 Research
 Open access
 Published:
Triple positive solutions for a second order mpoint boundary value problem with a delayed argument
Boundary Value Problems volume 2015, Article number: 178 (2015)
Abstract
In this paper, we establish the new expression and properties of Green’s function for an mpoint boundary value problem with a delayed argument. Furthermore, using Hölder’s inequality and a fixed point theorem due to Leggett and Williams, the existence of at least three positive solutions is also given. We discuss our problem with a delayed argument. In this case, our results cover mpoint boundary value problems without delayed arguments and are compared with some recent results. An example is included to illustrate our main results.
1 Introduction
It is well known that multipoint boundary value problems for ordinary differential equations arise in different areas of applied mathematics and physics. For example, the vibrations of a guy wire of uniform crosssection composed of N parts of different densities can be set up as a multipoint boundary value problem. Many problems in the theory of elastic stability can be handled as multipoint boundary value problems too. Recently, the existence and multiplicity of positive solutions for multipoint boundary value problems of ordinary differential equations have received a great deal of attention. To identify a few, we refer the reader to [1–18] and the references therein. Recently, Sun and Liu [19] applied the LeraySchauder nonlinear alternative to study the existence of a nontrivial solution for the problem given by
where \(\eta\in(0,1)\), \(\alpha\in R\) and \(\alpha\neq1\).
At the same time, a type of boundary value problems with deviating arguments has also received much attention. For example, in [20], Yang et al. studied the existence and multiplicity of positive solutions to a threepoint boundary value problem with an advanced argument
where \(0<\eta<1\), \(b>0\) and \(1b\eta>0\). The main tool is the fixed point index theory.
It is easy to see that the solution of problem (1.1) is concave when \(a(t)\geq0\) on \([0,1]\) and \(f(u)\geq0\) on \([0,\infty)\). However, few papers have reported the same problems where the solution is without concavity; for example, see some recent excellent results and applications of the case of ordinary differential equations with deviating arguments to a variety of problems from Jankowski [21–23], Jiang and Wei [24], Wang [25], Wang et al. [26] and Hu et al. [27].
In the present paper, we shall investigate the existence of triple positive solutions for the following mpoint boundary value problem with a delayed argument:
where \(\xi_{i}\in(0,1)\), \(\beta_{i}\in(0,+\infty)\) (\(i=1,2,\ldots, m2\)) are given constants and L denotes the linear operator
here \(a\in C([0,1],[0,+\infty))\) and \(b\in C([0,1],(0,+\infty))\).
Throughout this paper, we assume that \(\alpha(t) \not\equiv t\) on \(J=[0,1] \). In addition, ω, f and \(\beta_{i}\) (\(i=1,2,\ldots, m2\)) satisfy:
 (H_{1}):

\(\omega\in L^{p}[0,1]\) for some \(p \in[1,+\infty)\), and there exists \(n>0\) such that \(\omega(t) \geq n\) a.e. on J;
 (H_{2}):

\(f\in C([0,1]\times[0,+\infty),[0,+\infty))\), \(\alpha\in C(J,J)\) with \(\alpha(t)\leq t\) on J;
 (H_{3}):

\(\sum_{i=1}^{m2}\beta_{i}\phi(\xi_{i})<1\), where ϕ satisfies
$$ L\phi=0, \qquad \phi'(0)=0, \qquad \phi(1)=1. $$(1.3)
Remark 1.1
By a positive solution of problem (1.2) we mean a function \(x\in C^{2}(0,1)\cap C[0,1]\) with \(x(t)>0\) on \((0,1)\) that satisfies (1.2).
Remark 1.2
Generally, when \(y(t)\geq0\) on J, the solution x is not concave for the linear equation
This means that the method depending on concavity is no longer valid, and we need to introduce a new method to study this kind of problems.
For the case \(\alpha(t)\equiv t\) on J, problem (1.2) reduces to the problem studied by Feng and Ge in [11]. By using the fixed point theorem in a cone, the authors obtained some sufficient conditions for the existence, nonexistence and multiplicity of positive solutions for problem (1.2) when \(\alpha(t)\equiv t\) on J. However, Feng and Ge did not obtain any results of triple solutions on problem (1.2). This paper will resolve this problem.
In this paper, we present several new and more general results for the existence of triple positive solutions for problem (1.2) by using LeggettWilliams’ fixed point theorem. Another contribution of this paper is to study the expression and properties of Green’s function associated with problem (1.2). The expression of the integral equation is simpler than that of [11].
The organization of this paper is as follows. In Section 2, we present the expression and properties of Green’s function associated with problem (1.2). In Section 3, we present some definitions and lemmas which are useful to obtain our main results. In Section 4, we formulate sufficient conditions under which delayed problem (1.2) has at least three positive solutions. In Section 5, we provide an example to illustrate our main results.
2 Expression and properties of Green’s function
Lemma 2.1
Assume that \(\sum_{i=1}^{m2}\beta_{i}\phi(\xi _{i})\neq1\). Then, for any \(y\in C[0,1]\), the boundary value problem
has a unique solution
where
here ϕ and ψ satisfy (1.3) and
respectively.
Proof
First suppose that x is a solution of problem (2.1). Similar to the proof of Lemma 2.3 in [10], we can get
where
So
Then the proof is completed. □
Remark 2.1
The proof of Lemma 2.1 is supplementary of Theorem 3 in [28], which helps the readers to understand that (2.2) holds.
Remark 2.2
The expression of the integral equation (2.2) is different from that of (2.10) in [10] and that of (2.9) in [11], which shows that we can use a completely different technique from that of [10] and [11] to study problem (1.2).
Remark 2.3
It is not difficult from [10, 11] to show that \(\Delta >0\) and that (i) ϕ is nondecreasing on J and \(\phi>0\) on J; (ii) ψ is strictly decreasing on J.
Remark 2.4
Noticing \(a(t)\in C([0,1],[0,+\infty))\), it follows from the definition of \(q(t)\) that
where
Lemma 2.2
(See [28])
Let \(\xi\in(0,1)\), \(G(t,s)\), \(G_{1}(t,s)\) and \(H(t,s)\) be given as in Lemma 2.1. Then we have the following results:
where
Remark 2.5
From (2.8) it follows that
Remark 2.6
By (1.3), (2.4) and the definition of σ, we obtain
3 Preliminaries
In this section, we provide some background material from the theory of cones in Banach spaces, and then we state Hölder’s inequality and LeggetWilliams’ fixed point theorem. The following definitions can be found in the book by Deimling [29] as well as in the book by Guo and Lakshmikantham [30].
Definition 3.1
Let E be a real Banach space over R. A nonempty closed set \(K\subset E\) is said to be a cone provided that the following two conditions are satisfied:

(i)
\(au+bv\in K\) for all \(u, v\in K\) and all \(a\geq0\), \(b\geq0\);

(ii)
\(u, u\in K\) implies \(u=0\).
Note that every cone \(K\subset E\) induces an ordering in E given by \(x\leq y\) if and only if \(yx\in K\).
Definition 3.2
A map Λ is said to be a nonnegative continuous concave functional on a cone K of a real Banach space E if \(\Lambda:K\rightarrow R_{+}\) is continuous and
for all \(x, y\in K\) and \(t\in J\).
Definition 3.3
An operator is called completely continuous if it is continuous and maps bounded sets into precompact sets.
Lemma 3.1
(ArzelàAscoli)
A set \(M\subset C(J,R)\) is said to be a precompact set provided that the following two conditions are satisfied:

(i)
All the functions in the set M are uniformly bounded. It means that there exists a constant \(r>0\) such that \(u(t)\leq r\), \(\forall t\in J\), \(u\in M\);

(ii)
All the functions in the set M are equicontinuous. It means that for every \(\varepsilon>0\), there is \(\delta=\delta(\varepsilon )>0\), which is independent of the function u, such that
$$\biglu(t_{1})u(t_{2})\bigr< \varepsilon $$whenever \(t_{1}t_{2}<\delta\), \(t_{1}, t_{2}\in J\).
Lemma 3.2
(Hölder)
Let \(u\in L^{p}[a,b]\) and \(v\in L^{q}[a,b]\), where \(p,q\in(0,+\infty)\) and \(\frac{1}{p}+\frac {1}{q}=1\). Then \(uv\in L^{1}[a,b]\) and
Let \(u\in L^{1}[a,b]\), \(v\in L^{\infty}[a,b]\). Then \(uv\in L^{1}[a,b]\) and
The basic space used in this paper is \(E=C[0,1]\). It is well known that E is a real Banach space with the norm \(\\cdot\\) defined by
Define a cone K in E by
Define an operator \(T:K \rightarrow K\) by
Lemma 3.3
Assume that (H_{1})(H_{3}) hold. Then \(T(K)\subset K\) and \(T:K\rightarrow K\) is completely continuous.
Proof
For \(x\in K\), it follows from (2.7) and (3.2) that
It follows from (2.8), (3.2) and (3.3) that
Thus, \(T(K)\subset K\).
Next we shall show that operator T is completely continuous. We break the proof into several steps.
Step 1. Operator T is continuous. Since the function \(f(t,x)\) is continuous on \(J\times[0,+\infty)\), this conclusion can be easily obtained.
Step 2. For each constant \(l>0\), let \(B_{l}=\{x\in K:\x\\leq l\}\). Then \(B_{l}\) is a bounded closed convex set in K. \(\forall x\in B_{l}\), from (3.2), we have
where \(L= \mathop{\sup} _{t \in J, \x\ \leq l } f(s,x(\alpha(s)))\). This proves that \(T(B_{r})\) is uniformly bounded.
Step 3. The family \(\{Tx: x\in B_{l}\}\) is a family of equicontinuous functions. Since \(H(t,s)\) is continuous on \(J\times J\), and noticing \(J=[0,1]\), \(H(t,s)\) is uniformly continuous on \(J\times J\). Therefore, for all \(\varepsilon>0\), there exists \(l>0\), when \(t_{1}t_{2}< l\), such that
Then, for all \(x\in B_{l}\), when \(t_{1}t_{2}<\delta\), we get
Thus, the set \(\{Tx: x\in B_{l}\}\) is equicontinuous.
As a consequence of Step 1 to Step 3 together with Lemma 3.1, we can prove that \(T: K\rightarrow K\) is completely continuous. □
Remark 3.1
From Lemma 2.1 and (3.1), we know that \(x\in E\) is a solution of problem (1.2) if and only if x is a fixed point of operator T.
Let \(0< r_{1}< r_{2}\) be given and let β be a nonnegative continuous concave functional on the cone K. Define the convex sets \(K_{r_{1}}\), \(K(\beta,r_{1},r_{2})\) by
Finally we state LeggettWilliams’ fixed point theorem [31].
Lemma 3.4
Let K be a cone in a real Banach space E, \(A:\bar{K}_{c}\rightarrow\bar{K}_{c}\) be completely continuous and β be a nonnegative continuous concave functional on K with \(\beta(x)\leq\x\\) (\(\forall x\in\bar{K}_{c}\)). Suppose that there exist \(0< d < a < b \leq c\) such that

(i)
\(\{x\in K(\beta,a,b): \beta(x)>a\} \neq\emptyset \) and \(\beta(Ax)>a\) for \(x\in K(\beta,a,b)\);

(ii)
\(\Ax\< d\) for \(\x\\leq d\);

(iii)
\(\beta(Ax)>a\) for \(x\in K(\beta,a,c)\) with \(\Ax\>b\).
Then A has at least three fixed points \(x_{1}\), \(x_{2}\), \(x_{3}\) satisfying
4 Existence of triple positive solutions
In this section, we apply Lemma 3.2 and Lemma 3.4 to establish the existence of three positive solutions for problem (1.2). We consider the following three cases for \(\omega\in L^{p}[0,1]:p> 1\), \(p=1\), and \(p=\infty\). Case \(p>1\) is treated in the following theorem.
For convenience, we write
Let the nonnegative continuous concave functional Λ on the cone K be defined by
Note that for \(x\in K\), \(\Lambda(x)\leq\x\\).
Theorem 4.1
Assume that (H_{1})(H_{3}) hold. In addition, there exist constants \(0< d< l<\frac{l}{\sigma}\leq c\) such that
 (H_{4}):

\(f(t,x)\leq\frac{c}{\Gamma}\) for \((t,x)\in J\times[0,c]\);
 (H_{5}):

\(f(t,x)\geq\frac{l}{\Psi}\) for \((t,x)\in[0,\xi ]\times[l,\frac{l}{\sigma}]\);
 (H_{6}):

\(f(t,x)\leq\frac{d}{\Gamma}\) for \((t,x)\in J\times \in[0,d]\).
Then problem (1.2) has at least three positive solutions \(x_{1}\), \(x_{2}\) and \(x_{3}\) satisfying
For details, see Figure 1.
Proof
By the definition of operator T and its properties, it suffices to show that the conditions of Lemma 3.4 hold with respect to T.
Let \(x\in\bar{P}_{c}\). Then \(0\leq x(t) \leq c\) on J. Since \(0\leq\alpha(t)\leq t\leq1\) on J, it follows from \(0\leq x(t) \leq c\) on J that \(0\leq x(\alpha(t)) \leq c\) on J.
Consequently, for \(t\in J\) and \(x\in P_{c} \), it follows from (H_{4}), (2.8) and (3.2) that
which implies \(Tx\in P_{c}\). This proves that \(T: \bar{P}_{c}\rightarrow\bar{P}_{c}\) is completely continuous.
We first show that the condition (i) of Lemma 3.4 holds.
Take \(x(t)=\frac{1}{2} (l+\frac{l}{\sigma} )\), \(\forall t\in J\). Then
This shows that
Therefore, for all \(\{x\in K (\Lambda,l,\frac{l}{\sigma} ): \Lambda(x) > l \}\) and \(t\in J\), we have
Since \(0\leq\alpha(t)\leq t\leq\xi\) on \([0,\xi]\), it follows from \(l\leq x(t) \leq\frac{l}{\sigma}\) on \([0,\xi]\) that \(l\leq x(\alpha (t))\leq\frac{l}{\sigma}\) for \(t\in[0,\xi]\).
Therefore, it follows from Remark 2.1 and (H_{5}) that
Therefore, we have
This implies that condition (i) of Lemma 3.4 is satisfied.
Secondly, we prove that condition (ii) of Lemma 3.4 is satisfied. If \(x\in K_{d}\), then \(0\leq x(t)\leq d\) on J.
Since \(0\leq\alpha(t)\leq t \leq1\) on J, it follows from \(0\leq x(t)\leq d\) on J that \(0\leq x(\alpha(t))\leq d\) on J.
Thus it follows from (H_{6}) that
Hence, the condition (ii) of Lemma 3.4 is satisfied.
Finally, we prove that the condition (iii) of Lemma 3.4 is satisfied.
In fact, for all \(x\in K(\Lambda,l,c)\) and \(\Tx\>\frac{l}{\sigma}\), it follows from (2.5), (2.9), (3.2) and (3.3) that
This gives the proof of the condition (iii) of Lemma 3.4.
To sum up, the hypotheses of Lemma 3.4 hold. Therefore, an application of Lemma 3.4 implies that problem (1.2) has at least three positive solutions \(x_{1}\), \(x_{2}\) and \(x_{3}\) such that
□
The following corollary deals with the case \(p=\infty\).
Corollary 4.1
Assume that (H_{1})(H_{6}) hold. Then problem (1.2) has at least three positive solutions \(x_{1}\), \(x_{2} \) and \(x_{3}\) satisfying (4.1).
Proof
Let \(\H\_{1}\\omega\_{\infty}\) replace \(\H\_{q}\ \omega\_{p}\) and repeat the argument above, we can get the corollary. □
Finally we consider the case of \(p=1\). Let
 \((\mathrm{H}_{4})^{\prime}\) :

\(f(t,x)\leq\frac{c}{\Gamma_{1}}\) for \((t,x)\in J\times[0,c]\);
 \((\mathrm{H}_{6})^{\prime}\) :

\(f(t,x)\leq\frac{d}{\Gamma_{1}}\) for \((t,x)\in J\times\in[0,d]\),
where
Corollary 4.2
Assume that (H_{1})(H_{3}), \((\mathrm{H}_{4})^{\prime}\), (H_{5}) and \((\mathrm{H}_{6})^{\prime}\) hold. Then problem (1.2) has at least three positive solutions \(x_{1}\), \(x_{2} \) and \(x_{3}\) satisfying (4.1).
Proof
Similar to the proof of (4.1), it follows from (2.3) and \((\mathrm{H}_{4})^{\prime}\) that
which shows that \(Tx\in\bar{K}_{c}\), \(\forall x\in\bar{K}_{c}\).
Next turning to \((\mathrm{H}_{6})^{\prime}\), we have
Similar to the proof of Theorem 4.1, we can get Corollary 4.2. □
Remark 4.1
Comparing with Feng and Ge [11], the main features of this paper are as follows.

(i)
Three positive solutions are available.

(ii)
\(\alpha(t) \not\equiv t\) is considered throughout this paper.

(iii)
\(\omega(t)\) is \(L^{p}\)integrable, not only \(\omega(t)\in C(0,1)\) on \(t\in J\).
5 An example
In this section, we present an example. Let
Example 5.1
Consider the following threepoint boundary value problem:
where \(\alpha\in C(J,J)\), \(\alpha(t)\leq t\) on J and
This means that problem (5.1) involves the delayed argument α. For example, we can take \(\alpha(t)=t^{3}\). It is clear that ω is nonnegative and \(\omega\in L^{2}[0,1]\).
Conclusion 5.1
Problem (5.1) has at least three positive solutions \(x_{1}\), \(x_{2}\) and \(x_{3}\) satisfying (4.1).
Proof
It follows from (1.3) and (2.4) that ϕ and ψ satisfy
where \(Lx=x''(t)+x(t)\) and
On the other hand, it follows from \(a(t)=0\), \(m=3\), \(\alpha _{1}=e^{\frac{1}{2}}\) and \(\omega(t)=\frac{1}{t\frac{1}{2}^{\frac {1}{3}}}\) that
Choosing \(0< d< l<\frac{l}{\sigma}\leq c\), we have
which shows that (H_{4})(H_{6}) hold.
By Theorem 4.1, problem (5.1) has least three positive solutions \(x_{1}\), \(x_{2}\) and \(x_{3}\) satisfying (4.1). □
References
Gupta, CP: A generalized multipoint boundary value problem for second order ordinary differential equations. Appl. Math. Comput. 89, 133146 (1998)
Feng, W, Webb, JRL: Solvability of mpoint boundary value problems with nonlinear growth. J. Math. Anal. Appl. 212, 467480 (1997)
Wei, Z, Pang, C: Positive solutions of some singular mpoint boundary value problems at nonresonance. Appl. Math. Comput. 171, 433449 (2005)
Liu, B: Positive solutions of a nonlinear fourpoint boundary value problems in Banach spaces. J. Math. Anal. Appl. 305, 253276 (2005)
Zhao, Y, Chen, H: Existence of multiple positive solutions for mpoint boundary value problems in Banach spaces. J. Comput. Appl. Math. 215, 7990 (2008)
Eloe, PW, Henderson, J: Positive solutions and nonlinear multipoint conjugate eigenvalue problems. Electron. J. Differ. Equ. 1997, 3 (1997)
Webb, JRL: Positive solutions of some three point boundary value problems via fixed point index theory. Nonlinear Anal. 47, 43194332 (2001)
He, X, Ge, W: Triple solutions for secondorder threepoint boundary value problems. J. Math. Anal. Appl. 268, 256265 (2002)
Kosmatov, N: Symmetric solutions of a multipoint boundary value problem. J. Math. Anal. Appl. 309, 2536 (2005)
Ma, R: Existence of positive solutions for a nonlinear mpoint boundary value problem. Acta Math. Sin. 46, 785794 (2003)
Feng, M, Ge, W: Positive solutions for a class of mpoint singular boundary value problems. Math. Comput. Model. 46, 375383 (2007)
Xu, X: Positive solutions for singular mpoint boundary value problems with positive parameter. J. Math. Anal. Appl. 291, 352367 (2004)
Cheung, WS, Ren, JL: Positive solutions for mpoint boundaryvalue problems. J. Math. Anal. Appl. 303, 565575 (2005)
Jiang, W, Guo, Y: Multiple positive solutions for secondorder mpoint boundary value problems. J. Math. Anal. Appl. 327, 415424 (2007)
Yang, L, Liu, X, Jia, M: Multiplicity results for secondorder mpoint boundary value problem. J. Math. Anal. Appl. 324, 532542 (2006)
Sun, Y: Positive solutions of nonlinear secondorder mpoint boundary value problem. Nonlinear Anal. 61, 12831294 (2005)
Liu, YS, O’Regan, D: Multiplicity results using bifurcation techniques for a class of fourthorder mpoint boundary value problems. Bound. Value Probl. 2009, 970135 (2009)
Liu, X, Qiu, J, Guo, Y: Three positive solutions for secondorder mpoint boundary value problems. Appl. Math. Comput. 156, 733742 (2004)
Sun, YP, Liu, LS: Solvability for a nonlinear secondorder threepoint boundary value problem. J. Math. Anal. Appl. 296, 265275 (2004)
Yang, C, Zhai, C, Yan, J: Positive solutions of the three point boundary value problem for second order differential equations with an advanced argument. Nonlinear Anal. 65, 20132023 (2006)
Jankowski, T: Existence of solutions of boundary value problems for differential equations with delayed arguments. J. Comput. Appl. Math. 156, 239252 (2003)
Jankowski, T: Advanced differential equations with nonlinear boundary conditions. J. Math. Anal. Appl. 304, 490503 (2005)
Jankowski, T: Nonnegative solutions to nonlocal boundary value problems for systems of secondorder differential equations dependent on the firstorder derivatives. Nonlinear Anal. 87, 83101 (2013)
Jiang, D, Wei, J: Monotone method for first and secondorder periodic boundary value problems and periodic solutions of functional differential equations. Nonlinear Anal. 50, 885898 (2002)
Wang, G: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments. J. Comput. Appl. Math. 236, 24252430 (2012)
Wang, G, Zhang, L, Song, G: Systems of first order impulsive functional differential equations with deviating arguments and nonlinear boundary conditions. Nonlinear Anal. 74, 974982 (2011)
Hu, C, Liu, B, Xie, S: Monotone iterative solutions for nonlinear boundary value problems of fractional differential equation with deviating arguments. Appl. Math. Comput. 222, 7281 (2013)
Zhang, X, Feng, M: Green’s function and positive solutions for a secondorder singular boundary value problem with integral boundary conditions and a delayed argument. Abstr. Appl. Anal. 2014, Article ID 393187 (2014)
Deimling, K: Nonlinear Functional Analysis. Springer, Berlin (1985)
Guo, D, Lakshmikantham, V: Nonlinear Problems in Abstract Cons. Academic Press, New York (1998)
Leggett, R, Williams, L: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673688 (1979)
Acknowledgements
We wish to express our thanks to Prof. Xuemei Zhang, Department of Mathematics and Physics, North China Electric Power University, Beijing, P.R. China, for her kind help, careful reading, and making useful comments on the earlier version of this paper. The authors are also grateful to anonymous referees for their constructive comments and suggestions, which has greatly improved this paper. This work is sponsored by the project NSFC (11301178), the Fundamental Research Funds for the Central Universities (2014MS58) and the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201511232018).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
JZ checked the proofs and verified the calculation. MF completed the main study and carried out the results of this article. All the authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zhou, J., Feng, M. Triple positive solutions for a second order mpoint boundary value problem with a delayed argument. Bound Value Probl 2015, 178 (2015). https://doi.org/10.1186/s136610150436z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s136610150436z