- Research
- Open access
- Published:
Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions
Boundary Value Problems volume 2017, Article number: 11 (2017)
Abstract
In this paper, we use the Banach contraction mapping principle and Leray-Schauder degree theory to obtain some results of the existence and uniqueness of solution for a class of fractional boundary value problem with integral and anti-periodic boundary conditions.
1 Introduction
Recently, fractional differential equations have been proved to be significance tools in the fields of economics, science and engineering such as materials and mechanical systems, control and robotics, etc. (see [1–6] and the references therein). It is found that fractional differential equations are applied in modeling for physical phenomena such as fluid flow, and signal and image processing. Boundary value problems of fractional equations have been considered in many papers (see [7–10] and the references therein).
In [11], Cababa and Wang considered a fractional boundary value problem with one integral and two zero initial conditions, the existence of positive solution is obtained by constructing a proper cone.
In [12], Agrawal and Ahmad discussed the following problem:
They got some existence results via topological degree theory.
In [13], Xu researched the following problem:
Based on the above work, we are interested in the following fractional differential problem:
where \(1<\alpha<2\), \(0\leq\beta<1\), \({}^{c}D_{0^{+}}^{\alpha}\) denotes the Caputo fractional derivative, \(D^{\beta}_{0^{+}}\) is the Riemann-Liouville fractional derivative, \(f\in C([0,1]\times R,R)\), \(l\in L[0,1]\) with \(\Gamma(1-\beta)\int_{0}^{1}l(s)\,ds<1\). The existence and uniqueness of solutions for (1.3) will be derived by the Banach contraction mapping principle and Leray-Schauder degree theory.
Compared with the previous research problem, question (1.3) has wider and more general boundary conditions. It contains the situations which are in the above papers. It is necessary to study problem (1.3).
In the present paper, we present some important lemmas and theorems (in Section 2). Furthermore, we utilize the fixed point theorem and Leray-Schauder degree theory to study the existence of solutions for boundary value problem (1.3) (in Section 3). At last, we will give an example to illustrate our main results (in Section 4).
2 Preliminaries and relevant lemmas
In this section, we will recall some classic results on fractional calculus. In order to avoid redundance, as regards the definitions of the Riemann-Liouville fractional integral, the Riemann-Liouville fractional derivative, and the Caputo fractional derivative, we recommend the reader to refer to [14].
Lemma 2.1
[14]
Let \(p>0\), \(x(t)\in AC^{n}[0,1]\), then
where n is the smallest integer greater than or equal to p.
Lemma 2.2
Given \(h\in C(0,1)\), \(1<\alpha<2\), \(0\leq\beta<1\), \(l\in L[0,1]\) with \(\Gamma(1-\beta)\int_{0}^{1}l(s)\,ds<1\), then the unique solution of the following problem:
is given by
where \(\Delta=1-\Gamma(1-\beta)\int_{0}^{1}l(s)\,ds\).
Proof
From Lemma 2.1, we can get
Then
by \(u'(0)+u'(1)=0\), we have
and this yields
Moreover,
From \(D^{\beta}_{0^{+}}u(1)=\int_{0}^{1}l(s)u(s)\,ds\), we have
then
which implies that the solution of (2.1) is
This completes the proof. □
Theorem 2.1
[15]
Let X be a Banach space, assume that Ω is an open bounded subset of X with \(\theta\in\Omega\) and let \(A:\overline{\Omega }\rightarrow X\) be a completely continuous operator such that
Then A has a fixed point in Ω̅.
3 Main results
In this section we will show the existence and uniqueness of solutions for the problem (1.3).
Let \(\Lambda=\frac{1}{\Gamma(\alpha+1)}+\frac{1}{2\Gamma(\alpha)}+\frac {\Gamma(1-\beta)}{\Delta\Gamma(\alpha-\beta+1)} +\frac{\Gamma(1-\beta)}{2\Delta\Gamma(\alpha)\Gamma(2-\beta)}+\frac {\Gamma(1-\beta)}{\Delta\Gamma(\alpha+1)}\int_{0}^{1}l(s)\,ds+\frac{\Gamma (1-\beta)}{2\Delta\Gamma(\alpha)}\int_{0}^{1}l(s)\,ds\).
Now, we introduce the following hypotheses:
- (H1):
-
f satisfies the Lipschitz condition
$$\bigl\vert f(t,x)-f(t,y)\bigr\vert \leq L\vert x-y\vert ,\quad \forall t \in[0,1],x,y\in R. $$ - (H2):
-
\(\lim_{u\rightarrow0}\frac{f(t,u)}{u}=0\) is uniformly respect to \(t\in[0,1]\).
- (H3):
-
There exist \(0\leq c<\frac{1}{\Lambda}\), \(K>0\), such that \(|f(t,u)|\leq c|u|+K\), for \(t\in[0,1]\), \(u\in R\).
Let \(E=C[0,1]\) denote the Banach space endowed with the norm given by \(\|u\|=\max_{0\leq t\leq1}|u(t)|\).
Define an operator \(A:E\rightarrow E\) by
It is easy to prove that the solution for (1.3) is equivalent to the fixed point of A.
Lemma 3.1
If A is defined in (3.1), then \(A:E\rightarrow E\) is completely continuous.
Proof
Obviously, \(A:E\rightarrow E\) is continuous. For any bounded set \(\Omega\subset E\), since \(f(t,u)\) is continuous on \([0,1]\times R\), there exists a positive constant Q such that \(|f(t,u(t))|\leq Q\), for all \(t\in[0,1]\) and \(u\in\Omega\). Thus, we can obtain
which means AΩ is uniformly bounded.
Furthermore, for \(0\leq t_{1}< t_{2}\leq1\), by a simple computation
which implies that AΩ is equicontinuous. Thus, by the Arzelà -Ascoli theorem, \(A:E\rightarrow E\) is completely continuous.
The proof is completed. □
Theorem 3.1
Suppose that (H1) is satisfied, and \(L\Lambda<1\). Then (1.3) has a unique solution.
Proof
Define \(N=\max_{t\in[0,1]}|f(t,0)|\), and select \(\sigma\geq\frac{N\Lambda}{1-L\Lambda}\), define a closed ball as \(B_{\sigma}=\{u\in E:\|u\|\leq\sigma\}\), from the proof of Lemma 3.1, we derive
which means that \(\|Au\|\leq\sigma\), that is, \(A(B_{\sigma})\subset B_{\sigma}\).
In the following, for \(x,y\in E\), for each \(t\in[0,1]\), we compute
which implies A is a contraction. Thus, from the Banach contraction mapping principle, A has a unique fixed point, that is, (1.3) has a unique solution.
The proof is completed. □
Theorem 3.2
Suppose that (H2) is satisfied, then (1.3) has at least one solution.
Proof
Since \(\lim_{u\rightarrow0}\frac {f(t,u)}{u}=0\) is uniformly respect to \(t\in[0,1]\), there exist constants \(\epsilon>0\) (\(\epsilon\leq\frac{1}{\Lambda}\)) and \(\delta>0\) such that \(|f(t,u)|\leq\epsilon|u|\), for all \(0<|u|<\delta\) and \(0\leq t\leq1\).
Define \(D=\{u\in E:\|u\|<\delta\}\). Taking any \(y\in\partial D\), then \(\|y\|=\delta\). From the proof of Lemma 3.1, we know that \(|(Ay)(t)|\leq\Lambda\epsilon\|y\|\leq\|y\|\), which implies that \(\| Ay\|\leq\|y\|\). Moreover, from Lemma 3.1, A is completely continuous. Thus, by Theorem 2.1, A has at least one fixed point, that is, (1.3) has at least one solution.
The proof is completed. □
Theorem 3.3
Suppose that (H3) is satisfied, then (1.3) has at least one solution.
Proof
We consider the operator equation
We shall prove that there exists at least one point \(u\in E\) satisfying (3.2).
Suppose a ball \(B_{\sigma_{0}}\subset E\) and \(B_{\sigma_{0}}=\{u\in E:\| u\|<\sigma_{0}\}\), with radius \(\sigma_{0}>0\) calculated later. We will demonstrate that \(A:\overline{B_{\sigma_{0}}}\rightarrow E\) satisfies the condition \(u\neq\lambda Au\), \(\forall u\in\partial B_{\sigma _{0}}\), \(\forall\lambda\in[0,1]\).
Due to Lemma 3.1, we know that A is completely continuous, then it is not difficult to know that \(g_{\lambda}(u)\) is also completely continuous, where \(g_{\lambda}(u)\) is defined by
From the homotopy invariance of the topological degree in Leray-Schauder degree theory, we can see
where I denotes the unit operator.
According to the nonzero property of Leray-Schauder degree, \(g_{1}(u)=u-Au=0\) for at least one \(u\in B_{\sigma_{0}}\).
Assume that \(u=\lambda Au\) for some \(\lambda\in[0,1]\) and \(u\in E\), then for \(t\in[0,1]\), similar to proof of the Lemma 3.1, we have
So \(\|u\|\leq(c\|u\|+K)\Lambda\). This yields
If \(\sigma_{0}=\frac{K\Lambda}{1-c\Lambda}+1\), then \(u\neq\lambda Au\), for any \(u\in\partial B_{\sigma_{0}}\), for all \(\lambda\in[0,1]\). Thus, equation (3.2) has at least one solution in \(B_{\sigma_{0}}\), that is, problem (1.1) has at least one solution.
The proof is completed. □
4 Examples
Example 4.1
Consider the following boundary value problem:
Let \(\alpha={\frac{3}{2}}\), \(\beta={\frac{1}{2}}\), \(l(t)=t\), \(f(t,u)=\frac{2+u\cos u}{(4+t)^{3}}\). Obviously, \(f\in C([0,1]\times R,R)\), \(l\in L[0,1]\), \(\Gamma(1-\beta)\int _{0}^{1}l(s)\,ds=\Gamma(\frac{1}{2})\int_{0}^{1}s\, ds\approx0.8862<1\). It is not difficult to calculate that \(\Delta=1-\Gamma(1-\beta)\int _{0}^{1}l(s)\,ds\approx0.1138\), \(\Lambda=\frac{1}{\Gamma(\alpha+1)}+\frac {1}{2\Gamma(\alpha)}+\frac{\Gamma(1-\beta)}{\Delta\Gamma(\alpha-\beta+1)} +\frac{\Gamma(1-\beta)}{2\Delta\Gamma(\alpha)\Gamma(2-\beta)}+\frac {\Gamma(1-\beta)}{\Delta\Gamma(\alpha+1)}\int_{0}^{1}l(s)\,ds+\frac{\Gamma (1-\beta)}{2\Delta\Gamma(\alpha)}\int_{0}^{1}l(s)\,ds\approx37.0518\), \(\frac{1}{\Lambda}\approx0.0270\). Then there exist \(c=\frac {1}{64}\) (\(0\leq c<\frac{1}{\Lambda}\)) and \(K=\frac{1}{32}\), such that \(|f(t,u)|=\frac{|2+u\cos u|}{(4+t)^{3}}\leq c|u|+K\). According to Theorem 3.3, we can see that (4.1) has at least one solution.
References
Podlubny, I: Fractional Differential Equations. Mathematics in Science and Engineering, vol. 198. Academic Press, New York (1999)
Zhang, S: The existence of a positive solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 252, 804-812 (2000)
Agarwal, RP, Benchohra, M, Hamani, S: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973-1033 (2010)
Zhou, Y: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
Oldham, K: Reactional differential equations in electrochemistry Adv. Eng. Softw. 41(1), 9-12 (2010)
Liu, F, Burrage, K: Novel techniques in parameter estimation for fractional dynamical models arising from biological systems. Comput. Math. Appl. 62(3), 822-833 (2011)
Wang, J, Zhou, Y, Wei, W: Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Syst. Control Lett. 61(4), 472-476 (2012)
Sokolov, I, Chechkin, A, Klafter, J: Fractional diffusion equation for a power-law-truncated Lévy process. Physica A 336(3-4), 245-251 (2004)
Lee, C, Chang, F: Fractional-order PID controller optimization via improved electromagnetism-like algorithm. Expert Syst. Appl. 37(12), 8871-8878 (2010)
Cui, Y: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48-54 (2016)
Cababa, A, Wang, G: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389(1), 403-411 (2012)
Agrawal, RP, Ahmad, B: Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions. Comput. Math. Appl. 62(3), 1200-1214 (2011)
Xu, YF: Fractional boundary value problems with integral and anti-periodic boundary conditions. Bull. Malays. Math. Sci. Soc. 39, 571-587 (2016)
Kilbas, A, Srivastava, H, Trujillo, J: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Smart, DR: Fixed Point Theorems. Cambridge University Press, Cambridge (1980)
Acknowledgements
The article was supported by the National Natural Science Foundation of China (Grant No. 11371027) and Anhui Provincial Natural Science Foundation (1608085MA12).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
The authors have equally made contributions to each part of this paper. All authors read and approved the final manuscript.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Qiao, Y., Zhou, Z. Existence of solutions for a class of fractional differential equations with integral and anti-periodic boundary conditions. Bound Value Probl 2017, 11 (2017). https://doi.org/10.1186/s13661-016-0745-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-016-0745-x