- Research
- Open Access
- Published:
Global existence and asymptotic behavior of solutions for the double dispersive-dissipative wave equation with nonlinear damping and source terms
Boundary Value Problems volume 2015, Article number: 29 (2015)
Abstract
In this paper, we consider the initial boundary value problem of the double dispersive-dissipative wave equation with nonlinear damping and source terms. By the combination of the Galerkin method and the monotonicity-compactness method, the existence of global solutions is obtained with the least amount of a priori estimates. Moreover, the asymptotic behavior of global solutions is investigated under some assumptions on the initial data.
1 Introduction
This paper deals with the initial boundary value problem of the double dispersive-dissipative wave equation with nonlinear damping and source terms
where \(\Omega\subset\mathrm{R}^{n}\) is a suitably smooth bounded domain, β, γ, and δ are some physical parameters. \(g(s)\), \(f(s)\) are given nonlinear functions.
Equation (1.1) includes many important physical models. For example, in the absence of a dissipative term, double dispersive terms (\(\beta =\gamma=\delta=0\)), and a damping term \(g(u_{t})=0\), the model reduces to the common semilinear wave equation
In 1968, Sattinger [1] studied the existence of global weak solutions of (1.2) by using the potential well method. From then on, the potential well theory has become one of the most important methods for studying nonlinear evolution equations. In 1975, Payne and Sattinger [2] made the most important and typical work on the potential well method. They proved the finite time blow up of solutions of (1.2). In 2003, Liu [3] studied the initial boundary value problem of (1.2), where \(f(u)=\vert u\vert ^{p-1}u\). He gave some results on the properties of the family of potential wells. Then, by using them, he obtained some results of the existence and nonexistence of global solutions. In a subsequent article [4], Liu gave a threshold result of the global existence and nonexistence of solutions and proved the global existence of solutions with critical initial conditions \(J(u_{0})=d\). For the semilinear wave equation (1.2) with nonlinear boundary velocity feedback, it is important to cite [5–7] and the references therein. In 1993, Lasiecka and Tataru [5] obtained the uniform decay rates of the energy for (1.2) under the assumption that the boundary velocity feedback is dissipative. In 2002, Vitillaro [6] studied the local existence, blow up, and global existence of the solutions for (1.2) with nonlinear boundary velocity feedback. In 2004, Cavalcanti et al. [7] proved the existence and uniform decay rates of the energy even if the nonlinear boundary velocity feedback has a polynomial growth near the origin.
In the absence of a dissipative term, double dispersive terms (\(\beta =\gamma=\delta=0\)), taking the nonlinear damping term \(g(u_{t})=a\vert u_{t}\vert ^{m-1}u_{t}\) and the nonlinear source term \(f(u)=b\vert u\vert ^{p-1}u\), the model (1.1) reduces to the wave equation with nonlinear damping and source terms
In 1994, Georgiev and Todorova [8] investigated the initial boundary value problem of (1.3), where \(a=b=1\), \(p,m>1\). They proved the existence of global solutions under the condition \(1< p\leq {m}\). When \(p\geq{m}>1\), they obtained the finite time blow up of solutions for sufficiently large initial data. In 1996, Ikehata [9] investigated the initial boundary value problem of (1.3), where \(b=1\) and any \(a=\delta>0\). He proved that \(1\leq{m}< p<\infty\) if \(n=1,2\), and \(1\leq{m}< p\leq\frac{n}{n-2}\) if \(n\geq3\), the problem (1.3) had a global solution for sufficiently small initial data. In 1999, Vitillaro [10] proved the global nonexistence of the solutions with positive initial energy. He also gave the application concerning the classical equations of linear elasticity and the damped clamped plate equation. In 2001, Messaoudi [11] changed the nonlinear term \(a\vert u_{t}\vert ^{m-1}u_{t}\), \(b\vert u\vert ^{p-1}u\) into \(a\vert u_{t}\vert ^{m-2}u_{t}\), \(b\vert u\vert ^{p-2}u\). He proved that any strong solution, with negative initial energy, blows up in finite time under the condition \(p>m\). Messaoudi [12, 13] changed the nonlinear term \(a\vert u_{t}\vert ^{m-1}u_{t}\), \(b\vert u\vert ^{p-1}u\) into \(au_{t}(1+\vert u_{t}\vert ^{m-2})\), \(b\vert u\vert ^{p-2}u\). He investigated the global nonexistence and exponential decay of solutions, respectively. For the Cauchy problem associated to (1.3), when Ω is replaced by the entire space \(\mathrm{R}^{n}\), Serrin and Todorova [14] studied the existence of the solutions for the case \(p< m\).
When taking into account no effects of dispersion caused by transverse shearing and nonlinear damping, in one dimension, the model (1.1) reduces to the fourth-order wave equation
This type of equation was derived by Hayes and Saccomandi [15] in studying the propagation of transverse homogeneous waves in special incompressible viscoelastic solids. In 2000, Shang [16] studied the initial boundary value problem of the fourth-order nonlinear wave equation (1.4). The existence and uniqueness of a global strong solution for the problem were obtained by means of the Galerkin method. The asymptotic behavior and blow up phenomenon of the solution for the problem were discussed under certain conditions.
In the absence of a dispersive term and dissipation (\(\beta=\gamma =0\)), and when the damping term is linear, that is, \(g(u_{t})=u_{t}\), the model (1.1) becomes the 1D fourth-order wave equation
This type of equation was derived in the study of a longitudinal vibration of a bar. The weak damping term of (1.5) is introduced to model the contacting of the bar with a rough substrate or a viscous external medium. The dispersive term of the above equation is used to explain the lateral inertia of a bar [17].
In the absence of the dispersive term and the damping term, that is, \(g(u_{t})=0\) and \(\gamma=0\), the model (1.1) reduces to the fourth-order wave equation (\(n\geq1\))
In 2000, Shang [18] investigated the existence, uniqueness, asymptotic behavior, and the blow up phenomenon of the solutions under some specific assumptions on f and for \(n=1,2,3\). In 2004, Zhang and Hu [19] proved the existence and the stability of global weak solutions. In 2007, Xie and Zhong [20] studied the initial boundary value problem of (1.6). They established the existence of global attractors in \(H_{0}^{1}(\Omega)\times{H}_{0}^{1}(\Omega)\), where the nonlinear term f satisfies a critical exponential growth condition. In 2008, Xu et al. [21] investigated the asymptotic behavior of solutions for (1.6) by using the multiplier method. For more results on the long-time behaviors of global strong solutions of the initial boundary value problem of (1.6), the reader is referred to [22–25].
If \(\gamma=0\), \(\beta=\delta=1\), \(g(u_{t})={u}_{t}\) and \(f(u)=\vert u\vert ^{p-1}u\), the model (1.1) reduces to the fourth-order dispersive-dissipative wave equation
In 2012, Xu and Yang [26] investigated the initial boundary value problem of (1.7), where \(1< p<\infty\) if \(n=1,2\), and \(1< p\leq\frac {n+2}{n-2}\) if \(n\geq3\). A blow up result for certain solutions with arbitrary positive initial energy was established.
As far as we know, there have been no results up till now on the initial boundary value problem for a nonlinear wave equation with double dispersive terms \(\triangle^{2}u\), \(\triangle{u}_{tt}\), the strong dissipation term \(\triangle{u}_{t}\), the nonlinear damping term \(g(u_{t})\), and the nonlinear source term \(f(u)\). So the aim of the present paper is to solve this open problem.
In this work, we investigate the initial boundary value problem for the double dispersive wave equation with a strong dissipation term, a nonlinear damping and source terms:
where \(a,b>0\), \(p,m>2\), ν represents the unit outward normal to ∂Ω, and Ω is a bounded domain of \({R}^{n}\) (\(n\geq1\)) with a smooth boundary ∂Ω. First of all, by the combination of the Galerkin method and the monotonicity-compactness method, the existence of global solutions is obtained with the least amount of a priori estimates. Moreover, the asymptotic behavior of global solutions is investigated under some assumptions on the initial data.
This paper is organized as follows. In Section 2, we introduce some notation, basic definitions, and important lemmas for proving the main theorem. In Section 3, the existence of global weak solutions is proved by the Galerkin method and the monotonicity-compactness method. In Section 4, we consider the asymptotic behavior of global solutions under some assumptions on the initial data.
2 Preliminaries
In this section, we introduce some notation, basic definitions, and important lemmas which will be needed in this paper.
For functions \(u(x,t)\), \(v(x,t)\) defined on Ω, we introduce
To obtain the results of this paper, we will introduce the energy function
For simplicity, we define the weak solutions of (1.8) over the interval \([0,T)\), but it is to be understood throughout that T is either infinity or the limit of the existence interval.
Definition 2.1
We say that \(u(x,t)\) is a weak solution of the problem (1.8) on the interval \(\Omega\times[0,T)\), if \(u\in {L}^{\infty}(0,T;H_{0}^{2}(\Omega)\cap{L}^{p}(\Omega))\), \(u_{t}\in {L}^{\infty}(0,T;H_{0}^{1}(\Omega))\cap{L}^{m}(Q_{T})\) satisfy the following conditions:
-
(i)
For any \(v\in{H}_{0}^{2}(\Omega)\cap{L}^{m}(\Omega)\) and a.e. \(0\leq{t}< T\), such that
$$\begin{aligned} & (u_{tt},v)+(\nabla{u},\nabla{v})+(\nabla{u}_{t}, \nabla {v})+(\triangle{u},\triangle{v})+(\nabla{u}_{tt},\nabla{v}) \\ &\quad {}+\bigl(a\vert u_{t}\vert ^{m-2}u_{t},v \bigr)=\bigl(b\vert {u}\vert ^{p-2}{u},v\bigr); \end{aligned}$$(2.2) -
(ii)
\(u(x,0)=u_{0}(x)\) in \({H}_{0}^{2}(\Omega)\cap{L}^{p}(\Omega )\), \(u_{t}(x,0)=u_{1}\) in \({H}_{0}^{1}(\Omega)\cap{L}^{m}(\Omega)\).
Lemma 2.1
Let \(p,m>2\), \(a,b>0\), and u be a solution of (1.8). Then \(E(t)\) is a non-increasing function, that is,
Moreover, the following energy inequality holds:
Proof
Multiplying (1.8) by \(u_{t}\), and integrating over Ω, using integration by parts and some manipulation as in [29], we obtain (2.3), (2.4) for any regular solutions. These results remain valid for weak solutions by a simple density argument. We also refer the reader to [5, 7] as regards the method of density arguments.
The following lemma is similar to Lemma 6.1 of Chapter ii of [27] with a slight modification. □
Lemma 2.2
Assume that the function u satisfies \(u\in{L}^{\infty }(0,T;H_{0}^{2}(\Omega))\), \(u_{t}\in{L}^{\infty }(0,T; H_{0}^{1}(\Omega))\cap{L}^{m}(Q_{T})\), \(u(x,0)=u_{0}\), \(u_{t}(x,0)=u_{1}\), and further assume that
then for any \(t\in(0,T)\), the following inequality holds:
Proof
By choosing the continuous piecewise linear function \(\theta_{m}(t)\) and the regular sequence \(\rho_{n}(t)\), we construct the smooth function \(v(t)=((\theta_{m}u')\ast\rho_{n}\ast\rho _{n})\theta_{m}\). Then, multiplying (2.5) by \(v(t)\) and integrating over \(Q=\Omega\times(0,T)\), using integration by parts and some manipulation as in Chapter 2 of [27] as \(m,n\rightarrow\infty\), we can obtain the inequality (2.6). This method of smooth approximations is called the method of mollifiers. We also refer reader to [27, 28] about the method of mollifiers.
We construct an approximate weak solution of the problem (1.8) by the Galerkin method. Let \(\{w_{j}\}\) be the system of base functions of \(H_{0}^{2}(\Omega)\cap{L}^{m}(\Omega)\).
Now suppose that the approximate weak solutions of the problem (1.8) can be written
According to the Galerkin method, these coefficients \(d_{l}^{j}(t)\) need to satisfy the following initial value problem of the nonlinear ordinary differential equations:
Under some assumption for the nonlinear terms and a priori estimates in Section 3, we prove that the initial value problem (2.8) of the nonlinear ordinary differential equations has global solutions in the interval \([0,T]\). Furthermore, we show that the solutions of the problem (1.8) can be approximated by the functions \(u_{l}(x,t)\). □
3 The existence of global weak solutions
In this section, we establish the existence of global weak solutions for the problem (1.8).
Theorem 3.1
Suppose that \(a,b>0\), \(2< p\leq{m}<\infty\), \({u}_{0}(x)\in {H}_{0}^{2}(\Omega)\cap{L}^{p}(\Omega)\), \({u}_{1}(x)\in {H}_{0}^{1}(\Omega)\cap{L}^{m}(\Omega)\), Then for any \(T>0\), the problem (1.8) admits a global weak solution \(u\in{L}^{\infty }(0,T;H_{0}^{2}(\Omega)\cap{L}^{p}(\Omega))\), \(u_{t}\in{L}^{\infty }(0,T;H_{0}^{1}(\Omega))\cap{L}^{m}(Q_{T})\).
Proof
Multiplying (2.8) by \(d_{l}^{j}(t)'\) and summing for \(j=1,\ldots,l\), we have
Integrating (3.1) with respect to t from 0 to t, we find
since
By the Minkowski inequality, we have
Taking \(q=\frac{p}{p-1}\) and considering the Hölder inequality, we get
Using the Young inequality, we see that
where \(\beta=(p-1)\frac{m}{m-p}\), \(c(\varepsilon)=\varepsilon^{\frac{p}{p-m}}\). Hence, we have
Choosing ε such that \(\varepsilon\frac{b}{m}2^{p}=\frac {a}{2}\), we see that
Thus, we find that
are finite and can be controlled by a constant depending on T. Together with (3.6), we find that
Hence, \(u_{l}\in{L}^{\infty}(0,T;H_{0}^{2}(\Omega)\cap{L}^{p}(\Omega))\), \(u_{lt}\in{L}^{\infty}(0,T;H_{0}^{1}(\Omega))\cap{L}^{m}(Q_{T})\). We see that
so we obtain \(a\vert u_{lt}\vert ^{m-2}u_{lt}\in{L^{m'}}(Q_{T})\), \(b\vert {u}_{l}\vert ^{p-2}{u}_{l}\in{L}^{\infty}(0,T;L^{p'}(\Omega))\).
Thus, we can show that there exist a subsequence \(\{u_{v}\}\) from the sequences \(\{u_{l}\}\) and limit functions u, ξ, η, such that
Making use of the Lions lemma in [27], it follows that \(b\vert {u}_{l}\vert ^{p-2}{u}_{l}\longrightarrow{b} \vert {u}\vert ^{p-2}{u}=\eta\).
Integrating (2.8) with respect to t, we get
Taking \(l=v\rightarrow\infty\) in (3.8), we have
and consequently, differentiating (3.9) with respect to t, we deduce
Considering that the basis \(\{w_{j}(x)\}_{j=1}^{\infty}\) is dense in \(H_{0}^{2}(\Omega)\cap{L}^{m}(\Omega)\), we choose a function \(v\in {H_{0}^{2}(\Omega)\cap{L}^{m}(\Omega)}\) having the form \(v=\sum_{j=1}^{\infty}d_{j}w_{j}(x)\), where \(\{d_{j}\}_{1}^{\infty}\) are given functions. Multiplying (3.10) by \(d_{j}\), summing for \(j=1,\ldots \) , then we deduce
Next, we need to prove that
In fact, from (2.8) we obtain
where \(\gamma(u_{lt})=a\vert u_{lt}\vert ^{m-2}u_{lt}\). From what has been discussed above, taking \(l\longrightarrow\infty\), we have
Combining (3.12) and Lemma 2.2, we deduce
Noting that \(m'=\frac{m}{m-1}<\frac{p}{p-1}=p'\), it follows that \(b\vert {u}\vert ^{p-2}{u}\in{L}^{\infty}(0,T;{L}^{p'}(\Omega))\subset {L^{m'}}(Q_{T})\). From Lemma 2.2, we know that the function \(g\in {L}^{2}(0,T;H^{-1}(\Omega))+{L}^{m'}(Q_{T})\). Hence, we can choose \(g=b\vert {u}\vert ^{p-2}{u}-\xi\) such that
Considering \(u_{vt}\rightarrow{u_{t}}\) weakly in \({L}^{m}(Q_{T})\) and \(a\vert u_{vt}\vert ^{m-2}u_{vt}\rightarrow\xi\) weakly in \({L^{m'}}(Q_{T})\), \(\forall\varphi\in{L}^{m}(Q_{T})\), we have
By the combination of (3.14), (3.15), and (3.16), it follows that
Utilizing the monotonicity of the function \(\gamma(s)=a\vert s\vert ^{m-2}s\), it means that
where \(0<\theta<1\). Thus, from (3.17) and (3.18), we have
Taking \(t\longrightarrow{T}\), we obtain
In order to prove (3.11) from (3.19), we use the semi-continuity of the function \(\gamma(s)\) (\(s\in R\)). Let \(\varphi=u_{t}-\lambda{w}_{t}\), \(\lambda>0\), and \(\forall w_{t}\in{L}^{\infty}(0,T;H_{0}^{1}(\Omega))\cap{L}^{m}(Q_{T})\), then
and
Passing to the limits as \(\lambda\longrightarrow0\), we obtain
In a similar way, let \(\varphi=u_{t}-\lambda{w}_{t}\), \(\lambda<0\), and \(\forall w_{t}\in{L}^{\infty}(0,T;H_{0}^{1}(\Omega))\cap{L}^{m}(Q_{T})\), then
From (3.20), (3.21), we see that \(\xi=a\vert u_{t}\vert ^{m-2}u_{t}\). Thus, the theorem is completed. □
4 The asymptotic behavior of global weak solutions
In this section, we consider the asymptotic behavior of global weak solutions for the problem (1.8).
To obtain the results of this section, we now define some functionals as follows:
and
Next, let us introduce the set
Lemma 4.1
Let \((u_{0},u_{1})\in{W}\times{H}_{0}^{1}(\Omega)\) be given. Assume that \(a,b>0\) and
where \(C_{*p}\) is the Sobolev constant of the space \(H_{0}^{1}(\Omega )\) into \(L^{p}(\Omega)\). Then for any \(t\geq0\), the global weak solutions of the problem (1.8) satisfy \(u(t)\in{W}\).
Proof
Since \(I(u_{0})>0\) and the time continuity of \(I(u)\), then there exists \(t_{1}\) such that \(I(u(t))\geq0\) for all \(t\in [0,t_{1}]\). Thus, we see that
for any \(t\in[0,t_{1}]\). Hence, we obtain
for any \(t\in[0,t_{1}]\). If \(\Vert \nabla{u} \Vert _{2}^{2}=0\), we have \(u=0 \) (since \(u\in{H}_{0}^{2}(\Omega)\)). Hence, we have from the definition of the set W: \(u\in{W}\). If \(\Vert \nabla{u} \Vert _{2}^{2}\neq0\), by the Sobolev inequality and (4.2), (4.4), we have
for any \(t\in[0,t_{1}]\). Hence, we obtain \(\Vert \nabla{u} \Vert _{2}^{2}-{b}\Vert {u}\Vert _{p}^{p}>0\), \(\forall t\in[0,t_{1}]\). This shows that \(u(t)\in {W}\), \(\forall t\in[0,t_{1}]\). We see that
so the above argument may be repeated, and the solution can thus be extended to the time \(t_{1}\leq{t}<{t}_{2}\). Continuing in this way, the assertion of the lemma is proved. □
Lemma 4.2
Assume that (4.1) and (4.2) hold. Then the global weak solutions of the problem (1.8) satisfy
for some constant L depending on m, p and \(E(0)\) only.
Proof
Using the Sobolev inequality and (4.4), we have
where \(L={C}_{*m}^{m} [\frac{2p}{p-2}E(0) ]^{\frac {m-2}{2}}\frac{2p}{p-2}\), and \(C_{*m}\) is the Sobolev constant of the space \(H_{0}^{1}(\Omega)\) into \(L^{m}(\Omega)\), and the proof of the lemma is completed. □
Theorem 4.1
Assume that \(a,b>0\), and the conditions (4.1), (4.2) hold. Let \((u_{0},u_{1})\in{W}\times{H}_{0}^{1}(\Omega)\) be given. Then for the global weak solutions of the problem (1.8), there exist positive constants M and k such that
Proof
From Lemma 4.1, we know that, for any \(t\geq0\), the global weak solutions of the problem (1.8) satisfy \(u(t)\in{W}\). Now defining
we can show that for ε small enough, there exist two positive constants \(C_{1}\) and \(C_{2}\) such that
In fact,
and
where \(C_{*2}\) is the Sobolev constant of the space \(H_{0}^{1}(\Omega )\) into \(L^{2}(\Omega)\).
By choosing γ small enough, we have
Once γ is chosen, we take ε so small that
where \(\frac{C_{1}}{2}\leq\frac{1}{2}-\frac{\varepsilon}{4\gamma}\). Now differentiating (4.10) and utilizing (1.8), Lemma 2.1, and the Poincaré inequality, we have
Using the energy functionals and the Sobolev inequality, we have
where \(\alpha=bC_{*p}^{p} [\frac{2p}{p-2}E(0) ]^{\frac {p-2}{2}}<1\).
Utilizing Lemma 4.2 and inserting (4.17) into (4.16), we have
where L is the constant of Lemma 4.2, δ is any positive constant, and \(C(\delta)\) is a constant depending on δ, m only.
Thus, we see that
By choosing λ close to zero such that \(\frac{p-2}{2}\lambda -(1-\alpha)(1-\lambda)\leq0\), then (4.19) becomes
Once δ is chosen such that \(\lambda{p}-a\delta{L}>0\), we can take ε so small that
Thus, we see that
By the Gronwall inequality, we see that
where \(k=\frac{\varepsilon(\lambda{p}-a\delta{L})}{C_{2}}\). Combining with (4.11), we obtain
and
where \(M=\frac{F(0)}{C_{1}}\). Thus, the proof of the theorem is completed. □
Remark 4.1
From the (2.3), (4.4), (4.5), (4.9), we easily obtain
for any \(t\geq0\).
References
Sattinger, DH: On global solution of nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. 30, 148-172 (1968)
Payne, LE, Sattinger, DH: Saddle points and instability on nonlinear hyperbolic equations. Isr. J. Math. 22, 273-303 (1975)
Liu, YC: On potential wells and vacuum isolating of solutions for semilinear wave equation. J. Differ. Equ. 1992, 155-169 (2003)
Liu, YC: On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal. 64, 2665-2678 (2006)
Lasiecka, I, Tataru, D: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507-533 (1993)
Vitillaro, E: A potential well method for the wave equation with nonlinear source and boundary damping terms. Glasg. Math. J. 44, 375-395 (2002)
Cavalcanti, MM, Cavalcanti, VND, Martinez, P: Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. J. Differ. Equ. 203(1), 119-158 (2004)
Georgiev, V, Todorova, G: Existence of a solution of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109, 295-308 (1994)
Ikehata, R: Some remarks on the wave equations with nonlinear damping and source terms. Nonlinear Anal. TMA 27, 1165-1175 (1996)
Vitillaro, E: Global nonexistence theorems for a class of evolution equations with dissipation. Arch. Ration. Mech. Anal. 149, 155-182 (1999)
Messaoudi, SA: Blow up in a nonlinear damped wave equation. Math. Nachr. 231, 105-111 (2001)
Messaoudi, SA: Global nonexistence in a nonlinearly damped wave equation. Appl. Anal. 80, 269-277 (2001)
Messaoudi, SA: Exponential decay of solutions of a nonlinearly damped wave equation. Nonlinear Differ. Equ. Appl. 12, 391-399 (2005)
Serrin, J, Todorova, G, Vitillaro, E: Existence for a nonlinear wave equation with nonlinear damping and source terms. Differ. Integral Equ. 16(1), 13-50 (2003)
Hayes, M, Saccomandi, G: Finite amplitude transverse waves in special incompressible viscoelastic solids. J. Elast. 59, 213-225 (2000)
Shang, YD: Initial-boundary value problem for a class of fourth order nonlinear evolution equations. Math. Appl. 13(1), 7-11 (2000)
Villiaggio, P: Mathematical Models for Elastic Structures. Cambridge University Press, Cambridge (1997)
Shang, YD: Initial boundary value problem of equation \(u_{tt}-\triangle {u}-\triangle{u}_{t}-\triangle{u}_{tt}=f(u)\). Acta Math. Appl. Sin. 23, 385-393 (2000)
Zhang, HW, Hu, QY: Existence of global weak solution and stability of a class nonlinear evolution equation. Acta Math. Sci. 24A, 329-336 (2004)
Xie, YQ, Zhong, CK: The existence of global attractors for a class nonlinear evolution equation. J. Math. Anal. Appl. 336, 54-69 (2007)
Xu, RZ, Zhao, XR, Shen, JH: Asymptotic behavior of solution for fourth order wave equation with dispersive and dissipative terms. Appl. Math. Mech. -Engl. Ed. 29, 259-262 (2008)
Xie, YQ, Zhong, CK: Asymptotic behavior of a class of nonlinear evolution equations. Nonlinear Anal. 71(11), 5095-5105 (2009)
Carvalho, AN, Cholewa, JW: Local well posedness, asymptotic behavior and asymptotic bootstrapping for a class of semilinear evolution equations of the second order in time. Trans. Am. Math. Soc. 361(5), 2567-2586 (2009)
Sun, CY, Yang, L, Duan, JQ: Asymptotic behavior for a semilinear second order evolution equation. Trans. Am. Math. Soc. 363(11), 6085-6109 (2011)
Chen, CS, Wang, H, Zhu, SL: Global attractor and decay estimates of solutions to a class of nonlinear evolution equations. Math. Methods Appl. Sci. 34(5), 497-508 (2011)
Xu, RZ, Yang, YB: Finite time blow up for the nonlinear fourth-order dispersive-dissipative wave equation at high energy level. Int. J. Math. 23, 1250060 (10 pages) (2012)
Lions, JL: Quelques Méthodes de Résolution des Problémes aux Limites Non Linéaires. Dunod Gauthier-Villars, Paris (1969)
Evance, LC: Partial Differential Equations. Am. Math. Soc., Providence (1988)
Messaoudi, SA: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902-915 (2006)
Acknowledgements
This work is supported by the NSF of China (11401122, 40890153) and the Scientific Program (2008B080701042) of Guangdong Province.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed to each part of this work equally and read and approved the final manuscript.
Rights and permissions
Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
About this article
Cite this article
Di, H., Shang, Y. Global existence and asymptotic behavior of solutions for the double dispersive-dissipative wave equation with nonlinear damping and source terms. Bound Value Probl 2015, 29 (2015). https://doi.org/10.1186/s13661-015-0288-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-015-0288-6
MSC
- 35L35
- 35L82
- 35B40
Keywords
- nonlinear wave equation
- double dispersive-dissipative
- global existence
- asymptotic behavior
- damping and source terms
- monotonicity-compactness