Skip to main content

On the Lipschitz stability of inverse nodal problem for p-Laplacian Schrödinger equation with energy dependent potential

Abstract

In this study, we consider reconstruction and stability issues of an inverse nodal problem for a p-Laplacian Schrödinger equation with energy dependent potential. We solve Lipschitz stability of the inverse nodal problem for this p-Laplacian operator. Furthermore, we show that the space of all potential functions q is homeomorphic to the partition set of all asymptotically equivalent nodal sequences induced by an equivalence relation.

1 Introduction

Let us consider the following p-Laplacian eigenvalue problem:

$$ - \bigl( u^{{\prime}(p-1)} \bigr) ^{\prime}= ( p-1 ) \bigl( \lambda^{2}-q(x)-2\lambda r(x) \bigr) u^{(p-1)},\quad 0< x<1, $$
(1.1)

with the Dirichlet conditions

$$ u(0)=u(1)=0, $$
(1.2)

where \(p>1\) is a constant, λ is a spectral parameter; \(q\in L_{2} ( 0,1 ) \), \(r\in W_{2}^{1} ( 0,1 ) \) are real-valued functions and \(u^{(p-1)}=\vert u\vert ^{(p-1)}\operatorname{sgn}u\) (see [1]).

Uniqueness and reconstruction problems of the p-Laplacian Schrödinger equation with energy dependent potential have been studied in some works (for example, see [1]), just left stability problem is worth considering and undone for the (1.1)-(1.2) eigenvalue problem. In a complete solution of inverse problems, the questions of existence, uniqueness, stability and construction are to be considered. The question of existence and uniqueness is of great importance in testing the assumption behind any mathematical model. If the answer to the uniqueness question is no, then we know that even perfect data do not contain enough information to recover the physical quantity to be estimated. In the question of stability we have to decide whether the solution depends continuously on the data. Stability is necessary if we want to be sure that a variation of the given data in a sufficiently small range leads to an arbitrarily small change in the solution. This concept was introduced by Hadamard in 1902 in connection with the study of boundary value problems for partial differential equations (see [2]). Because of this important reason, we want to deal with a stability issue for problem (1.1)-(1.2).

Notice that equation (1.1) becomes

$$ -u^{\prime\prime}+ [ q+2\lambda r ] u=\lambda^{2}u $$
(1.3)

for \(p=2\) and this equation is known as Schrödinger equation with energy dependent potential (or diffusion equation, quadratic of differential pencil). Equation (1.3) is very important in both classical and quantum mechanics. For example, such problems arise in solving Klein-Gordon equations which describe the motion of massless particles such as photons. Sturm-Liouville energy dependent equations are also used for modeling vibrations of mechanical systems in viscous media (see [3]). We note that in this type of problems, the spectral parameter λ is related to the energy of the system, and this motivates the terminology ‘energy dependent’ used for the spectral problem of the form (1.3).

The theory of inverse problems for differential operators occupies an important position in the current development of the spectral theory of linear operators. Inverse problems of spectral analysis consist in the recovery of operators from their spectral data. One takes for the main spectral data, for instance, one, two, or more spectra, the spectral function, the spectrum and the normalizing constants, the Weyl function. Some aspects of spectral problems for the Schrödinger equation with energy dependent potential have been studied by many authors (see [413]).

In 1988, McLaughlin [14] posed a new technique to recover the operators. This technique is called inverse nodal problem. Inverse nodal problems consist in recovering operators from given nodes (zeros) of their eigenfunctions. From the physical point of view, this corresponds to finding, e.g., the density of a string or a beam from the zero-amplitude positions of their eigenvibrations. She seems to be the first to consider this sort of inverse problem. Later on, the inverse nodal problem has been studied by many authors (see [1518]).

Suppose that \(\{ x_{j}^{n} \} _{j=1}^{n-1}\) are the zeros of the eigenfunction \(u_{n}(x)\) which is expressed by (1.1), and denote the nodal set \(X_{n}= \{ x_{j}^{n} \} _{j=1}^{n-1}\). Define the nodal length \(l_{j}^{n}=x_{j+1}^{n}-x_{j}^{n}\) for \(j=1,2,\ldots,n-1\). Using these nodal data, some uniqueness, reconstruction results of the potential function of the Schrödinger equation with energy dependent potential have been solved by many authors (see [1922]).

In (1.1), we can get the following one-dimensional p-Laplacian Sturm-Liouville eigenvalue problem for the special case \(r(x)=0\):

$$ \begin{aligned} &{-} \bigl( u^{{\prime}(p-1)} \bigr) ^{\prime} = ( p-1 ) \bigl( \lambda^{2}-q(x) \bigr) u^{(p-1)},\\ &u(0) =u(1)=0, \end{aligned} $$
(1.4)

where the eigenvalues of problem (1.4) associated eigenfunctions \(u_{n}(x)\) are countably infinite real and simple [23]. Inverse and stability problems for (1.4) one-dimensional p-Laplacian Sturm-Liouville eigenvalue problem were solved by several authors (see [2327]).

To say something about the stability of the inverse nodal problem for the given (1.1)-(1.2) eigenvalue problem, we need to introduce a generalized sine function \(S_{p}\) which is the solution of the initial value problem

$$\begin{aligned} &{-} \bigl( S_{p}^{\prime(p-1)} \bigr) ^{\prime}=(p-1)S_{p}^{(p-1)},\\ &S_{p}(0)=0, \qquad S_{p}^{\prime}(0)=1 \end{aligned}$$
(1.5)

(see [23, 26, 28]). \(S_{p}\) and \(S_{p}^{\prime}\) are periodic functions which satisfy the identity

$$ \bigl\vert S_{p}(x)\bigr\vert ^{p}+\bigl\vert S_{p}^{\prime}(x)\bigr\vert ^{p}=1 $$

for any \(x\in \mathbb{R} \). These functions are p-analogues of classical sine and cosine functions in the classical case. It is well known that

$$ \pi_{p}=\frac{2\pi}{p\sin ( \frac{\pi}{p} ) } $$

is the first zero of \(S_{p}\) (see [2830]). Now, we will give some further properties of \(S_{p}\) by the following lemma.

Lemma 1.1

[23, 28]

  1. (a)

    For \(S_{p}^{\prime}\neq0\),

    $$ \bigl( S_{p}^{\prime} \bigr) ^{\prime}=-\biggl\vert \frac{S_{p}}{S_{p}^{\prime}}\biggr\vert ^{p-2}S_{p}. $$
  2. (b)
    $$ \bigl( S_{p}S_{p}^{{\prime}(p-1)} \bigr) ^{\prime}= \bigl\vert S_{p}^{\prime}\bigr\vert ^{p}-(p-1)S_{p}^{p}=1-p \vert S_{p}\vert ^{p}=(1-p)+p\bigl\vert S_{p}^{\prime}\bigr\vert ^{p}. $$

This paper is organized as follows. In Section 2, we mention some asymptotic formulas for eigenvalues, nodal parameters and potential function for the (1.1)-(1.2) eigenvalue problem by using the modified Prüfer substitution which were solved in the reference [1]. In Section 3, we define a metric to solve the Lipschitz stability problem for a p-Laplacian Schrödinger equation with energy dependent potential. Eventually, we give some conclusions in Section 4.

2 Asymptotic estimates for eigenvalues, nodal parameters and potential function

In this section, we recall some properties of (1.1) p-Laplacian operator with (1.2) Dirichlet conditions which were solved by Koyunbakan [1]. For this purpose, we can introduce a modified Prüfer substitution as

$$\begin{aligned} &u(x) =c(x)S_{p} \bigl( \lambda^{2/p} \theta(x) \bigr) , \\ &u^{\prime}(x) =\lambda^{2/p}c(x)S_{p}^{\prime} \bigl( \lambda^{2/p} \theta(x) \bigr) , \end{aligned}$$
(2.1)

or

$$ \frac{u^{\prime}(x)}{u(x)}=\lambda^{2/p}\frac{S_{p}^{\prime} ( \lambda^{2/p} \theta(x) ) }{S_{p} ( \lambda ^{2/p} \theta(x) ) }, $$
(2.2)

where \(c(x)\) and \(\theta(x)\) are Prüfer variables. Differentiating both sides of the above equation with respect to x and applying Lemma 1.1, we obtain [1, 23]

$$ \theta^{\prime}(x)=1-\frac{q}{\lambda^{2}}S_{p}^{p}- \frac{2}{\lambda} rS_{p}^{p}. $$
(2.3)

Now, we can establish the estimations of nodal parameters and a reconstruction formula of a potential function for problem (1.1), (1.2).

Theorem 2.1

[1]

The eigenvalues \(\lambda_{n}\) of the Dirichlet eigenvalue problem given in (1.1), (1.2) have the form

$$ \lambda_{n}^{2/p}=n\pi_{p}+\frac{1}{p ( n\pi_{p} ) ^{p-1}}\int_{0}^{1}q(t)\,dt+\frac{2}{p ( n\pi_{p} ) ^{\frac {p-2}{2}}}\int _{0}^{1}r(t)\,dt+O \biggl( \frac{1}{n^{p/2}} \biggr) $$

as \(n\rightarrow\infty\).

Theorem 2.2

[1]

The nodal points and nodal length expansions for problem (1.1), (1.2) satisfy

$$\begin{aligned}& x_{j}^{n}=\frac{j}{n}+\frac{2}{ ( n\pi_{p} ) ^{p/2}}\int_{0}^{x_{j}^{n}}r(x)S_{p}^{p}\,dx+ \frac{1}{ ( n\pi _{p} ) ^{p}}\int_{0}^{x_{j}^{n}}q(x)S_{p}^{p}\,dx+O \biggl( \frac {1}{n^{p/2+1}} \biggr) , \\& l_{j}^{n}=\frac{\pi_{p}}{\lambda_{n}^{2/p}}+\frac{2}{p\lambda_{n}}\int_{x_{j}^{n}}^{x_{j+1}^{n}}r(t)\,dt+\frac{1}{p\lambda_{n}^{2}} \int_{x_{j}^{n}}^{x_{j+1}^{n}}q(t)\,dt+O \biggl( \frac{1}{\lambda _{n}^{\frac{4+p}{p}}} \biggr) , \end{aligned}$$

respectively, as \(n\rightarrow\infty\).

Theorem 2.3

[1]

Let \(q\in L_{2}(0,1)\), \(r\in W_{2}^{1}(0,1)\) and assume that r is given a priori on the interval \([ 0,1 ] \). Then

$$ q(x)=\lim_{n\rightarrow\infty}p\lambda_{n}^{2} \biggl( \frac{\lambda _{n}^{2/p}l_{j}^{n}}{\pi_{p}}-\frac{2r(x)}{p\lambda_{n}}-1 \biggr) $$

for \(x\in(0,1)\), \(j=j_{n}(x)=\max \{ j:x_{j}^{n}< x \} \).

3 Lipschitz stability of an inverse nodal problem

In this section, we study Lipschitz stability of an inverse nodal problem for (1.1) p-Laplacian operator. Lipschitz stability is about a continuity between two metric spaces. To show this continuity, we will use a homeomorphism between these two metric spaces. Stability problems were studied by many authors (see [3134]). The method that we have used in the proof of the Lipschitz stability of an inverse nodal problem is similar to the classical Sturm-Liouville problem (see [31]).

Let us define \(\Omega_{\mathrm{dif}}\) and \(\Sigma_{\mathrm{dif}}\) by

$$\begin{aligned}& \Omega_{\mathrm{dif}} = \bigl\{ q\in C^{1}[0,1] \bigr\} ,\\& \Sigma_{\mathrm{dif}} = \bigl\{ X= \bigl\{ x_{k}^{n} \bigr\} :X\mbox{ is the nodal set associated with some }q\in\Omega_{\mathrm{dif}} \bigr\} . \end{aligned}$$

We will show that \(\Omega_{\mathrm{dif}}\) and \(\Sigma_{\mathrm{dif}}\) are homeomorphic to each other. Hence, when \(\overline{X}\) is the nodal set associated with \(\overline{q}\) and \(\overline{X}\) is close to X in \(\Sigma_{\mathrm{dif}}\), then \(\overline{q}\) is close to q in \(\Omega_{\mathrm{dif}}\), where \(\overline{r}\) is so close to r. That is, the inverse nodal problem is Lipschitz stable. Here, we use \(L^{m}(0,1)\) (\(m\geq1\)) for \(\Omega_{\mathrm{dif}}\). For \(m\geq1\), let

$$ S_{n}^{m}(X,\overline{X})=\pi_{p}^{p} n^{p+1-\frac{1}{m}} \Biggl[ \sum_{k=0}^{n-1}\bigl\vert l_{k}^{n}-\overline{l}_{k}^{n} \bigr\vert ^{m} \Biggr] ^{\frac{1}{m}}+\frac{2}{p} ( n \pi_{p} ) ^{\frac {p}{2}} \biggl[ \int_{0}^{1} \vert \overline{r}-r\vert ^{m}\,dx \biggr] ^{\frac{1}{m}}, $$
(3.1)

where \(l_{k}^{n}=x_{k+1}^{n}-x_{k}^{n}\) and \(\overline {l}_{k}^{n}=\overline{x}_{k+1}^{n}-\overline{x}_{k}^{n}\). Define the metric and a pseudometric on \(\Sigma_{\mathrm{dif}}\)

$$ d_{0}^{m}(X,\overline{X})= \mathop{\overline{\lim}}_{n\rightarrow\infty }S_{n}^{m}(X,\overline{X}), $$

and

$$ d_{\Sigma_{\mathrm{dif}}}^{m}(X,\overline{X})=\mathop{\overline{\lim}}_{n\rightarrow \infty} \frac{S_{n}^{m}(X,\overline{X})}{1+S_{n}^{m}(X,\overline{X})}, $$

respectively. If we define \(X\sim_{m}\overline{X}\) iff \(d_{\Sigma _{\mathrm{dif}}}^{m}(X,\overline{X})=0\), then \(\sim_{m}\) is an equivalence relation on \(\Sigma_{\mathrm{dif}}\) and \(d_{\Sigma_{\mathrm{dif}}}^{m}\) would be a metric for the partition set \(\Sigma_{\mathrm{dif}}^{\ast}=\Sigma_{\mathrm{dif}}/\sim_{m}\).

Lemma 3.1

The function \(d_{\Sigma _{\mathrm{dif}}}^{m}(\cdot,\cdot)\) is a pseudometric on \(\Sigma_{\mathrm{dif}}\).

Proof

It can be proved easily by using a similar method to that in [23]. □

Lemma 3.2

Let \(X,\overline{X}\in\Sigma_{\mathrm{dif}}\). Then

  1. (a)

    The interval \(I_{n,k}\) between the points \(x_{k}^{n}\) and \(\overline{x}_{k}^{n}\) has length \(O(n^{-\frac{p}{2}})\).

  2. (b)

    For all \(x\in(0,1)\), we have the inequality \(\vert j_{n}(x)-\overline{j}_{n}(x)\vert \leq1\) when n is sufficiently large.

Proof

(a) By the asymptotic estimates of the nodal points, we can easily obtain

$$\begin{aligned} \vert I_{n,k}\vert =&\bigl\vert x_{k}^{n}- \overline{x}_{k}^{n}\bigr\vert \\ \leq&\biggl\vert x_{k}^{n}-\frac{k}{n}\biggr\vert +\biggl\vert \frac {k}{n}-\overline{x}_{k}^{n} \biggr\vert \\ =&O\bigl(n^{-\frac{p}{2}}\bigr)+O\bigl(n^{-\frac{p}{2}}\bigr) \\ =&O\bigl(n^{-\frac{p}{2}}\bigr), \end{aligned}$$

by a similar method as in [31].

(b) We can prove part (b) easily by using a similar method as in [31]. □

Theorem 3.1

For any of \(m\geq1\), \(d_{\Sigma _{\mathrm{dif}}}^{m}\) is a metric on the space \(\Sigma_{\mathrm{dif}}/\sim_{m}\). Additionally, the metric spaces \(( \Omega_{\mathrm{dif}},\Vert \cdot \Vert _{m} ) \) and \(( \Sigma_{\mathrm{dif}}/\sim_{m},d_{\Sigma _{\mathrm{dif}}}^{m} ) \) are homeomorphic to each other where \(\sim _{m} \) is an equivalence relation induced by \(d_{\Sigma _{\mathrm{dif}}}^{m}\).

Proof

It suffices to indicate that

$$ \Vert q-\overline{q}\Vert _{m}=pd_{0}^{m}(X, \overline{X}). $$

By Theorem 2.3, we get

$$\begin{aligned} q(x)-\overline{q}(x) =&\lim_{n\rightarrow\infty}p(n\pi_{p})^{p} \biggl[ n \bigl( l_{j_{n}(x)}^{n}- \overline{l}_{\overline{j}_{n}(x)}^{n} \bigr) +\frac{2}{p(n\pi_{p})^{\frac{p}{2}}} ( \overline{r}-r ) \biggr] \\ =&\lim_{n\rightarrow\infty} \bigl[ pn^{p+1}\pi_{p}^{p} \bigl( l_{j_{n}(x)}^{n}-\overline{l}_{\overline{j}_{n}(x)}^{n} \bigr) +2(n\pi _{p})^{\frac{p}{2}} ( \overline{r}-r ) \bigr] \end{aligned}$$

for each \(x\in(0,1)\). Hence, by Fatou’s lemma and the definition of norm on \(L_{m}\), we have

$$\begin{aligned} \Vert q-\overline{q}\Vert _{m} \leq&pn^{p+1} \pi_{p}^{p}\mathop{\underline{\lim}}\limits_{n\rightarrow\infty} \bigl\Vert l_{j_{n}(x)}^{n}-\overline{l}_{\overline{j}_{n}(x)}^{n} \bigr\Vert _{m}+2(n\pi_{p})^{\frac{p}{2}} \mathop{\underline{\lim}}\limits_{n\rightarrow\infty} \biggl[ \int_{0}^{1} \vert \overline{r}-r\vert ^{m} \biggr] ^{\frac{1}{m}} \\ \leq&p\pi_{p}^{p}\mathop{\overline{\lim}}\limits_{n\rightarrow\infty} \bigl[ n^{p+1}\bigl\Vert l_{j_{n}(x)}^{n}- \overline{l}_{j_{n}(x)}^{n}\bigr\Vert _{m}+n^{p+1} \bigl\Vert \overline{l}_{j_{n}(x)}^{n}-\overline {l}_{\overline{j}_{n}(x)}^{n}\bigr\Vert _{m} \bigr] \\ &{}+2(n\pi_{p})^{\frac{p}{2}}\lim_{n\rightarrow\infty} \biggl[ \int_{0}^{1}\vert \overline{r}-r\vert ^{m}\,dx \biggr] ^{\frac{1}{m}}. \end{aligned}$$
(3.2)

Here, by Lemma 3.2 and Theorem 2.2, we get

$$\begin{aligned} n^{p+1}\bigl\Vert \overline{l}_{j_{n}(x)}^{n}- \overline{l}_{\overline{j} _{n}(x)}^{n}\bigr\Vert _{m} =&n^{p+1} \biggl[ \int_{0}^{1}\bigl| \overline{l}_{j_{n}(x)}^{n}-\overline{l}_{\overline{j}_{n}(x)}^{n}\bigr|^{m}\,dx \biggr] ^{\frac{1}{m}} \\ =&n^{p+1} \Biggl[ \sum_{k=0}^{n-1} \bigl\vert \overline {l}_{k+1}^{n}-\overline{l}_{k}^{n}\bigr\vert ^{m}I_{n,k} \Biggr] ^{\frac{1}{m}} \\ =&o(1) \end{aligned}$$
(3.3)

and

$$\begin{aligned} n^{p+1}\bigl\Vert l_{j_{n}(x)}^{n}- \overline{l}_{j_{n}(x)}^{n}\bigr\Vert _{m} =&n^{p+1} \biggl[ \int_{0}^{1}\bigl\vert l_{j_{n}(x)}^{n}-\overline{l}_{j_{n}(x)}^{n} \bigr\vert ^{m}\,dx \biggr] ^{\frac{1}{m}} \\ =&n^{p+1} \Biggl[ \sum_{k=0}^{n-1} \bigl\vert l_{k}^{n}-\overline {l}_{k}^{n} \bigr\vert ^{m}l_{k}^{n} \Biggr] ^{\frac{1}{m}} \\ =&n^{p+1-\frac{1}{m}} \Biggl[ \sum_{k=0}^{n-1} \bigl\vert l_{k}^{n}-\overline{l}_{k}^{n} \bigr\vert ^{m} \Biggr] ^{\frac{1}{m}}. \end{aligned}$$
(3.4)

Considering (3.3) and (3.4) in (3.2), we obtain

$$\begin{aligned} \Vert q-\overline{q}\Vert _{m} \leq&p\pi_{p}^{p} \mathop{\overline{\lim}}\limits_{n\rightarrow\infty}n^{p+1-\frac{1}{m}} \Biggl[ \sum _{k=0}^{n-1}\bigl\vert l_{k}^{n}- \overline{l}_{k}^{n}\bigr\vert ^{m} \Biggr] ^{\frac{1}{m}}+2(n\pi_{p})^{\frac{p}{2}}\lim _{n\rightarrow \infty } \biggl[ \int_{0}^{1} \vert \overline{r}-r\vert ^{m}\,dx \biggr] ^{\frac{1}{m}}\\ =&pd_{0}^{m}(X,\overline{X}). \end{aligned}$$

Contrarily, using the above derivations

$$\begin{aligned} &\Vert q-\overline{q}\Vert _{m}+o(1) \\ &\quad=p\pi _{p}^{p}n^{p+1} \bigl\Vert l_{j_{n}(x)}^{n}-\overline{l}_{\overline{j}_{n}(x)}^{n} \bigr\Vert _{m}+2(n\pi_{p})^{\frac{p}{2}} \biggl[ \int _{0}^{1}\vert \overline{r}-r\vert ^{m}\,dx \biggr] ^{\frac{1}{m}} \\ &\quad\geq p\pi_{p}^{p}n^{p+1}\bigl\Vert l_{j_{n}(x)}^{n}-\overline{l}_{\overline{j}_{n}(x)}^{n}\bigr\Vert _{m}+2(n\pi_{p})^{\frac {p}{2}} \biggl[ \int _{0}^{1}\vert \overline{r}-r\vert ^{m}\,dx \biggr] ^{\frac{1}{m}}-O \bigl( n^{\frac{p}{2}+1+\frac{2-p}{m}} \bigr) \\ &\quad=p\pi_{p}^{p}n^{p+1} \Biggl[ \sum _{k=0}^{n-1}\bigl\vert l_{k}^{n}-\overline{l}_{k}^{n}\bigr\vert ^{m}l_{k}^{n} \Biggr] ^{\frac {1}{m}}+2(n\pi _{p})^{\frac{p}{2}} \biggl[ \int _{0}^{1}\vert \overline{r}-r\vert ^{m}\,dx \biggr] ^{\frac{1}{m}}-O \bigl( n^{\frac {p}{2}+1+\frac{2-p}{m}} \bigr) \\ &\quad=p\pi_{p}^{p}n^{p+1-\frac{1}{m}} \Biggl[ \sum _{k=0}^{n-1}\bigl\vert l_{k}^{n}- \overline{l}_{k}^{n}\bigr\vert ^{m} \Biggr] ^{\frac {1}{m}}+2(n\pi _{p})^{\frac{p}{2}} \biggl[ \int _{0}^{1}\vert \overline{r}-r\vert ^{m}\,dx \biggr] ^{\frac{1}{m}}-O \bigl( n^{\frac {p}{2}+1+\frac{2-p}{m}} \bigr) . \end{aligned}$$

Hereby as n approaches infinity,

$$ \Vert q-\overline{q}\Vert _{m}\geq pd_{0}^{m}(X, \overline{X}). $$

This completes the proof. □

4 Conclusion

In this study, we have emphasized the importance of the stability (specially Lipschitz type stability) for inverse problems. Then, some asymptotic estimates for eigenvalues, nodal parameters and potential function of the (1.1)-(1.2) eigenvalue problem have been recalled. Finally, we have examined the Lipschitz stability of an inverse nodal problem for (1.1) p-Laplacian operator.

References

  1. Koyunbakan, H: Inverse nodal problem for p-Laplacian energy-dependent Sturm-Liouville equation. Bound. Value Probl. 2013, 272 (2013); (Erratum: Inverse nodal problem for p-Laplacian energy-dependent Sturm-Liouville equation. Bound. Value Probl. 2014, 222 (2014))

    Article  MathSciNet  MATH  Google Scholar 

  2. Baumeister, J: Stable Solution of Inverse Problems. Advanced Lectures in Mathematics (1987)

    Book  MATH  Google Scholar 

  3. Jaulent, M, Jean, C: The inverse wave scattering problem for a class of potentials depending on energy. Commun. Math. Phys. 28(3), 177-220 (1972)

    Article  MathSciNet  Google Scholar 

  4. Gasymov, MG, Guseinov, GS: Determination of a diffusion operator from the spectral data. Dokl. Akad. Nauk Azerb. SSR 37(2), 19-23 (1981)

    MATH  MathSciNet  Google Scholar 

  5. Yang, CF, Zettl, A: Half inverse problems for quadratic pencils of Sturm-Liouville operators. Taiwan. J. Math. 16(5), 1829-1846 (2012)

    MATH  MathSciNet  Google Scholar 

  6. Koyunbakan, H: Inverse problem for a quadratic pencil of Sturm-Liouville operator. J. Math. Anal. Appl. 378(2), 549-554 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, YP: The inverse problem for differential pencils with eigenparameter dependent boundary conditions from interior spectral data. Appl. Math. Lett. 25(7), 1061-1067 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hryniv, R, Pronska, N: Inverse spectral problems for energy-dependent Sturm-Liouville equations. Inverse Probl. 28(8), 085008 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pronska, N: Reconstruction of energy-dependent Sturm-Liouville equations from two spectra. Integral Equ. Oper. Theory 76(3), 403-419 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Yang, CF: Trace formulae for the matrix Schrödinger equation with energy dependent potential. J. Math. Anal. Appl. 393(2), 526-533 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nabiev, AA: On a fundamental system of solutions of the matrix Schrödinger equation with a polynomial energy dependent potential. Math. Methods Appl. Sci. 33(11), 1372-1383 (2010)

    MATH  MathSciNet  Google Scholar 

  12. Yang, CF, Yu, XJ: Determination of differential pencils with spectral parameter dependent boundary conditions from interior spectral data. Math. Methods Appl. Sci. 37(6), 860-869 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sat, M, Panakhov, ES: Spectral problem for diffusion operator. Appl. Anal. 93(6), 1178-1186 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. McLaughlin, JR: Inverse spectral theory using nodal points as data - a uniqueness result. J. Differ. Equ. 73, 342-362 (1988)

    Article  MathSciNet  Google Scholar 

  15. Shen, CL: On the nodal sets of the eigenfunctions of the string equations. SIAM J. Math. Anal. 19, 1419-1424 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Yurko, VA: Inverse nodal problems for Sturm-Liouville operators on star-type graphs. J. Inverse Ill-Posed Probl. 16, 715-722 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hald, OH, McLaughlin, JR: Solutions of the inverse nodal problems. Inverse Probl. 5, 307-347 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yang, CF: Inverse nodal problems for the Sturm-Liouville operator with a constant delay. J. Differ. Equ. 257, 1288-1306 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  19. Koyunbakan, H, Yilmaz, E: Reconstruction of the potential function and its derivatives for the diffusion operator. Z. Naturforsch. A 63, 127-130 (2008)

    Google Scholar 

  20. Yang, CF: An inverse problem for a differential pencil using nodal points as data. Isr. J. Math. 204(1), 431-446 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  21. Law, CK, Yang, CF: Reconstruction of the potential function and its derivatives using nodal data. Inverse Probl. 14, 299-312 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, CF: Reconstruction of the diffusion operator from nodal data. Z. Naturforsch. A 65, 100-106 (2010)

    Article  Google Scholar 

  23. Law, CK, Lian, WC, Wang, WC: Inverse nodal problem and Ambarzumyan problem for the p-Laplacian. Proc. R. Soc. Edinb., Sect. A, Math. 139(6), 1261-1273 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Binding, PA, Rynne, BP: Variational and non-variational eigenvalues of the p-Laplacian. J. Differ. Equ. 244, 24-39 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  25. Brown, BM, Reichel, W: Eigenvalues of the radially symmetric p-Laplacian in \(R^{n}\). J. Lond. Math. Soc. 59, 657-675 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, WC, Cheng, YH, Lian, WC: Inverse nodal problems for the p-Laplacian with eigenparameter dependent boundary conditions. Math. Comput. Model. 54(11-12), 2718-2724 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Walter, W: Sturm-Liouville theory for the radial p-operator. Math. Z. 227, 175-185 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang, WC: Direct and inverse problems for one dimensional p-Laplacian operators. Ph.D. thesis, National Sun Yat-Sen University (2010)

  29. Elbert, A: On the half-linear second order differential equations. Acta Math. Hung. 49, 487-508 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  30. Binding, P, Drábek, P: Sturm-Liouville theory for the p-Laplacian. Studia Sci. Math. Hung. 40, 375-396 (2003)

    MATH  MathSciNet  Google Scholar 

  31. Law, CK, Tsay, J: On the well-posedness of the inverse nodal problem. Inverse Probl. 17, 1493-1512 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Marchenko, VA, Maslov, KV: Stability of the problem of recovering the Sturm-Liouville operator from the spectral function. Sb. Math. 81(123), 475-502 (1970)

    Article  MATH  Google Scholar 

  33. McLaughlin, JR: Stability theorems for two inverse spectral problems. Inverse Probl. 4, 529-540 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  34. Yilmaz, E, Koyunbakan, H: On the high order Lipschitz stability of inverse nodal problem for string equation. Dyn. Contin. Discrete Impuls. Syst., Ser. A Math. Anal. 21, 79-88 (2014)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for valuable comments and suggestions on improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Yilmaz.

Additional information

Competing interests

The authors declare to have no competing interests.

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, E., Goktas, S. & Koyunbakan, H. On the Lipschitz stability of inverse nodal problem for p-Laplacian Schrödinger equation with energy dependent potential. Bound Value Probl 2015, 32 (2015). https://doi.org/10.1186/s13661-015-0298-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-015-0298-4

MSC

Keywords