρq(x)(ϕ) =
∫

�
|ϕ(x)|q(x) dx. Then, the following properties hold:
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(i) ‖ϕ‖q(x) < 1(= 1, > 1) ⇐⇒ ρq(x)(ϕ) < 1(= 1, > 1);
(ii) ‖ϕ‖q(x) > 1 �⇒ ‖ϕ‖q–

q(x) ≤ ρq(x)(ϕ) ≤ ‖ϕ‖q+

q(x);
(iii) ‖ϕ‖q(x) < 1 �⇒ ‖ϕ‖q+

q(x) ≤ ρq(x)(ϕ) ≤ ‖ϕ‖q–

q(x).

Lemma 2.2 ([32]) If ϕ,ϕn ∈ Lq(x)(�) with n ∈N, then
(i) limn→+∞ ‖ϕn – ϕ‖q(x) = 0;

(ii) limn→+∞ ρq(x)(ϕn – ϕ) = 0;
(iii) ϕn(x) → ϕ(x) a. e. in � and limn→+∞ ρq(x)(ϕn) = ρq(x)(ϕ).

Lemma 2.3 ([33]) Let p(x), q(x) be measurable functions such that p(x) ∈ L∞(RN ) and
1 < p(x)q(x) < ∞, for any x ∈R

N . Then, there is

min
{‖ϕ‖p+

p(x)q(x),‖ϕ‖p–

p(x)q(x)
}≤ ∥∥|ϕ|p(x)∥∥

q(x) ≤ max
{‖ϕ‖p+

p(x)q(x),‖ϕ‖p–

p(x)q(x)
}

with ϕ ∈ Lq(x)(RN ), ϕ �= 0.

3 The basic properties of functionals and operators
In this section, we state some properties of functionals and operators, and give the defini-
tion of weak solutions of equations (1) with Robin boundary conditions. We first introduce
the workspaces (W ,‖ · ‖W ) and (X,‖ · ‖X) associated with equations (1).

The fractional variable Sobolev space W := W s,q(x),p(x,·)(�) is given by

W s,q(x),p(x,·)(�) :=
{

ϕ : � →R|ϕ ∈ Lq(x)(�),

∫

�×�

|ϕ(x) – ϕ(y)|p(x,y)

μp(x,y)|x – y|N+sp(x,y) dx dy < ∞, for some μ > 0
}

.

Set

[ϕ]s,p(x,·) = inf

{

μ > 0 :
∫

�×�

|ϕ(x) – ϕ(y)|p(x,y)

μp(x,y)|x – y|N+sp(x,y) dx dy < 1
}

as the variable exponent Gagliardo seminorm. W is a Banach space with the norm

‖ϕ‖W = ‖ϕ‖W s,q(x),p(x,·) = ‖ϕ‖q(x) + [ϕ]s,p(x,·).

We take into account three continuous functions p(x, y) : � × � → (1,∞) and r1(x),
r2(x) ∈ C+(�). From condition (P), we know that

p(x, y) = p(y, x), for all x, y ∈ �;

1 < p– := min p(x, y) ≤ p(x, y) ≤ p+ := max p(x, y) < ∞;

1 < r–
1 := min r1(x) ≤ r1(x) ≤ r+

1 := max r1(x) < ∞;

1 < r–
2 := min r2(x) ≤ r2(x) ≤ r+

2 := max r2(x) < ∞.

(8)

Lemma 3.1 ([34]) Suppose that � ⊂ R
N is a bounded open domain and (8) holds. Then,

W is a separable and reflexive space.
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Lemma 3.2 ([35]) Let smooth bounded domain � ⊂R
N , sp(x, y) < N for (x, y) ∈ �×� with

s ∈ (0, 1), and q(x) ≥ p(x, x) for x ∈ �. Suppose that continuous function ĥ(x) : � → (1,∞)
satisfies

p∗
s (x) ≥ ĥ(x) ≥ ĥ– = inf

x∈�
ĥ(x) > 1, for all x ∈ �.

There exists a positive constant C0 = C0(N , s, p, ĥ,�) such that for every ϕ ∈ W , it holds
that

‖ϕ‖ĥ(x) ≤ C0‖ϕ‖W .

Then, the embedding W ↪→ Lĥ(x) for all ĥ ∈ (1, p∗
s ) is compact.

Lemma 3.3 ([35, 36]) If 1 < sp– and

p∗
∂ (x) :=

(N – 1)p(x, x)
N – sp(x, x)

> ĥ(x), in ∂� ∩ {x ∈ � : N – sp(x, x) > 0
}

.

There exists a positive constant C1 = C1(N , s, p, ĥ, ∂�) such that

‖ϕ‖Lĥ(x)(∂�) ≤ C1‖ϕ‖s,p(x),p(x,y), for all ϕ ∈ W s,p(x),p(x,y)(�).

Then, the embedding W s,p(x),p(x,y)(�) ↪→ Lĥ(x)(∂�) is compact.

Define nonlinear map L : W → W ∗

〈
L(ϕ),ψ

〉
=
∫

�

|ϕ(x) – ϕ(y)|p(x,y)–2(ϕ(x) – ϕ(y))(ψ(x) – ψ(y))
|x – y|N+sp(x,y) dy, (9)

for all ϕ,ψ ∈ W , L has the following properties.

Lemma 3.4 ([28])
(i) L is a bounded and strictly monotone operator;

(ii) L is a mapping of (S+), i.e., if ϕn ⇀ ϕ in W and
limn→∞ sup〈L(ϕn) – L(ϕ),ϕn – ϕ〉 ≤ 0, then ϕn → ϕ in W ;

(iii) L : W → W ∗ is a homeomorphism.

Define function S : W →R

S(ϕ) =
∫

�×�

|ϕ(x) – ϕ(y)|p(x,y)

p(x, y)|x – y|N+sp(x,y) dx dy, for all ϕ ∈ W ,

which is related to (9). The derivative of S is

〈
S′(ϕ),ψ

〉
=
∫

�

|ϕ(x) – ϕ(y)|p(x,y)–2(ϕ(x) – ϕ(y))(ψ(x) – ψ(y))
|x – y|N+sp(x,y) dy =

〈
L(ϕ),ψ

〉
,

for all ϕ,ψ ∈ W ; for more details, see [34].
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Let

Xi =
{

ϕ ∈ W :
∫

�

Vi(x)|ϕ|pi(x)

μpi(x) dx < +∞, for some μ > 0
}

,

equipped with the norm

‖ϕ‖Xi := [ϕ]s,pi(x,·),R2N \(�c)2 + [ϕ]Vi(�) +
∥
∥β

1
pi(x) ϕ

∥
∥

Lpi(x)(C�) +
∥
∥|g| 1

pi(x) ϕ
∥
∥

Lpi(x)(C�),

where

[ϕ]Vi(�) = inf

{

μ > 0 :
∫

�

Vi(x)
|ϕ(x)|pi(x)

μpi(x) dx < 1
}

,

and

[ϕ]s,pi(x,·),R2N \(�c)2 = inf

{

μ ≥ 0 :
1
2

∫

R2N \(�c)2

|ϕ(x) – ϕ(y)|pi(x,y)

μpi(x,y)|x – y|N+spi(x,y) dx dy ≤ 1
}

with �c = R
N\�.

Lemma 3.5 ([28]) Assume that assumptions (P), (G), and (V) hold. Then, (Xi,‖ · ‖Xi ) is a
reflexive Banach space.

The norm ‖ · ‖Xi on Xi is equivalent to

‖ϕ‖s,pi(x,·),R2N \(�c)2 = inf

{

μ ≥ 0|ρs,pi(x,·),R2N \(�c)2

(
ϕ

μ
≤ 1
)}

= inf

{

μ ≥ 0|
∫

R2N \(�c)2

|ϕ(x) – ϕ(y)|pi(x,y)

μpi(x,y)pi(x, y)|x – y|N+spi(x,y) dx dy

+
∫

�

Vi(x)
μpi(x)pi(x)

|ϕ|pi(x) dx +
∫

C�

β(x)
μpi(x)pi(x)

|ϕ|pi(x) dx

+
∫

C�

g(x)
μpi(x)pi(x)

|ϕ|pix) dx ≤ 1
}

,

where the modular ρs,pi(x,·),R2N \(�c)2 : Xi →R is defined by

ρs,pi(x,·),R2N \(�c)2 =
∫

R2N \(�c)2

|ϕ(x) – ϕ(y)|pi(x,y)

pi(x, y)|x – y|N+spi(x,y) dx dy +
∫

�

Vi(x)
pi(x)

|ϕ|pi(x) dx

+
∫

C�

β(x)
pi(x)

|ϕ|pi(x) dx +
∫

C�

g(x)
pi(x)

|ϕ|pi(x) dx.
(10)

Lemma 3.6 Assume that assumptions (P), (G), and (V) hold. The following properties hold:
(i) ‖ϕ‖Xi < 1(= 1, > 1) ⇐⇒ ρs,pi(x,·),R2N \(�c)2 (ϕ) < 1(= 1, > 1);

(ii) ‖ϕ‖Xi ≥ 1 �⇒ ‖ϕ‖p–
i

Xi
≤ ρs,pi(x,·),R2N \(�c)2 (ϕ) ≤ ‖ϕ‖p+

i
Xi

;

(iii) ‖ϕ‖Xi ≤ 1 �⇒ ‖ϕ‖p+
i

Xi
≤ ρs,pi(x,·),R2N \(�c)2 (ϕ) ≤ ‖ϕ‖p–

i
Xi

;
(iv) ρs,pi(x,·),R2N \(�c)2 (ϕ – v) → 0 ⇔ ‖ϕ – v‖Xi → 0.
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Let X = X1 ∩ X2 with norm ‖ϕ‖X = ‖ϕ‖X1 + ‖ϕ‖X2 , which is a separable and reflexive
Banach space. The dual space of X is X∗. The modular ρs,p(x,·),R2N \(�c)2 = ρs,p1(x,·),R2N \(�c)2 +
ρs,p2(x,·),R2N \(�c)2 . We have the following result.

Lemma 3.7 ([28]) Assume that assumptions (P), (G), and (V) hold. Then, from (10), the
following properties hold:

(i) The function ρs,p(x,·),R2N \(�c)2) is of class C1(X,R);
(ii) The strictly monotone operator ρ ′

s,p(x,·),R2N \(�c)2 : X → X∗ is coercive, then

〈ρ ′
s,p(x,·),R2N \(�c)2 ,ϕ〉X

‖ϕ‖X
→ +∞, ‖ϕ‖X → +∞;

(iii) ρ ′
s,p(x,·),R2N \(�c)2 is a mapping of type (S+), that is, if ϕn ⇀ ϕ in X and

lim supn→+∞〈ρ ′
s,p(x,·),R2N \(�c)2 ,ϕ〉X ≤ 0, then ϕn → ϕ in X .

Lemma 3.8 ([35, 36]) Assume that assumptions (P), (G), (V), and (H) hold. Then, for
any r̂ ∈ C+(�) with 1 < r̂(x) < p∗

s (x) for all x ∈ �, there is a positive constant � ∗ =
� ∗(s, pi, N , r̂,�) > 0 such that

‖ϕ‖L̂r(x)(�) ≤ � ∗‖ϕ‖X , for all ϕ ∈ X.

Moreover, this embedding is compact.

Lemma 3.9 ([35]) Assume that assumptions (P), (G), (V), and (H) hold. Then, for any
r̂ ∈ C+(RN\�) with 1 < r̂(x) < p∗

∂ (x) for all x ∈ R
N\�, there is a positive constant �̂ ∗ =

�̂ ∗(s, pi, N , r̂, ∂�) > 0 such that

‖ϕ‖L̂r(x)(RN \�) ≤ �̂ ∗‖ϕ‖X , for all ϕ ∈ X.

Moreover, this embedding is compact.

More precisely, we now present the divergence theorem and the analogous formula for
the partition integral formula in nonlocal case [37].

Lemma 3.10 ([29]) Let the hypotheses (P) hold, and let ϕ be any bounded C2-function in
RN . Then,

∫

�

(–�)s
p1(x,·)ϕ(x) dx +

∫

�

(–�)s
p2(x,·)ϕ(x) dx

= –
(∫

RN \�
Ns,p1(x,·)ϕ(x) dx +

∫

RN \�
Ns,p2(x,·)ϕ(x) dx

)

.

Lemma 3.11 Let the hypotheses (P) hold. Suppose that ϕ and v are bounded C2-functions
in R

N . Then,

1
2

(∫

R2N \(C�)2

∣
∣ϕ(x) – ϕ(y)

∣
∣p1(x,y)–2 (ϕ(x) – ϕ(y))(v(x) – v(y))

|x – y|N+sp1(x,y) dx dy
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+
∫

R2N \(C�)2

∣
∣ϕ(x) – ϕ(y)

∣
∣p2(x,y)–2 (ϕ(x) – ϕ(y))(v(x) – v(y))

|x – y|N+sp2(x,y) dx dy
)

=
∫

�

v(–�)s
p1(x,·)ϕ(x) dx +

∫

�

v(–�)s
p2(x,·)ϕ(x) dx

+
∫

C�

vNs,p1(x,·)ϕ(x) dx +
∫

C�

vNs,p2(x,·)ϕ(x) dx,

for every v ∈ X.

Proof According to symmetry, we obtain

1
2

(∫

R2N \(C�)2

∣
∣ϕ(x) – ϕ(y)

∣
∣p1(x,y)–2 (ϕ(x) – ϕ(y))(v(x) – v(y))

|x – y|N+sp1(x,y) dx dy

+
∫

R2N \(C�)2

∣
∣ϕ(x) – ϕ(y)

∣
∣p2(x,y)–2 (ϕ(x) – ϕ(y))(v(x) – v(y))

|x – y|N+sp2(x,y) dx dy
)

=
∫

�

∫

RN
v(x)

∣
∣ϕ(x) – ϕ(y)

∣
∣p1(x,y)–2 ϕ(x) – ϕ(y)

|x – y|N+sp1(x,y) dy dx

+
∫

�

∫

RN
v(x)

∣
∣ϕ(x) – ϕ(y)

∣
∣p2(x,y)–2 ϕ(x) – ϕ(y)

|x – y|N+sp2(x,y) dy dx

+
∫

C�

∫

�

v(x)
∣
∣ϕ(x) – ϕ(y)

∣
∣p1(x,y)–2 ϕ(x) – ϕ(y)

|x – y|N+sp1(x,y) dy dx

+
∫

C�

∫

�

v(x)
∣
∣ϕ(x) – ϕ(y)

∣
∣p2(x,y)–2 ϕ(x) – ϕ(y)

|x – y|N+sp2(x,y) dy dx. �

Lemma 3.12 Assuming that assumption (P) holds and letting ϕ be a weak solutions of
equations (1), we have

Ns,p1(x,·)ϕ + Ns,p2(x,·)ϕ + β(x)|ϕ|p̄1(x)–2ϕ + β(x)|ϕ|p̄2(x)–2ϕ

= g1(x) + g2(x), a.e. in R
N \ �.

Lemma 3.13 Assuming that assumptions (P), (G), (V), and (H) hold, let Iλ : X → R be a
energy function defined by

Iλ(ϕ) =
1
2

∫

R2N \(C�)2

|ϕ(x) – ϕ(y)|p1(x,y)

p1(x, y)|x – y|N+sp1(x,y) dx dy

+
1
2

∫

R2N \(C�)2

|ϕ(x) – ϕ(y)|p2(x,y)

p2(x, y)|x – y|N+sp2(x,y) dx dy

+
∫

�

V1(x)
|ϕ|p̄1(x)

p̄1(x)
dx +

∫

�

V2(x)
|ϕ|p̄2(x)

p̄2(x)
dx +

∫

RN \�
β(x)

|ϕ|p̄1(x)

p̄1(x)
dx

+
∫

RN \�
β(x)

|ϕ|p̄2(x)

p̄2(x)
dx – λ1

∫

�

A1(x)
|ϕ|r1(x)

r1(x)
dx – λ2

∫

�

A2(x)
|ϕ|r2(x)

r2(x)
dx

–
∫

RN \�
g1(x)ϕ dx –

∫

RN \�
g2(x)ϕ dx,

for every ϕ ∈ X. Then, any critical point of Iλ is a weak solution of equations (1).
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4 Proof of Theorem 1.1
To prove Theorem 1.1, we need a well-known mountain pass lemma.

Theorem 4.1 Let X be a real Banach space and Iλ ∈ C1(X,R) with Iλ(0) = 0. Assume that
the following conditions hold:

(i) Iλ satisfies (PS) conditions;
(ii) there exist ρ,σ > 0 such that Iλ(ϕ) ≥ σ , for all ϕ ∈ X , with ‖ϕ‖X = ρ ;

(iii) there exists υ ∈ X , satisfying ‖υ‖X > ρ such that Iλ(υ) < 0.
Then, Iλ has a critical value c > σ , that is,

c = inf
γ∈ϒ

max
0≤t≤1

Iλ
(
γ (t)

)
,

where ϒ = {γ ∈ C1([0, 1]; X) : γ (0) = 1,γ (1) = υ}.

Definition 1 Let X be a Banach space, Iλ ∈ C1(E,R). We say that Iλ satisfies the (PS) con-
ditions if every sequence {ϕn}n∈N ⊂ X satisfying

Iλ(ϕn) → c, Iλ(ϕn) → 0, n → ∞

has a convergent subsequence in X.

Next, we prove that the Iλ defined in Lemma 3.13 satisfies the (PS) conditions.

Lemma 4.1 Assume that assumptions (P), (G), (V), and (H) hold. Then, the sequence
{ϕn}n∈N is bounded in X.

Proof According to (H), we get

s′
1(x)r1(x) < p∗

s (x), s′
2(x)r2(x) < p∗

s (x), for all x ∈ �,

so from Lemmas 3.8 and 3.9, there exist constants M1 and M2 such that

‖ϕ‖
Ls′1(x)r1(x)(�)

≤ M1‖ϕ‖X , ‖ϕ‖
Ls′2(x)r2(x)(�)

≤ M2‖ϕ‖X , for all ϕ ∈ X. (11)

Let ρ > max{1, 1
M1

, 1
M2

} and

‖ϕ‖
Ls′1(x)r1(x)(�)

> 1, ‖ϕ‖
Ls′2(x)r2(x)(�)

> 1.

Thus, by the Hölder inequality and Lemma 2.3, for all ϕ ∈ X with ‖ϕ‖X = ρ , we obtain

∫

�

A1(x)
∣
∣ϕ(x)

∣
∣r1(x) dx ≤ 2‖A1‖s1(x)‖ϕ‖r+

1
s′1(x)r1(x) ≤ 2Mr+

1
1 ‖A1‖s1(x)‖ϕ‖r+

1
X (12)

and
∫

�

A2(x)
∣
∣ϕ(x)

∣
∣r2(x) dx ≤ 2‖A2‖s2(x)‖ϕ‖r+

2
s′2(x)r2(x) ≤ 2Mr+

2
2 ‖A2‖s2(x)‖ϕ‖r+

2
X . (13)
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We use the counterfactual method. Suppose ‖ϕn‖X → ∞, n → ∞. Combining condi-
tions (P), (G), (V), (H), and Lemma 3.8 and letting 0 < ϑ < min{r–

1 r–
2

ZA+ZB–1
r–
2 ZAKA+r–

1 ZBKA
, r–

1 , r–
2 },

where KA = max{‖A1‖X ,‖A2‖X}, ZA = 4λ1Mr+
1

1 CA1 , ZB = 4λ2Mr+
2

2 CA2 , we have

c
1

‖ϕn‖p–
1

X

+ o(1)
1

‖ϕn‖p–
1

X

≥ 1
‖ϕn‖p–

1
X

(

Iλ(ϕn) –
〈

1
ϑ

I ′
λ(ϕn),ϕn

〉)

=
1

‖ϕn‖p–
1

X

2∑

i=1

[∫

R2N \(C�)2

|ϕ(x) – ϕ(y)|pi(x,y)

2pi(x, y)|x – y|N+spi(x,y) dx dy +
∫

�

Vi(x)
|ϕn|p̄i(x)

p̄i(x)
dx

+
∫

RN \�
β(x)

|ϕn|p̄i(x)

p̄i(x)
dx – λ1

∫

�

A1(x)
|ϕn|r1(x)

r1(x)
dx – λ2

∫

�

A2(x)
|ϕn|r2(x)

r2(x)
dx

–
∫

RN \�
gi(x)ϕn dx –

1
ϑ

(∫

R2N \(C�)2

|ϕn(x) – ϕn(y)|pi(x,y)

2|x – y|N+spi(x,y) dx dy

+
∫

�

Vi(x)|ϕn|p̄i(x) dx +
∫

RN \�
β(x)|ϕn|p̄i(x) dx – λ1

∫

�

A1(x)|ϕn|r1(x) dx

– λ2

∫

�

A2(x)|ϕn|r2(x) dx –
∫

RN \�
gi(x)ϕn dx

)]

≥ 1
‖ϕn‖p–

1
X

[(
1

2p+
2

–
1

2ϑ

) 2∑

i=1

(∫

R2N \(C�)2

|ϕn(x) – ϕn(y)|pi(x,y)

|x – y|N+spi(x,y) dx dy

+
∫

�

Vi(x)|ϕn|p̄i(x) dx +
∫

RN \�
β(x)|ϕn|p̄i(x) dx –

∫

RN \�
gi(x)ϕn dx

)

– 2
(
ϑ – r+

1
)λ1Mr+

1
1

ϑr–
1

‖A1‖s1(x)‖ϕn‖r+
1

X – 2
(
ϑ – r+

2
)λ2Mr+

2
2

ϑr–
2

‖A2‖s2(x)‖ϕn‖r+
2

X

]

≥
(

1
2p+

2
–

1
2ϑ

)

– 2
(
ϑ – r–

1
)λ1Mr+

1
1 CA1

ϑr–
1

‖A1‖X – 2
(
ϑ – r–

2
)λ2Mr+

2
2 CA2

ϑr–
2

‖A2‖X .

In addition, we obtain c 1
‖ϕn‖p–

1
X

+ o(1) 1
‖ϕn‖p–

1
X

→ 0 because ‖ϕn‖X → ∞, n → ∞. Due to

0 < ϑ < min

{

r–
1 r–

2
ZA + ZB – 1

r–
2 ZAKA + r–

1 ZBKA
, r–

1 , r–
2

}

,

there is a contradiction. Thus, {ϕn}n∈N is bounded. �

Inspired by [15], we have the following lemma.

Lemma 4.2 Assume that assumptions (P), (G), (V), and (H) hold. Then, Iλ satisfies the (PS)
conditions.

Proof According to Lemma 4.1, {ϕn}n∈N is bounded, that is, there is a subsequence {ϕn}n∈N
and ϕ0 in X such that

ϕn ⇀ ϕ0 in X;
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ϕn → ϕ0 a.e. in �;

ϕn → ϕ0 in Lr̂(x)(�), r̂(x) < p∗
s (x);

ϕn → ϕ0 in Lr̂(x)(
R

N \ �
)
, r̂(x) < p∗

∂ (x).

Due to ϕn → ϕ0 in Lr̂(x)(RN \ �), then |ϕn|p̄i(x)–2ϕn → |ϕ0|p̄i(x)–2ϕ0. We get

lim
n→∞

∫

R\�
β(x)

(|ϕn|p̄i(x)–2ϕn – |ϕ0|p̄i(x)–2ϕ0
)

= 0.

Since λ1A1(x)|ϕ|r1(x)–2ϕ and λ2A2(x)|ϕ|r2(x)–2ϕ in X are sequentially weakly lower semi-
continuous, for v ∈ X and measurable for all � ⊂R

N , we obtain
∣
∣
∣
∣

∫

�

A1(x)
(|ϕ|r1(x)–2

n ϕn – |ϕ|r1(x)–2
0 ϕ0

)
∣
∣
∣
∣v|dx|

≤
∫

�

A1(x)
(|ϕ|r1(x)–1

n – |ϕ|r1(x)–1
0

)
v dx

=
∫

�

A1(x)
r1(x)–1

r1(x)
(|ϕ|r1(x)–1

n – |ϕ|r1(x)–1
0

)
A1(x)

1
r1(x) |v|dx

≤ ∥∥A1(x)
r1(x)–1

r1(x)
(|ϕ|r1(x)–1

n – |ϕ|r1(x)–1
0

∥
∥

L
r1(x)

r1(x)–1

∥
∥A1(x)

1
r1(x)
)|v|∥∥Lr1(x) .

Hence, {A1(x)(|ϕ|r1(x)–2
n ϕn – |ϕ|r1(x)–2

0 ϕ0)|v|}n∈N is uniformly integrable in R
N . Then, using

the Vitali convergence theorem, we get

lim
n→∞

∫

�

A1(x)
(|ϕn|r1(x)–2ϕn – |ϕ0|r1(x)–2ϕ0

)
= 0.

Similarly, there is

lim
n→∞

∫

�

A2(x)
(|ϕn|r2(x)–2ϕn – |ϕ0|r2(x)–2ϕ0

)
= 0.

We need to prove that {ϕn}n∈N is strongly convergent,

o(1) =
〈
I ′
λ(ϕn) – I ′

λ(ϕ0),ϕn – ϕ0
〉

=
2∑

i=1

[∫

R2N \(C�)2

|ϕn(x) – ϕn(y)|pi(x,y)–2(ϕn(x) – ϕn(y))(ϕn(x) – ϕn(y) – ϕ0(x) + ϕ0(y))
2|x – y|N+spi(x,y) dx dy

–
∫

R2N \(C�)2

|ϕ0(x) – ϕ0(y)|pi(x,y)–2(ϕ0(x) – ϕ0(y))(ϕn(x) – ϕn(y) – ϕ0(x) + ϕ0(y))
2|x – y|N+spi(x,y) dx dy

+
∫

�

Vi(x)
(|ϕn|p̄i(x)–2ϕn – |ϕ0|p̄i(x)–2ϕ0

)
(ϕn – ϕ0) dx

+
∫

RN \�
β(x)

(|ϕn|p̄i(x)–2ϕn – |ϕ0|p̄i(x)–2ϕ0
)
(ϕn – ϕ0) dx

– λ1

∫

�

A1(x)
(|ϕn|p̄i(x)–2ϕn – |ϕ0|p̄i(x)–2ϕ0

)
(ϕn – ϕ0) dx

– λ2

∫

�

A2(x)
(|ϕn|p̄i(x)–2ϕn – |ϕ0|p̄i(x)–2ϕ0

)
(ϕn – ϕ0) dx

]
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=
2∑

i=1

[∫

R2N \(C�)2

|ϕn(x) – ϕn(y)|pi(x,y)–2(ϕn(x) – ϕn(y))(ϕn(x) – ϕn(y) – ϕ0(x) + ϕ0(y))
2|x – y|N+spi(x,y) dx dy

–
∫

R2N \(C�)2

|ϕ0(x) – ϕ0(y)|pi(x,y)–2(ϕ0(x) – ϕ0(y))(ϕn(x) – ϕn(y) – ϕ0(x) + ϕ0(y))
2|x – y|N+spi(x,y) dx dy

]

.

A discussion similar to Lemma 3.7 gives that ϕn → ϕ0 in X. Combining the Definition 1
and the Lemma 4.1, we complete the proof. �

Lemma 4.3 Assume that assumptions (P), (G), (V), and (H) hold. There exist ρ > 0 and
σ > 0 such that, for all ϕ ∈ X with ‖ϕ‖X = ρ ,

Iλ(ϕ) ≥ σ > 0

holds.

Proof Combining (12) with (13), for any ϕ ∈ X with ‖ϕ‖X = ρ > 1, we have

Iλ(ϕ) ≥ 1
p+

2

2∑

i=1

(∫

R2N \(C�)2

|ϕ(x) – ϕ(y)|pi(x,y)

2|x – y|N+spi(x,y) dx dy +
∫

�

Vi(x)|ϕ|p̄i(x) dx

+
∫

RN \�
β(x)|ϕ|p̄i(x) dx –

∫

RN \�
gi(x)ϕ dx

)

–
λ1

r–
1

∫

�

A1(x)|ϕ|r1(x) dx –
λ2

r–
2

∫

�

A2(x)|ϕ|r2(x) dx

≥ 1
p+

2
‖ϕ‖p+

2
X – λ1

2Mr–
1

1 ‖A1‖s1(x)

r–
1

‖ϕ‖r–
1

X – λ2
2Mr–

2
2 ‖A2‖s2(x)

r–
2

‖ϕ‖r–
2

X

= ‖ϕ‖r–
1

X

(
1

p+
2
‖ϕ‖p+

2 –r–
1

X – λ2
2Mr–

2
2 ‖A2‖s2(x)

r–
2

‖ϕ‖r–
2 –r–

1
X – λ1

2Mr–
1

1 ‖A1‖s1(x)

r–
1

)

.

Let

f (t) =
1

p+
2

tp+
2 –r–

1 – λ2
2Mr–

2
2 ‖A2‖s2(x)

r–
2

tr–
2 –r–

1 , t ≥ 0,

where r–
1 < r–

2 < p+
2 . Then, there exists χ > 0 such that f (t) = f (χ ) > 0. Choosing ‖A1‖r–

1
s1(x) <

σ ∗ = r–
1

4λ1M
r–
1

1
f (χ ), we get

Iλ(ϕ) ≥ σ = χ r–
1

f (χ )
2

> 0,

for ‖ϕ‖X = χ = ρ . �

Lemma 4.4 Assume that assumptions (P), (G), (V), and (H) hold. Then, there exists υ ,
which satisfies ‖υ‖X > ρ . Then, there exists υ ∈ X such that

Iλ(υ) < 0.
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Proof Choosing υ̂ ∈ X such that ‖υ̂‖X = 1, and for t ∈ (0, 1) small enough, we obtain

Iλ(tυ̂) ≤ tp+
2

2∑

i=1

(∫

R2N \(C�)2

|υ̂(x) – υ̂(y)|pi(x,y)

2pi(x, y)|x – y|N+spi(x,y) dx dy +
∫

�

Vi(x)
|υ̂|p̄i(x)

p̄i(x)
dx

+
∫

RN \�
β(x)|υ̂|p̄i(x)

p̄i(x)
dx
)

– λ1tr1–
∫

�

A1(x)|υ̂|r1(x)

r1(x)
dx

– λ2tr2–
∫

�

A2(x)|υ̂|r2(x)

r2(x)
dx –

∫

RN \�
tυ̂g1(x) dx –

∫

RN \�
tυ̂g2(x) dx < 0

with the fact that 1 < r–
1 < p+

2 . Thus, Iλ(tυ̂) < 0 with ‖tυ̂‖X > ρ . The proof is proved by
letting υ = tυ̂ . �

Proof of Theorem 1.1 Combining Lemmas 4.1 and 4.2, it can be inferred that Iλ satisfies
(PS) conditions. According to Lemmas 4.3 and 4.4, we know that Iλ satisfies the mountain
pass lemma. Therefore, we have a subsequence {ϕn}n∈N and ϕ

(1)
0 ∈ X such that ϕn → ϕ

(1)
0

in X by Lemma 4.1 and 0 < σ < c < ∞. Therefore, Iλ(ϕn) = c > σ , that is, ϕ
(1)
0 is a solution

of problem (1) with positive energy.
Next, we will apply Ekeland’s variational principle to prove that (1) has a solution with

negative energy.
By Lemma 4.3, we derive that

ĉ = inf
∂Bρ (0)

Iλ > 0,

where ρ is the positive constant introduced in Lemma 4.3.
From condition (H), there exist ε1, ε2 > 0 and an open set �0 ⊂⊂ � such that

∣
∣r1(x) – r1

–∣∣ < ε1,
∣
∣r2(x) – r2

–∣∣ < ε2, for all x ∈ �0,

and we get

r1
– + ε1 < p–

1 , r2
– + ε2 < p–

1 , for all x ∈ �0.

Hence,

r1(x) ≤ r1
– + ε1 < p–

1 , r2(x) ≤ r2
– + ε2 < p–

1 , for all x ∈ �0. (14)

By Lemma 2.1 and gi(x) > 0, we conclude

∫

R\�
giϕ dx ≤

∫

R\�
|gi|

1
p′

i(x) |gi|
1

pi(x) |ϕ|dx

≤ 2‖gi‖L1(R\�)
∥
∥|gi|

1
pi(x) |ϕ|∥∥Lpi(x)(R\�) ≤ K1‖ϕ‖X .

For sufficiently small τ ∈ (0, 1), let η ∈ C∞
0 (�) such that �0 ⊂ supp(η), η = 1, for all x ∈ �0

and 0 ≤ η ≤ 1 in �. Then, by applying (14), it follows that

Iλ(τη) ≤ τ p–
1

2∑

i=1

(∫

R2N \(C�)2

|η(x) – η(y)|pi(x,y)

2pi(x, y)|x – y|N+spi(x,y) dx dy +
∫

�

Vi(x)|η|p̄i(x)

p̄i(x)
dx
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+
∫

RN \�
β(x)|η|p̄i(x)

p̄i(x)
dx
)

– λ1τ
r1–+ε1

∫

�0

A1(x)|η|r1(x)

r1(x)
dx

– λ2τ
r2–+ε2

∫

�0

A2(x)|η|r2(x)

r2(x)
dx –

∫

RN \�
τηg1(x) dx –

∫

RN \�
τηg2(x) dx

≤ τ p–
1

p–
1

3K1 max
{‖η‖p–

2
X ,‖η‖p+

2
X
}

–
λ2τ

r2–+ε2

r+
2

∫

�0

A2(x)|η|r2(x)
X dx.

Since r2
– + ε2 < p–

1 , we have Iλ(tη) < 0.
In addition, combining the Hölder inequality and inequality (11), for any ϕ ∈ Bρ(0), we

have

Iλ(ϕ) ≥ 1
p+

2
‖ϕ‖p–

1
X –

2λ1Mr–
1

1
r–

1
‖A1‖s1(x)‖ϕ‖r–

1
X –

2λ2Mr–
2

2
r–

2
‖A2‖s2(x)‖ϕ‖r–

2
X – 2K1‖ϕ‖X .

This fact gives

–∞ < ĉ := infBρ (0)Iλ < 0. (15)

Set

1
n

∈ (0, inf∂Bρ (0)Iλ(ϕ) – infBρ (0)Iλ(ϕ)
)
, n ∈N.

By (15), Iλ : Bρ(0) → R is lower bounded on Bρ(0) and Iλ ∈ C1(Bρ(0),R). Using Ekeland’s
variational principle, there exists {ϕn}n∈N ∈ Bρ(0) such that

⎧
⎨

⎩

ĉ ≤ Iλ(ϕn) ≤ ĉ + 1
n ,

0 < Iλ(ϕn) – Iλ(ϕ) + 1
n‖ϕn – ϕ‖X , ϕn �= ϕ.

(16)

Since

Iλ(ϕn) ≤ ĉ +
1
n

≤ inf
Bρ (0)

Iλ +
1
n

≤ inf
Bρ (0)

Iλ +
1
n

< inf
∂Bρ (0)

Iλ,

we have ϕn ∈ Bρ(0). Define function ζ : Bρ(0) →R by

ζ (ϕ) = Iλ(ϕ) +
1
n

· ‖ϕn – ϕ‖X ,

which implies ζ (ϕn) < ζ (ϕ) from (16). Then, ϕn is a minimum point of ζ , and we have

ζ (ϕn + t · v) – ζ (ϕn)
t

≥ 0,

for small t > 0 and any v ∈ B1(0) = {v ∈ X : ‖v‖X = 1}. Hence,

Iλ(ϕn + t · v) – Iλ(ϕn)
t

+
1
n

‖v‖X ≥ 0.
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Let t → 0, then 〈I ′
λ, v〉+ 1

n‖v‖X ≥ 0. Replace v with –v. Then, we obtain 〈–I ′
λ, v〉+ 1

n‖v‖X ≥ 0.
Thus, ‖I ′

λ(ϕn)‖X∗ ≤ 1
n . We infer that there exists a sequence {ϕn}n∈N ⊂ Bρ(0) such that

Iλ(ϕn) → ĉ < 0,
∥
∥I ′

λ(ϕn)
∥
∥

X∗ → 0, n → ∞.

By Lemma 4.2, there is ϕn → ϕ
(2)
0 in X. Then, we have I ′

λ(ϕ(2)
0 ) = 0 and Iλ(ϕ(2)

0 ) = ĉ < 0, that
is, ϕ(2)

0 is another solution of equations (1) with negative energy, which ends the proof. �

Here, we give an example of application of Theorem 1.1.

Example 4.1 Let � = {(x, y) ∈R : x2 + y2 ≤ 1}. Consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(–�)
1
2
x2+y2+3ϕ + (–�)

1
2
x2+y2+5ϕ + 2|ϕ|2x2+1ϕ + 4|ϕ|2x2+3ϕ

= |x||ϕ| 1
6 ϕ + x2|ϕ| 1

2 ϕ, x ∈ �,

N 1
2 ,x2+y2+3ϕ + N 1

2 ,x2+y2+5ϕ + ln |x||ϕ|2x2+1ϕ

+ ln |x||ϕ|2x2+3ϕ = 0, x ∈R
N \ �.

(17)

By simple calculations, we obtain meas(∂�) = 2π , p–
1 = 3, p+

1 = 4, p–
2 = 5, p+

2 = 6. Condi-
tions (P), (G), (H), and (V) are satisfied. We observe that all assumptions of Theorem 1.1
are fulfilled. Hence, Theorem 1.1 implies that problem (17) admits two nontrivial weak
solutions.

5 Proof of Theorem 1.2
To prove Theorem 1.2, we first recall the following lemmas.

Lemma 5.1 ([15]) Let X be a reflexive and separable Banach space. Then, there are {en} ⊂
E and {e∗

n} ⊂ E∗ such that

E = span{en : n = 1, 2, 3 . . .}, E∗ = span
{

e∗
n : n = 1, 2, 3 . . .

}

and

〈
e∗

i , ej
〉

=

⎧
⎨

⎩

1, if i = j,

0, if i �= j.

Denote

En = span{en}, Xk =
k⊕

n=1

En, and Yk =
∞⊕

n=k

En.

Lemma 5.2 ([15]) Assume that q(x) ∈ C+(�), q(x) < p∗(x), for any x ∈ � and denote

ξ̃k = sup
ϕ∈Yk ,‖ϕ‖X =1

‖ϕ‖Lq(x)(�),

then limk→∞ ξ̃k = 0.
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Now, we recall the fountain theorem.

Theorem 5.1 ([15]) Let X be a real Banach space and Iλ ∈ C1(X,R) be a even functional
satisfying the (PS) conditions. There exists rk > 0 such that ρ̂k > rk > 0 for every k ∈N. Then,
the following conditions hold:

(i) αk = max{Iλ(ϕ) : ϕ ∈ Xk ,‖ϕ‖ = ρ̂k} ≤ 0;
(ii) βk = inf{Iλ(ϕ) : ϕ ∈ Yk ,‖ϕ‖ = rk} → +∞ as k → ∞.

Then, Iλ possesses a series of critical points ϕk such that Iλ(ϕk) → +∞.

Lemma 5.3 Assume that assumptions (P), (G), (V), and (H) hold. There exists ρ̂k > 0 such
that

max
ϕ∈Xk ,‖ϕ‖=ρ̂k

Iλ(ϕ) < 0.

Proof Let t ∈ (0, 1). For ‖ϕ̂‖X = ρ̃k ≥ 1 and ρ̂k > ρ̃k , there exists ϕ̂ such that

Iλ(tϕ̂) ≤ tp+
2

2∑

i=1

(∫

R2N \(C�)2

|ϕ̂(x) – ϕ̂(y)|pi(x,y)

2pi(x, y)|x – y|N+spi(x,y) dx dy +
∫

�

Vi(x)
|ϕ̂|p̄i(x)

p̄i(x)
dx

+
∫

RN \�
β(x)|ϕ̂|p̄i(x)

p̄i(x)
dx
)

– λ1tr1–
∫

�

A1(x)|ϕ̂|r1(x)

r1(x)
dx

– λ2tr2–
∫

�

A2(x)|ϕ̂|r2(x)

r2(x)
dx –

∫

RN \�
tϕ̂g1(x) dx –

∫

RN \�
tϕ̂g2(x) dx

≤ tp+
2

p–
1

‖ϕ̂‖p+
2

X –
λ1tr1–

r+
1

∫

�

A1(x)|ϕ̂|r1(x) dx < 0

with p–
1 > r+

1 > 1. Taking ϕ = tϕ̂, for sufficiently small t, it follows that

αk = max
ϕ∈Xk ,‖ϕ‖=ρ̂k

Iλ(ϕ) ≤ 0. �

Lemma 5.4 Assume that assumptions (P), (G), (V), and (H) hold. There exists rk > 0 such
that

inf
ϕ∈Yk ,‖ϕ‖=rk

Iλ(ϕ) > +∞.

Proof According to Lemma 5.2, for ‖ϕ‖X = rk > 1, we obtain

Iλ(ϕ) ≥ 1
p+

2
‖ϕ‖p–

1
X –

λ1

r–
1

∫

�

A1(x)|ϕ|r1(x) dx –
λ2

r–
2

∫

�

A2(x)|ϕ|r2(x) dx

≥ 1
p+

2
‖ϕ‖p–

1
X –

2λ1Mr+
1

1
r–

1
‖A1‖s1(x)‖ϕ‖r+

1
X –

2λ2Mr+
2

2
r–

2
‖A2‖s2(x)‖ϕ‖r+

2
X

≥ 1
p+

2
‖ϕ‖p–

1
X –

2λ1Mr+
1

1 ξ̃
r+
1

k
r–

1
‖A1‖s1(x)‖ϕ‖r+

1
X –

2λ2Mr+
2

2 ξ̃
r+
2

k
r–

2
‖A2‖s2(x)‖ϕ‖r+

2
X .

Let

max

{
2λ1Mr+

1
1 ξ̃

r+
1

k
r–

1
‖A1‖s1(x)‖ϕ‖r+

1
X ,

2λ2Mr+
2

2 ξ̃
r+
2

k
r–

2
‖A2‖s2(x)‖ϕ‖r+

2
X

}
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= 2
λϕMrϕ

ϕ ξ̃
ϕ

k
r–
ϕ

A∗
ϕ‖ϕ‖rϕ

X ,

and there exists a constant C̃ such that rϕ = max{r+
1 + C̃, r+

2 + C̃}, where 1 < p–
1 < r–

ϕ < rϕ .
Therefore,

1
p+

2
‖ϕ‖p–

1
X –

2λ1Mr+
1

1 ξ̃
r+
1

k
r–

1
‖A1‖s1(x)‖ϕ‖r+

1
X –

2λ2Mr+
2

2 ξ̃
r+
2

k
r–

2
‖A2‖s2(x)‖ϕ‖r+

2
X

≥ ‖ϕ‖p–
1

X

(
1

p+
2

– 4
λϕMrϕ

ϕ ξ̃
ϕ

k
r–
ϕ

A∗
ϕ‖ϕ‖rϕ–p–

1
X

)

.

Choose

rk =
(

5λϕMrϕ
ϕ p+

2 ξ̃
ϕ

k
r–
ϕ

A∗
ϕ

) 1
p–

1 –rϕ
.

Since p–
1 < rϕ , we have rk → +∞ as k → +∞. By the choice of rk with ‖ϕ‖X = rk such that

ρ̂k > ρ̃k > rk > 0, we obtain

βk = inf
ϕ∈Yk ,‖ϕ‖=rk

Iλ(ϕ) → +∞, k → +∞. �

Proof of Theorem 1.2 Let hypotheses (P), (G), (V), and (H) be satisfied. By Lemma 4.2, Iλ
satisfies (PS) conditions. Under the definition of Iλ in Lemma 3.13, it follows that Iλ(0) = 0
and Iλ is an even function. Therefore, from Lemmas 5.3 and 5.4, it can be deduced that
Iλ satisfies Theorem 5.1. Then, Iλ possesses a series of critical points ϕk as k → +∞. In
conclusion, equations (1) possess infinitely many nontrivial weak solutions. �

Here, we give an example of application of Theorem 1.2.

Example 5.1 Let � = {(x, y) ∈R : x2 + y2 ≤ 1}. Consider the problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(–�)
1
2
x2+y2+3ϕ + (–�)

1
2
x2+y2+5ϕ + (x2 + 1)|ϕ|2x2+1ϕ + (e|x| + 2)|ϕ|2x2+3ϕ

= |x||ϕ|√|x|– 3
4 ϕ + x2|ϕ|√|x|– 1

4 ϕ, x ∈ �,

N 1
2 ,x2+y2+3ϕ + N 1

2 ,x2+y2+5ϕ + ln |x||ϕ|2x2+1ϕ

+ ln |x||ϕ|2x2+3ϕ = 0, x ∈R
N \ �.

(18)

By simple calculations, we obtain meas(∂�) = 2π , p–
1 = 3, p+

1 = 4, p–
2 = 5, p+

2 = 6, r–
1 = 5/4,

r+
1 = 9/4, r–

2 = 7/4, and r+
2 = 11/4. That is, conditions (P), (G), (H), and (V) are satisfied. We

observe that all assumptions of Theorem 1.2 are fulfilled. Hence, Theorem 1.2 implies that
problem (18) admits infinitely many nontrivial weak solutions.

6 Proof of Theorem 1.3
We give some results with the aid of the Krasnoselskii genus. Let E be a real Banach space
and set

R =
{
A⊂ E \ {0} : A is compact and A = –A

}
.
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Let A⊂R and E = R
k . We define genus

γ (A) = min
{

k ≥ 1 : there exists an odd continuous mapping ψ : A→R
k \ {0}}.

If the mapping ψ does not exist for any k > 0, and set γ (A) = ∞. If A is a subset con-
sisting of a finite number of pairs of points, then, γ (A) = 1. Furthermore, from definition,
γ (∅) = 0.

Lemma 6.1 ([18]) Let E = RN and ∂� be the boundary of an open, symmetric, and bounded
subset ∂� ⊂ RN with 0 ∈ �. Then, γ (∂�) = N .

Corollary 6.1 ([18]) γ (SN–1) = N .

Theorem 6.1 ([18]) Let Iλ ∈ C1(X) be a functional satisfying the (PS) conditions and as-
sume that

(i) Iλ is bounded from below and even;
(ii) there is a compact set K ∈R such that γ (K) = k and supx∈K Iλ(x) < Iλ(0).

Then, Iλ has at least k pairs of distinct critical points whose corresponding critical values
are all less than Iλ(0).

Proof of Theorem 1.3 Combining (12), (13), and the Hölder inequality (7) for ‖ϕ‖X > 1, we
obtain

Iλ(ϕ) ≥ 1
p+

2
‖ϕ‖p–

1
X –

λ1

r–
1
‖A1‖s1(x)‖ϕ‖r+

1

Ls′1(x)r1(x)(�)
–

λ2

r–
2
‖A2‖s2(x)‖ϕ‖r+

2

Ls′2(x)r2(x)(�)

≥ 1
p+

2
‖ϕ‖p–

1
X –

λ1

r–
1

2‖A1‖s1(x)M
r+
1

1 ‖ϕ‖r+
1

X –
λ2

r–
2

2‖A2‖s2(x)M
r+
2

2 ‖ϕ‖r+
2

X .

Since max{1, r+
1 , r+

2 } < p–
1 , for ‖ϕ‖X large enough, Iλ is bounded from below. Iλ ∈ X is an

even function by the definition and Iλ(0) = 0. Moreover, Iλ is coercive in X and satisfies
the (PS) conditions by Lemma 4.2. Let

Rk =
{
M⊂R : γ (M) ≥ k

}
, ck = inf

M∈Rk
sup
ϕ∈M

I(ϕ), k = 1, 2, . . . .

We obtain

–∞ < c1 ≤ c2 ≤ · · · ≤ ck ≤ ck+1 ≤ · · ·.

Now we prove that for any k ∈ N, there is ck < 0. For each k, we take k disjoint open sets
K̃i such that

⋃k
i=1 K̃i ⊂ �. For i = 1, . . . , k, let ϕi ∈ (X

⋂
C∞

0 (K̃i) \ {0} with ‖ϕi‖X = 1, and

Mk = span{ϕ1,ϕ2, . . . ,ϕk}.

Since each norm on Mk is equivalent, there is ρ∗
k ∈ (0, 1) such that ϕ ∈ Mk with ‖ϕ‖X ≤

ρ∗
k , which means that ‖ϕ‖∞ < Cρ∗

k
< 1. Set

S(k)
ρ∗

k
=
{
ϕ ∈Mk : ‖ϕ‖X = ρ∗

k
}

.
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Combining the compactness of S(k)
ρ∗

k
and t ∈ (0, 1) for all ϕ ∈ S(k)

ρ∗
k

,

Iλ(tϕ) ≤ tp–
1

2∑

i=1

(∫

R2N \(C�)2

|ϕ(x) – ϕ(y)|pi(x,y)

2pi(x, y)|x – y|N+spi(x,y) dx dy +
∫

�

Vi(x)
|ϕ|p̄i(x)

p̄i(x)
dx

+
∫

RN \�
β(x)|ϕ|p̄i(x)

p̄i(x)
dx
)

–
∫

RN \�
tϕg1(x) dx –

∫

RN \�
tϕg2(x) dx

– λ1tr–
1

∫

�

A1(x)|ϕ|r1(x)

r1(x)
dx – λ2tr–

2

∫

�

A2(x)|ϕ|r2(x)

r2(x)
dx

≤ 3K1tp–
1 ‖ϕ‖p+

2
X –

λ1tr–
1

p–
1

∫

�

A1(x)|ϕ|r1(x) dx.

Sine 1 < r–
1 < p–

1 , there exist tk ∈ (0, 1) and εk such that

Iλ(tkϕ) < –εk < 0.

Thus, Iλ(ϕ) < 0 for all ϕ ∈ S(k)
tkρ∗

k
. Furthermore, γ (S(k)

tkρ∗
k
) = k such that ck < –εk < 0 for all k,

and the assertion is proved. Each ck is a critical value by the Krasnoselskii genus theory.
Combining Theorem 6.1, Iλ has at least k pairs of different critical points. In addition,
since k is arbitrary, we obtain an infinite number of critical points of equations (1). �
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