- Research
- Open Access
- Published:
Existence of positive solutions for a third-order multipoint boundary value problem and extension to fractional case
Boundary Value Problems volume 2016, Article number: 197 (2016)
Abstract
In this paper, we study a nonlinear third-order multipoint boundary value problem by the monotone iterative method. We then obtain the existence of monotone positive solutions and establish iterative schemes for approximating the solutions. In addition, we extend the considered problem to the Riemann-Liouville-type fractional analogue. Finally, we give a numerical example for demonstrating the efficiency of the theoretical results.
1 Introduction
In this article, we are concerned with the existence of monotone positive solutions to the third-order and fractional-order multipoint boundary value problems. In the first part, we consider the following third-order multipoint boundary value problem:
where \(0<\eta_{1}<\eta_{2}<\cdots<\eta_{m}<1\) (\(m\geqslant1\)), \(\alpha _{i}\geqslant0\) (\(i=1,2,\ldots,m\)), and \(\sum_{i=1}^{m}\alpha_{i}\eta_{i}<1\).
Presently, the study of existence of positive solutions of third-order boundary value problems has gained much attention [1–12]. For example, Zhang et al. [1] obtained the existence of single and multiple monotone positive solutions for problem (1) by replacing \(q(t)f(t,u(t),u'(t))\) with \(\lambda a(t)f(t,u(t))\), where λ is a positive parameter. By the Guo-Krasnoselskii fixed point theorem, the authors established the intervals of the parameter, which yields the existence of one, two, or infinitely many monotone positive solutions under some suitable conditions. Zhang and Sun [2] established a generalization of the Leggett-Williams fixed point theorem and studied the existence of multiple nondecreasing positive solutions for problem (1) by replacing \(q(t)f(t,u(t),u'(t))\) with \(f(t,u(t),u'(t),u''(t))\). Recently, by using the Leray-Schauder nonlinear alternative, the Banach contraction theorem, and the Guo-Krasnoselskii theorem, Guezane-Lakoud and Zenkoufi [3] discussed the existence, uniqueness, and positivity of a solution in (1) with \(q(t)\equiv1\).
In the second part, we extend our discussion to the fractional case by considering the boundary value problems with Riemann-Liouville fractional derivative given by
where \(0<\eta_{1}<\eta_{2}<\cdots<\eta_{m}<1\) (\(m\geqslant1\)), \(2 <\alpha< 3\), \(\alpha_{i}\geqslant0\) (\(i=1,2,\ldots,m\)), and \(\sum_{i=1}^{m}\alpha_{i}\times \eta_{i}^{\alpha-2}<1\). Presently, fractional differential equations have attracted increasing interest in the research community [13–31], for example, specially introducing the fractional dynamics into the synchronization of complex networks [32, 33]. Problem (2) with \(q(t)f(t,u(t),u'(t))=\tilde{f}(t,u(t))\) has been studied in [34–36]. Zhong [34] studied the existence and multiplicity of positive solutions by the Krasnoselskii and Leggett-Williams fixed point theorems. Liang and Zhang [35] investigated the existence and uniqueness of positive and nondecreasing solutions by using a fixed point theorem in partially ordered sets and the lower and upper solution method. Cabrera et al. [36] focused themselves on the existence and uniqueness of a positive and nondecreasing solution based on a fixed point theorem in partially ordered sets, which is different from that used in [35].
2 Preliminaries
In this section, we assume that the following conditions hold:
-
(H1)
\(0<\eta_{1}<\eta_{2}<\cdots<\eta_{m}<1\) (\(m\geqslant1\)), \(\alpha _{i}\geqslant0\) (\(i=1,2,\ldots,m\)), \(\rho:=\sum_{i=1}^{m}\alpha_{i}\eta_{i}<1\);
-
(H2)
\(q\in L^{1}[0,1]\) is nonnegative, and \(0<\int _{0}^{1}(1-s)q(s)\,ds<\infty\);
-
(H3)
\(f\in C([0,1]\times[0,\infty)\times[0, \infty),[0,\infty))\), and \(f(t,0,0)\not\equiv0\) for \(t\in(0,1)\).
Lemma 1
see [3]
Let \(h\in C(0,1)\cap L[0,1]\). Then the boundary value problem
has a unique solution
where
and
In the following, we provide some properties of the functions \(H(t,s)\), \(H_{1}(t,s)\), and \(G(t,s)\).
Lemma 2
For all \((t, s)\in[0,1]\times[0,1]\), we have:
-
(a)
\(t^{2}H(1,s)\leqslant H(t,s)\leqslant H(1,s)\);
-
(b)
\(0\leqslant H(t,s)\leqslant\frac{1}{2}t^{2}(1-s)\), \(0\leqslant H_{1}(t,s)\leqslant t(1-s)\);
-
(c)
\(t^{2}G(1,s)\leqslant G(t,s)\leqslant G(1,s)\);
-
(d)
\(G(t,s)\leqslant\frac{(1-s)t^{2}}{2(1-\rho)}\), \(\frac {\partial G(t,s)}{\partial t}\leqslant\frac{(1-s)t}{1-\rho}\).
Proof
For a proof of (a), see [3]. It is easy to check that (b) holds. Next, we prove (c). By Lemma 2(a) and (3),
On the other hand,
This means that (c) holds.
Finally, we prove (d). By Lemma 2(b) and (3) we have
For s fixed, this gives
This completes the proof. □
In this paper, to study (1), we will use the space \(E=C^{1}[0,1]\) equipped with the norm
Define the cone \(K\subset E\) by
Introduce the integral operator \(T: K\to E\) by
where \(G (t, s)\) is defined by (3). By Lemma 1, the problem (1) has a solution \(u\in K\) if u is a fixed point of T defined by (4).
Lemma 3
Let (H1)-(H3) hold. Then \(T:K\to K\) is completely continuous.
Proof
Suppose that \(u\in K\). In view of Lemma 2(a),
which implies that
On the other hand, we have
Using inequalities (5) and (6) yields
It is easy to see that \((Tu)'(t)\geqslant0\) for \(t\in[0,1]\). Hence, the operator T maps K into itself. In addition, a standard argument shows that \(T:K\to K\) is completely continuous. This completes the proof. □
3 Main results
The main results of this section are given as follows. For notational convenience, denote
Theorem 1
Suppose that conditions (H1)-(H3) hold. Let \(a>0\) and suppose that f satisfies the following condition:
Then problem (1) has two monotone positive solutions v and w, which satisfy
-
\(0<\|v\|\leqslant a\) and \(\lim_{n\to\infty}v_{n}=v\), where \(v_{n}=Tv_{n-1}\), \(n=1,2,\ldots \) , \(v_{0}(t)=0\), \(t\in[0,1]\);
-
\(0<\|w\|\leqslant a\) and \(\lim_{n\to\infty}w_{n}=w\), where \(w_{n}=Tw_{n-1}\), \(n=1,2,\ldots \) , \(w_{0}(t)=\frac{1}{2}at^{2}\), \(t\in[0,1]\).
Proof
Firstly, we check that \(T:K_{a}\to K_{a}\), where \(K_{a}=\{u\in K:\|u\|\leqslant a\}\). In fact, if \(u\in K_{a}\), then
which, together with condition (7) and Lemma (2)(d), implies that
Thus, by Lemma 2 we have
and
Inequalities (8) and (9) give \(\|T\|\leqslant a\). Thus, \(T:K_{a}\to K_{a}\).
Now, we prove that there exist \(w, v\in K_{a}\) such that \(\lim_{n\to \infty}w_{n}=w\), \(\lim_{n\to \infty}v_{n}=v\), and w, v are monotone positive solutions of problem (1).
Indeed, in view of \(w_{0}, v_{0}\in K_{a}\) and \(T:K_{a}\to K_{a}\), we have \(w_{n}, v_{n}\in K_{a}\), \(n=0,1,2,\ldots \) . Since \(\{w_{n}\}_{n=1}^{\infty}\) and \(\{v_{n}\}_{n=1}^{\infty}\) are bounded and T is completely continuous, we know that the sets \(\{w_{n}\}_{n=1}^{\infty}\) and \(\{v_{n}\}_{n=1}^{\infty}\) are sequentially compact sets. Since \(w_{1}=Tw_{0}=T(\frac{1}{2}at^{2})\in K_{a}\), by (7) and (4) we have
and
Thus,
Further,
Finally, this gives
Hence, there exists \(w\in K_{a}\) such that \(\lim_{n\to\infty}w_{n}=w\). This, together with the continuity of T and \(w_{n+1}= Tw_{n}\), implies that \(Tw=w\). By a similar argument there exists \(v\in K_{a}\) such that \(\lim_{n\to\infty}v_{n}=v\) and \(v=Tv\).
Thus, w and v are two nonnegative solutions of problem (1). Because the zero function is not a solution of problem (1), we have \(\max_{0\leqslant t\leqslant1}|w(t)|>0\) and \(\max_{0\leqslant t\leqslant1}|v(t)|>0\), and from the definition of the cone K it follows that \(w(t)\geqslant t^{2}\max_{0\leqslant t\leqslant1}|w(t)|>0\), \(v(t)\geqslant t^{2}\max_{0\leqslant t\leqslant1}|v(t)|>0\), \(t\in(0,1]\), that is, w and v are positive solutions of problem (1). The proof is completed. □
4 An example
We consider the following four-point boundary value problem:
In this case,
It is obvious that (H1)-(H3) hold. By simple calculations we obtain \(\varLambda _{1}=1\). Let \(a=2\). Then
Then all hypotheses of Theorem 1 hold. Hence, problem (10) has two positive and nondecreasing solutions v and w such that \(0<\|v\|\leqslant2\), \(\lim_{n\to\infty}v_{n}=v\), where \(v_{0}(t)=0\), \(t\in[0,1]\), and \(0<\|w\|\leqslant2\), \(\lim_{n\to\infty}w_{n}=w\), where \(w_{0}(t)=t^{2}\), \(t\in[0,1]\).
For \(n=0,1,2,\ldots \) , the two iterative schemes are
and
The first, second, and third terms of these two schemes are as follows:
and
5 Fractional case
In this section, we consider the boundary value problems with Riemann-Liouville fractional derivative (2). Before proceeding further, we recall some basic definitions of fractional calculus [37].
Definition 1
The Riemann-Liouville fractional derivative of order \(\alpha> 0\) of a continuous function \(h:[0,\infty)\to\mathbb{R}\) is defined to be
where Γ denotes the Euler gamma function, and \([\alpha]\) denotes the integer part of a number α, provided that the right side is pointwise defined on \((0,\infty)\).
Definition 2
The Riemann-Liouville fractional integral of order α is defined as
provided that the integral exists.
In this section, we assume that the following conditions hold:
-
(A1)
\(0<\eta_{1}<\eta_{2}<\cdots<\eta_{m}<1\), \(\alpha_{i}\geqslant0\) (\(i=1,2,\ldots,m\)), and \(\rho=\sum_{i=1}^{m}\alpha_{i}\eta_{i}^{\alpha-2}\) with \(\rho<1\),
-
(A2)
\(q\in L^{1}[0,1]\) is nonnegative, and \(0<\int _{0}^{1}(1-s)^{\alpha-2}q(s)\,ds<\infty\),
-
(A3)
\(f\in C([0,1]\times[0,\infty)\times[0, \infty),[0,\infty))\), and \(f(t,0,0)\not\equiv0\) for \(t\in(0,1)\).
Lemma 4
[34]
Let \(h\in C(0,1)\cap L[0,1]\). Then the boundary value problem
has a unique solution
where
and
Lemma 5
For all \((t, s)\in[0,1]\times[0,1]\), we have:
-
(a)
\(t^{\alpha-1}H(1,s)\leqslant H(t,s)\leqslant H(1,s)\);
-
(b)
\(0\leqslant H(t,s)\leqslant\frac{t^{\alpha -1}(1-s)^{\alpha-2}}{\varGamma (\alpha)}\), \(0\leqslant H_{1}(t,s)\leqslant\frac{t^{\alpha-2}(1-s)^{\alpha-2}}{\varGamma (\alpha-1)}\);
-
(c)
\(t^{\alpha-1}G(1,s)\leqslant G(t,s)\leqslant G(1,s)\);
-
(d)
\(0\leqslant G(t,s)\leqslant\frac{t^{\alpha -1}(1-s)^{\alpha-2}}{\varGamma (\alpha)(1-\rho)}\), \(0\leqslant\frac{\partial G(t,s)}{\partial t}\leqslant\frac{t^{\alpha -2}(1-s)^{\alpha-2}}{\varGamma (\alpha-1)(1-\rho)}\).
Let
Theorem 2
Suppose that (A1)-(A3) hold. Let \(a>0\) and suppose that f satisfies the following condition:
Then problem (2) has two monotone positive solutions v and w such that
-
\(0<\|v\|\leqslant a\) and \(\lim_{n\to\infty}v_{n}=v\), where \(v_{n}=Tv_{n-1}\), \(n=1,2,\ldots \) , \(v_{0}(t)=0\), \(t\in[0,1]\);
-
\(0<\|w\|\leqslant a\) and \(\lim_{n\to\infty}w_{n}=w\), where \(w_{n}=Tw_{n-1}\), \(n=1,2,\ldots \) , \(w_{0}(t)=\frac{a}{\varGamma (\alpha)}t^{\alpha -1}\), \(t\in[0,1]\).
The proof is similar to that of Theorem 1, so we omit it.
References
Zhang, H, Wang, C, Huo, W, Pang, G: Monotone positive solutions for singular third-order m-point boundary value problems. Commun. Comput. Inf. Sci. 243, 1-8 (2011)
Zhang, H, Sun, J: A generalization of the Leggett-Williams fixed point theorem and its application. J. Appl. Math. Comput. 39, 385-399 (2012)
Guezane-Lakoud, A, Zenkoufi, L: Existence of positive solutions for a third-order multi-point boundary value problem. Appl. Math. 3, 1008-1013 (2012)
Jiang, W, Li, F: Several existence theorems of monotone positive solutions for third-order multi-point boundary value problems. Bound. Value Probl. 2007, 17951 (2007)
Shi, A, Zhang, H, Sun, J: Singular third-order m-point boundary value problems. Commun. Appl. Anal. 12, 353-364 (2008)
Sun, J, Zhang, H: Existence of solution and positive solution for a nonlinear third-order m-point BVP. Fixed Point Theory Appl. 2010, 126192 (2010)
Sun, J, Jin, F: Existence of solutions to third-order m-point boundary-value problems. Electron. J. Differ. Equ. 2008, 125 (2008)
Li, D, Wang, L, Pei, M: Existence and monotone iteration of positive pseudo symmetric solutions for a third-order four-point BVP with p-Laplacian. Abstr. Appl. Anal. 2013, 192509 (2013)
Yang, L, Shen, C, Xie, D: Positive solutions for resonant and nonresonant nonlinear third-order multipoint boundary value problems. Abstr. Appl. Anal. 2013, 519346 (2013)
Guo, L, Sun, J, Zhao, Y: Existence of positive solutions for nonlinear third-order three-point boundary value problem. Nonlinear Anal. 68, 3151-3158 (2008)
Li, S: Positive solutions of nonlinear singular third-order two-point boundary value problem. J. Math. Anal. Appl. 323, 413-425 (2006)
Graef, JR, Yang, B: Existence and nonexistence of positive solutions of a nonlinear third order boundary value problem. Electron. J. Qual. Theory Differ. Equ. 2008, 9 (2008)
Jafari, H, Daftardar-Gejji, V: Positive solutions of nonlinear fractional boundary value problems using Adomian decomposition method. Appl. Math. Comput. 180, 700-706 (2006)
Liang, S, Zhang, J: Existence of multiple positive solutions for m-point fractional boundary value problems on an infinite interval. Math. Comput. Model. 54, 1334-1346 (2011)
Ahmad, B, Ntouyas, SK, Alsulami, HH: Existence theory for nth order nonlocal integral boundary value problems and extension to fractional case. Abstr. Appl. Anal. 2013, 183813 (2013)
Zhang, S: Positive solutions for boundary-value problems of nonlinear fractional differential equations. Electron. J. Differ. Equ. 2006, 36 (2006)
Zhao, Y, Sun, S, Han, Z, Zhang, M: Positive solutions for boundary value problems of nonlinear fractional differential equations. Appl. Math. Comput. 217, 6950-6958 (2011)
Xu, X, Jiang, D, Yuan, C: Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation. Nonlinear Anal. 71, 4676-4688 (2009)
Ahmad, B, Wang, G: A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations. Comput. Math. Appl. 62, 1341-1349 (2011)
Ahmad, B, Nieto, JJ: Existence of solutions for nonlocal boundary value problems of higher-order nonlinear fractional differential equations. Abstr. Appl. Anal. 2009, 494720 (2009)
Bai, Z, Qiu, Z: Existence of positive solution for singular fractional differential equation. Appl. Math. Comput. 215, 2761-2767 (2009)
Bai, C, Sun, W: Existence and multiplicity of positive solutions for singular fractional boundary value problems. Comput. Math. Appl. 63, 1369-1381 (2012)
Zhang, X, Liu, L, Wu, Y: The eigenvalue problem for a singular higher order fractional differential equation involving fractional derivatives. Appl. Math. Comput. 218, 8526-8536 (2012)
O’Regan, D, Staněk, S: Fractional boundary value problems with singularities in space variables. Nonlinear Dyn. 71, 641-652 (2013)
Caballero, J, Harjani, J, Sadarangant, K: Positive and nondecreasing solutions to a singular boundary value problem for nonlinear fractional differential equations. Commun. Appl. Anal. 15, 265-272 (2011)
Agarwal, RP, Liu, Y, O’Regan, D, Tian, C: Positive solutions of two-point boundary value problems for fractional singular differential equations. Differ. Equ. 48, 619-629 (2012)
Sun, Y, Sun, Y: Positive solutions and monotone iterative sequences for a fractional differential equation with integral boundary conditions. Adv. Differ. Equ. 2014, 29 (2014)
Zhang, X, Sun, Y: Monotone iterative methods of positive solutions for fractional differential equations involving derivatives. Math. Probl. Eng. 2014, 254012 (2014)
Baleanu, D, Agarwal, RP, Khan, H, Khan, RA, Jafari, H: On the existence of solution for fractional differential equations of order \(3<\delta_{1}\leq4\). Adv. Differ. Equ. 2015, 362 (2015)
Baleanu, D, Khan, H, Jafari, H, Khan, RA, Alipour, M: On existence results for solutions of a coupled system of hybrid boundary value problems with hybrid conditions. Adv. Differ. Equ. 2015, 318 (2015)
Jafari, H, Baleanu, D, Khan, H, Khan, RA, Khan, A: Existence criterion for the solutions of fractional order p-Laplacian boundary value problems. Bound. Value Probl. 2015, 164 (2015)
Ma, W, Li, C, Wu, Y: Impulsive synchronization of fractional Takagi-Sugeno fuzzy complex networks. Chaos 26, 084311 (2016)
Sun, W, Wang, S, Wang, G, Wu, Y: Lag synchronization via pinning control between two coupled networks. Nonlinear Dyn. 79, 2659-2666 (2015)
Zhong, W: Positive solutions for multipoint boundary value problem of fractional differential equations. Abstr. Appl. Anal. 2010, 601492 (2010)
Liang, S, Zhang, J: Existence and uniqueness of positive solutions to m-point boundary value problem for nonlinear fractional differential equation. J. Appl. Math. Comput. 38, 225-241 (2012)
Cabrera, IJ, Harjani, J, Sadarangani, KB: Positive and nondecreasing solutions to an m-point boundary value problem for nonlinear fractional differential equation. Abstr. Appl. Anal. 2012, 826580 (2012)
Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 61673144) and Hangzhou Polytechnic (KZYZ-2009-2).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
TH studied the theoretical analysis; YS and WS performed the numerical results; TH, YS, and WS wrote and revised the paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Hu, T., Sun, Y. & Sun, W. Existence of positive solutions for a third-order multipoint boundary value problem and extension to fractional case. Bound Value Probl 2016, 197 (2016). https://doi.org/10.1186/s13661-016-0704-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0704-6
MSC
- 34A08
- 34B10
- 34B15
- 34B18
Keywords
- monotone iteration
- positive solutions
- multipoint BVPs
- fractional differential equations