Open Access

Existence of solutions for fractional Sturm-Liouville boundary value problems with \(p(t)\)-Laplacian operator

Boundary Value Problems20172017:169

https://doi.org/10.1186/s13661-017-0900-z

Received: 27 April 2017

Accepted: 6 November 2017

Published: 10 November 2017

Abstract

This paper is concerned with the solvability for fractional Sturm-Liouville boundary value problems with \(p(t)\)-Laplacian operator at resonance using Mawhin’s continuation theorem. Sufficient conditions for the existence of solutions have been acquired, and they would extend the existing results. Furthermore, an example is provided to illustrate the main result.

Keywords

fractional differential equationboundary value problems \(p(t)\)-Laplacian operatorcontinuation theory

MSC

34A0834B15

1 Introduction

The last two decades have witnessed a wide application of fractional differential equations in various fields of natural science and engineering technology (see [17]). Introduced by Bagley and Torvik [1], the famous fractional differential model is used to describe radial vibration of a rigid plate connected to a massless spring immersing vertical in the ideal fluid:
$$ ay'' ( t ) + bD_{t}^{\frac{3}{2}}y ( t ) + cy ( t ) = f ( t ) , $$
where \(a,b,c > 0\), and the fractional derivative represents damping. With some theoretical discussions conducted regarding boundary value problem (BVP for short) of differential equations so far, valuable results have been obtained for BVP of fractional differential equations (see [818]). For instance, Kosmatov [12] studied the existence of solution for the following BVP of fractional differential equations using coincidence degree theory:
$$ \textstyle\begin{cases} {D^{\alpha}}u ( t ) = f ( {t,u ( t ) ,u' ( t ) } ) , \quad a \cdot e \cdot t \in ( {0,1} ) , \\ D_{0 + }^{\alpha- 2}u ( 0 ) = 0, \quad \quad \eta u ( \xi ) = u ( 1 ) , \end{cases} $$
where \({{D^{\alpha}}}\) is a Caputo fractional derivative, and \(1 < \alpha\le2\).
It is generally known that the p-Laplacian equations normally derive from nonlinear elastic mechanics and non-Newtonian fluid theory. However, in view of their significance in theory and practice, more and more attention is being paid to the existence of solutions for fractional p-Laplacian BVP. Consequently, important results have been achieved in this regard by some researchers (see [1925]). Chen and Liu [21] discussed the solvability of the following anti-periodic BVP:
$$ \textstyle\begin{cases} {}_{0}^{C}D_{t}^{\beta}{\phi_{p}} ( {{}_{0}^{C}D_{t}^{\alpha}u} ) = f ( {t,u} ) , \quad t \in[0,1], \\ u ( 0 ) = - u ( 1 ) , \quad\quad {}_{0}^{C}D_{t}^{\alpha}u ( 0 ) = - {}_{0}^{C}D_{t}^{\alpha}u ( 1 ) , \end{cases} $$
where \(0 < \alpha\), \(\beta\le1\), \({\phi_{p}} ( \cdot ) \) is a p-Laplacian operator defined by \({\phi_{p}} ( s ) = {\vert s \vert ^{p - 2}}s\) (\(s \ne0\), \(p > 1\)), \({\phi _{p}} ( 0 ) = 0\). With Schaefer’s fixed point theorem, the existence of solutions for BVP was obtained.
Mahmudov and Unul [25] studied the BVP
$$ \textstyle\begin{cases} D_{0 + }^{\beta}{\varphi_{p}} ( {D_{0 + }^{\alpha}x ( t ) } ) = f ( {t,x ( t ) ,D_{0 + }^{\gamma}x ( t ) } ) , \quad t \in [ {0,1} ] , \\ x ( 0 ) + {\mu_{1}}x ( 1 ) = {\sigma_{1}}\int _{0}^{1} {g ( {s,x ( s ) } ) \,\mathrm{d}s} , \\ x' ( 0 ) + {\mu_{2}}x' ( 1 ) = {\sigma_{2}}\int _{0}^{1} {h ( {s,x ( s ) } ) \,\mathrm{d}s} , \\ D_{0 + }^{\alpha}x ( 0 ) = 0, \quad\quad D_{0 + }^{\alpha}x ( 1 ) = \nu D_{0 + }^{\alpha}x ( \eta ) , \end{cases} $$
where \(1 < \alpha\le2\), \(0 < \beta\), \(\gamma\le1\), \(0 < \eta< 1\), \(\nu,{\mu_{i}},{\sigma_{i}} > 0\) (\({i = 1,2} \)), \(D_{0 + }^{\alpha}\) is a Caputo fractional derivative, \({\varphi_{p}} ( \cdot ) \) is a p-Laplacian operator, f, g, h are continuous functions. By constructing the Green’s functions of BVP and by using the fixed point theory, the existence and uniqueness of the solutions were obtained under suitable conditions.
As far as we are concerned, the \(p ( t ) \)-Laplacian operator is a non-standard growth operator by nature, and it mainly derives from elasticity theory, nonlinear electrorheological fluids and image restoration. A lot of research regarding BVP of fractional differential equations with \(p ( t ) \)-Laplacian operator have been quite limited so far (see [2630]). Specifically, Shen and Liu [26] studied the existence of solutions for the following BVP with \(p ( t ) \)-Laplacian operator at nonresonance and resonance by using Schaefer’s fixed point theorem and Mawhin’s continuation theorem:
$$ \textstyle\begin{cases} D_{0 + }^{\beta}{\varphi_{p ( t ) }} ( {D_{0 + }^{ \alpha}x ( t ) } ) + f ( {t,x ( t ) } ) = 0, \quad t \in ( {0,1} ) , \\ x ( 0 ) = 0, \quad\quad D_{0 + }^{\alpha- 1}x ( 1 ) = \gamma I_{0 + }^{\alpha- 1}x ( \eta ) , \quad\quad D_{0 + }^{\alpha}x ( 0 ) = 0, \end{cases} $$
where \(\dim\operatorname{Ker}L=1\), \(1 < \alpha\le2\), \(0 < \beta\le1\), \(\gamma> 1\), \(0 < \eta< 1\), \({\varphi_{p ( t ) }} ( \cdot ) \) is a \(p ( t ) \)-Laplacian operator, \(p ( t ) > 1\), \(p ( t ) \in{C^{1}} [ {0,1} ] \).
Inspired by the above findings, this paper studies the BVP subjected to Sturm-Liouville type integral boundary conditions for fractional differential equations with \(p ( t ) \)-Laplacian operator:
$$ \textstyle\begin{cases} {}^{C}D_{0 + }^{\beta}{\phi_{p ( t ) }} ( {{}^{C}D_{0 + }^{\alpha}x ( t ) } ) = f ( {t,x ( t ) ,x' ( t ) } ) , \\ x ( 0 ) + bx' ( 0 ) = \gamma\int_{0}^{\xi} {x ( t ) \,\mathrm{d}t} , \\ x ( 1 ) - mx' ( 1 ) = \sigma\int_{0}^{\eta} {x ( t ) \,\mathrm{d}t} , \\ {}^{C}D_{0 + }^{\alpha}x ( 0 ) = 0, \end{cases} $$
(1.1)
where \(0 < \beta\le1\), \(1 < \alpha\le2\), \({}^{C}D_{0 + }^{\beta}\), \({}^{C}D_{0 + }^{\alpha}\) are Caputo fractional derivatives, \(b, m, \xi, \eta\in ( {0,1} ) \), \(\sigma> 0\), \(\gamma> 0\), \(f: [ {0,1} ] \times{\mathbb{R}^{2}} \to{\mathbb{R}}\) is continuous. \({\phi_{p ( t ) }} ( \cdot ) \) is the \(p ( t ) \)-Laplacian operator, \({p ( t ) > 1}\), \(p ( t ) \in{C^{1}} [ {0,1} ] \), and
$$ \gamma\xi= 1, \quad\quad \sigma\eta= 1, \quad\quad b = \frac{1}{2}\xi, \quad\quad m = 1 - \frac{1}{2}\eta, $$
(1.2)
which leads to BVP (1.1) is resonant. It is also assumed that
$$ C = ( {\alpha+ 2} ) \bigl[ {1 - m ( {\alpha+ 1} ) } \bigr] + \xi ( {\alpha+ 1} ) ( {m\alpha- 1} ) + {\eta^{\alpha}} ( {\xi- \eta} ) \ne0. $$
(1.3)

It is worth noting that \(p(t)=p\) herein, meaning it could be the famous p-Laplacian operator. Since the \(p ( t ) \)-Laplacian operator is a nonlinear operator, it is more difficult to construct a projection operator. So our results serve as a further development for the previous findings in this sense. Furthermore, we also observe that few scholars have ever considered fractional Sturm-Liouville BVP with \(p ( t ) \)-Laplacian operator before. The kernel space herein is extended to higher dimensions as well. To be specific, it is assumed that \(\dim\operatorname{Ker}L=2\) in the article. In comparison with the case when \(\dim\operatorname{Ker}L=1\), the system is more complex.

2 Preliminaries

To facilitate understanding, we would firstly make a brief introduction about the concepts and lemmas regarding fractional derivatives and integrals in the article. For more details, please refer to the references hereunder (see [3133]).

Definition 2.1

([31])

Let X, Y be real Banach spaces and \(L:\operatorname{dom}L\subset X\rightarrow Y\) be a linear map. If \(\dim \operatorname{Ker}L = \operatorname{codim} \operatorname{Im} L < + \infty\) and ImL is a closed subset in Y, then the map L is a Fredholm operator with index zero. If there exist such continuous projections as \(P:X\rightarrow X\) and \(Q:Y\rightarrow Y\), which meet the conditions that \(\operatorname{Im}P = \operatorname{Ker}L\) and \(\operatorname{Ker}Q=\operatorname{Im}L\), then \(L |_{\operatorname{dom}L\cap\operatorname{Ker}P}:\operatorname {dom}L\cap\operatorname{Ker}P \rightarrow\operatorname{Im}L\) is reversible. We denote the inverse map by \(K_{P}\), set \({K_{P}} = L_{P}^{ - 1}\) and \({K_{P,Q}} = {K_{P}} ( {I - Q} ) \). If Ω is an open bounded subset of X and \(\operatorname{dom} L \cap\Omega\ne\varnothing\), the map N is L-compact on Ω̅ when \(QN:\overline{\Omega}\to Y\) is bounded and \({K_{P}} ( {I - Q} ) N:\overline{\Omega}\to X\) is compact.

Theorem 2.1

([31])

Let L be a Fredholm operator of index zero and N be L-compact on Ω̅. Assume that the following conditions are satisfied:
\({(a_{1})}\)

\(Lx\neq\lambda Nx\) for every \((x,\lambda)\in[( \operatorname{dom}L \setminus\operatorname{Ker}L ) \cap\partial \Omega]\times(0,1)\).

\({(a_{2})}\)

\(Nx\notin\operatorname{Im}L \) for every \(x\in\operatorname {Ker}L\cap \partial\Omega\).

\({(a_{3})}\)

\(\operatorname{deg}(QN|_{\operatorname{Ker}L},\Omega\cap \operatorname{Ker}L,0) \neq0\).

Then the equation \(Lx=Nx\) has at least one solution in \(\operatorname{dom}L \cap\Omega\).

Definition 2.2

([33])

The Riemann-Liouville fractional integral of order α (\(\alpha> 0\)) for the function \(x:(0, + \infty) \to\mathbb{R}\): is defined as
$$ I_{0 + }^{\alpha}x(t) = \frac{1}{{\Gamma(\alpha)}} \int_{0}^{t} {{(t - s)}^{\alpha- 1}}x(s) \, \mathrm{d}s, $$
assume that the right-hand side integral is defined on \((0, + \infty ) \).

Definition 2.3

([33])

The Caputo fractional integral of order α (\(\alpha> 0\)) for the function \(x:(0, + \infty) \to \mathbb{R}\): is defined as
$$ {}^{C}D_{0 + }^{\alpha}x(t) =I_{0 + }^{n - \alpha} \frac{{{d^{n}}x(t)}}{ {d{t^{n}}}} = \frac{1}{{\Gamma(n - \alpha)}} \int_{0}^{t} {{(t - s)} ^{n - \alpha- 1}}x^{(n)}(s) \,\mathrm{d}s, $$
where \(n = [ \alpha]+1\), provided that the right-hand side integral is defined on \((0, + \infty) \).

Lemma 2.1

([33])

Let \(n-1<\alpha\leq n\), if \({}^{C}D_{0+}^{ \alpha}x(t)\in C[0,1]\), then
$$ I_{0+}^{\alpha} {}^{C}D_{0+}^{\alpha}x(t)=x(t)+c_{0}+c_{1}t+c_{2}t ^{2}+\cdots+c_{n-1}t^{n-1}, $$
where \(c_{i} \in\mathbb{R}\), \(i = 0,1, \ldots,n-1\), \(n = [ \alpha]+1\).

Lemma 2.2

([33])

Let \(n-1<\alpha\leq n\), then the fractional differential \({}^{C}D_{0+}^{\alpha}x(t)=0\) has the following form:
$$ x(t)=c_{0}+c_{1}t+c_{2}t^{2}+ \cdots+c_{n-1}t^{n-1}, $$
where \(c_{i} \in\mathbb{R}\), \(i = 0,1, \ldots,n-1\), \(n = [ \alpha]+1\).

Lemma 2.3

([29])

For any \(( {t,x} ) \in [ {0,1} ] \times\mathbb{R}\), \({\varphi_{p ( t ) }} ( x ) = {\vert x \vert ^{p ( t ) - 2}} x \) is a homeomorphism from \(\mathbb{R}\) to \(\mathbb{R}\) and strictly monotone increasing for any fixed t. Moreover, its inverse operator \(\varphi_{p ( t ) }^{ - 1} ( \cdot ) \) is defined by
$$ \textstyle\begin{cases} \varphi_{p ( t ) }^{-1} ( x ) = {\vert x \vert ^{\frac{{2 - p ( t ) }}{{p ( t ) - 1}}}}x,\quad x \in\mathbb{R}\backslash \{ 0 \} , \\ \varphi_{p ( t ) }^{-1} ( 0 ) = 0, \quad x = 0 , \end{cases} $$
which is continuous and sends bounded sets into bounded sets.

Since Mawhin’s continuation theorem is applicable to linear operators, the following lemma needs to be introduced in this paper.

Lemma 2.4

BVP (1.1) is equivalent to the following problem:
$$ \textstyle\begin{cases} D_{0 + }^{\alpha}x ( t ) = \phi_{p ( t ) }^{ - 1} ( {I_{0 + }^{\beta}f ( {t,x ( t ) ,x' ( t ) } ) } ) , \quad t \in ( {0,1} ) , \\ x ( 0 ) + bx' ( 0 ) = \gamma\int_{0}^{\xi} {x ( t ) \,\mathrm{d}t} , \quad\quad x ( 1 ) - mx' ( 1 ) = \sigma\int_{0}^{\eta}{x ( t ) \,\mathrm{d}t} . \end{cases} $$
(2.1)

Proof

On the one hand, by Definition 2.2, we have
$$ {\phi_{p ( t ) }} \bigl( {D_{0 + }^{\alpha}x ( t ) } \bigr) = I_{0 + }^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) + c, \quad c \in\mathbb{R}. $$
Based on the boundary condition \({}^{C}D_{0 + }^{\alpha}x ( 0 ) = 0\), we get \(c=0\). Thus,
$$\begin{aligned}& {\phi_{p ( t ) }} \bigl( {D_{0 + }^{\alpha}x ( t ) } \bigr) = I_{0 + }^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) , \\& {D_{0 + }^{\alpha}x ( t ) = \phi_{p ( t ) }^{ - 1} \bigl( {I_{0 + }^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) } \bigr) }. \end{aligned}$$
On the other hand, if \({D_{0 + }^{\alpha}x ( t ) = \phi_{p ( t ) }^{ - 1} ( {I_{0 + }^{\beta}f ( {t,x ( t ) ,x' ( t ) } ) } ) }\), for \(t=0\), we have \(D_{0 + }^{\alpha}x ( 0 ) = 0\). Multiplying both sides of the equation by the operator \({\phi_{p ( t ) }}\) and \({D_{0 + }^{\beta}}\), we get
$$ D_{0 + }^{\beta}{\phi_{p ( t ) }} \bigl( {D_{0 + }^{\alpha }x ( t ) } \bigr) = f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) . $$
The proof is complete. □

3 Main result

Let \(X = {C^{1}} [ {0,1} ] \), \(Y = C [ {0,1} ] \) with the norm \({\Vert x \Vert _{X}} = {\max_{t \in [ {0,1} ] }} \{ {{{\Vert x \Vert }_{\infty}},{{ \Vert {x'} \Vert } _{\infty}}} \} \), \({\Vert y \Vert _{Y}} = {\Vert y \Vert _{\infty}}\), where \({\Vert x \Vert _{\infty}} = \max_{t \in [ {0,1} ] } \vert {x ( t ) } \vert \). By Lemma 2.4, BVP (1.1) is equivalent to the following problems:
$$ \textstyle\begin{cases} D_{0 + }^{\alpha}x ( t ) = \phi_{p ( t ) }^{ - 1} ( {I_{0 + }^{\beta}f ( {t,x ( t ) ,x' ( t ) } ) } ) , \quad t \in ( {0,1} ) , \\ x ( 0 ) + bx' ( 0 ) = \gamma\int_{0}^{\xi} {x ( t ) \,\mathrm{d}t} , \quad\quad x ( 1 ) - mx' ( 1 ) = \sigma\int_{0}^{\eta}{x ( t ) \,\mathrm{d}t} . \end{cases} $$
(3.1)
Define the operator \(L:\operatorname{dom}L \subset X \to Y\) by
$$ Lx = D_{0 + }^{\alpha}x ( t ) , $$
(3.2)
where
$$ \begin{aligned} \operatorname{dom}L &= \biggl\{ x \in X\Big| D_{0 + }^{\alpha}x ( t ) \in Y, x ( 0 ) + bx' ( 0 ) = \gamma \int_{0}^{\xi}{x ( t ) \,\mathrm{d}t} , \\ &\quad x ( 1 ) - mx' ( 1 ) = \sigma \int_{0}^{\eta}{x ( t ) \,\mathrm{d}t} \biggr\} . \end{aligned} $$
Let \(N:X \to Y\) as the Nemytskii operator
$$ Nx ( t ) = \phi_{p ( t ) }^{ - 1} \bigl( {I_{0 + } ^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) } \bigr) ,\quad \forall t \in [ {0,1} ] . $$
Then BVP (1.1) is equivalent to the following operator equation:
$$ Lx = Nx, \quad x \in\operatorname{dom}L. $$
For convenience, define the operators \({T_{1}}, {T_{2}}, {Q_{1}}, {Q_{2}}:Y \to Y \):
$$ \begin{aligned} &{T_{1}}y = \int_{0}^{\xi}{{{ ( {\xi- s} ) }^{\alpha}}y ( s ) } \,\mathrm{d}s, \\ &{T_{2}}y = \alpha \int_{0}^{1} {{{ ( {1 - s} ) }^{\alpha- 1}}y ( s ) } \,\mathrm{d}s - m\alpha ( {\alpha- 1} ) \int_{0}^{1} {{{ ( {1 - s} ) } ^{\alpha- 2}}y ( s ) } \,\mathrm{d}s - \sigma \int _{0}^{\eta} {{{ ( {\eta- s} ) }^{\alpha}}y ( s ) } \,\mathrm{d}s, \\ &{Q_{1}}y = \frac{1}{\Lambda} \bigl( {{\Lambda_{4}} {T_{1}}y ( t ) - {\Lambda_{3}} {T_{2}}y ( t ) } \bigr) , \\ &{Q_{2}}y = \frac{1}{\Lambda} \bigl( { - {\Lambda_{2}} {T_{1}}y ( t ) + {\Lambda_{1}} {T_{2}}y ( t ) } \bigr) , \end{aligned} $$
where
$$\begin{aligned}& {\Lambda_{1}} = \frac{{{\xi^{\alpha+ 1}}}}{{\alpha+ 1}}, \quad\quad { \Lambda _{2}} = 1 - m\alpha- \frac{{{\eta^{\alpha}}}}{{\alpha+ 1}}, \quad\quad { \Lambda_{3}} = \frac{{{\xi^{\alpha+ 2}}}}{{ ( {\alpha+ 1} ) ( {\alpha+ 2} ) }}, \\& {\Lambda_{4}} = \frac{1}{{\alpha+ 1}} - m - \frac{{{\eta^{\alpha+ 1}}}}{{ ( {\alpha+ 1} ) ( {\alpha+ 2} ) }}, \\& \begin{aligned} \Lambda&= \left \vert \begin{matrix} {{\Lambda_{1}}}&{{\Lambda_{2}}}\\ {{\Lambda_{3}}}&{{\Lambda_{4}}} \end{matrix} \right \vert \\ & = \frac{{{\xi^{\alpha+ 1}}}}{{{{ ( {\alpha+ 1} ) }^{2}} ( {\alpha+ 2} ) }} \bigl\{ { ( {\alpha+ 2} ) \bigl[ {1 - m ( {\alpha+ 1} ) } \bigr] + \xi ( {\alpha+ 1} ) ( {m\alpha- 1} ) + {\eta^{\alpha}} ( {\xi- \eta} ) } \bigr\} \\ & = \frac{{{\xi^{\alpha+ 1}}}}{{{{ ( {\alpha+ 1} ) }^{2}} ( {\alpha+ 2} ) }}C. \end{aligned} \end{aligned}$$

The following theorem is the main result of this paper.

Theorem 3.1

Assume that the following conditions hold.
\((\mathrm{H}_{1})\)
If the function \(f: [ {0,1} ] \times {{\mathbb{R}} ^{2}} \to{\mathbb{R}}\) is continuous, and there exist nonnegative functions \(a,b,c\in C[0,1]\) such that
$$ \bigl\vert {f ( {t,u,v} ) } \bigr\vert \le a ( t ) + b ( t ) {\vert u \vert ^{\theta- 1}} + c ( t ) {\vert v \vert ^{\theta- 1}}, \quad \forall t \in [ {0,1} ] , ( {u,v} ) \in{\mathbb{R}^{2}}, 1 < \theta \le{P_{L}}, $$
where \({a_{1}} = {\Vert {a} \Vert _{\infty}}\), \({b_{1}} = {\Vert {b} \Vert _{\infty}}\), \({c_{1}} = {\Vert {c} \Vert _{\infty}}\), \({P_{L}} = \min_{t \in [ {0,1} ] } p ( t ) \).
\((\mathrm{H}_{2})\)
There exists a constant \(\mathrm{B}>0\) such that for \(u \in{\mathbb{R}}\), if \(\vert u \vert > \mathrm{B}\), one has either
$$ u \cdot{T_{1}}Nu > 0 \quad \textit{or}\quad u \cdot{T_{1}}Nu < 0. $$
\((\mathrm{H}_{3})\)
There exists a constant \(\mathrm{D}>0\) such that for \(v \in{\mathbb{R}}\), if \(\vert v \vert > D\), one has either
$$ v \cdot{T_{2}}Nu > 0 \quad \textit{or} \quad v \cdot{T_{2}}Nu < 0. $$
Then BVP (1.1) has at least one solution provided that
$$ \frac{{{4^{\theta- 1}} ( {{b_{1}}{{ ( {\alpha+ 1} ) } ^{\theta- 1}} + {c_{1}}{\alpha^{\theta- 1}}} ) }}{{\Gamma ( {\beta+ 1} ) {{ ( {\Gamma ( {\alpha+ 1} ) } ) }^{\theta- 1}}}} < \frac{1}{2}. $$
(3.3)

In order to prove the above theorem, it is necessary to introduce more relevant lemmas, as shown hereunder.

Lemma 3.1

Let L be defined by (3.2), then
$$\begin{aligned}& \operatorname{Ker}L = \bigl\{ x \in X| x ( t ) = {c_{0}} + {c_{1}}t, {c_{0}},{c_{1}} \in{\mathbb{R}}, \forall t \in [ {0,1} ] \bigr\} , \end{aligned}$$
(3.4)
$$\begin{aligned}& \operatorname{Im} L = \{ y \in Y| {{T_{1}}y = {T_{2}}y = 0} \} . \end{aligned}$$
(3.5)

Proof

By Lemma 2.2, \(D_{0 + }^{\alpha}x ( t ) = 0\) has a solution, i.e.,
$$ x ( t ) = {c_{0}} + {c_{1}}t, \quad {c_{0}},{c_{1}} \in{\mathbb{R}}. $$
From (3.1), we can obtain (3.4).

Next, we prove \(\operatorname{Im} L = \{ y \in Y| {{T_{1}}y = {T_{2}}y = 0} \} \).

If \(y \in\operatorname{Im} L\), there exists \(x \in\operatorname {dom}L\) such that \(y = Lx \in Y\). By (2.1) ,we get
$$ x ( t ) = \frac{1}{{\Gamma ( \alpha ) }} \int_{0} ^{t} {{{ ( {t - s} ) }^{\alpha- 1}}y ( s ) } \,\mathrm{d}s + c_{0}+ {c_{1}}t. $$
In view of the conditions of (3.1), we have
$$\begin{aligned}& \int_{0}^{\xi}{{{ ( {\xi- s} ) }^{\alpha}}y ( s ) } \,\mathrm{d}s=0, \\& \alpha \int_{0}^{1} {{{ ( {1 - s} ) }^{\alpha- 1}}y ( s ) } \,\mathrm{d}s - m\alpha ( {\alpha- 1} ) \int_{0}^{1} {{{ ( {1 - s} ) }^{\alpha- 2}}y ( s ) } \,\mathrm{d}s - \sigma \int_{0}^{\eta}{{{ ( {\eta- s} ) }^{\alpha}}y ( s ) } \,\mathrm{d}s=0, \end{aligned}$$
i.e., \({T_{1}}y = {T_{2}}y = 0\). On the other hand, if \({T_{1}}y = {T_{2}}y = 0\) for \(y \in Y\), let \(x ( t ) = I_{0 + }^{ \alpha}y ( t ) \), then \(x \in\operatorname{dom}L\) and \(D_{0 + } ^{\alpha}x ( t ) = y ( t ) \). Thus, \(y \in \operatorname{Im} L\). □

Lemma 3.2

Let L be defined by (3.2), then L is a Fredholm operator of index zero. The linear projection operators \(P:X \to X\) and \(Q:Y \to Y\) can be defined as follows:
$$\begin{aligned}& Px ( t ) = x ( 0 ) + x' ( 0 ) t, \quad \forall t \in [ {0,1} ] , \\& Qy ( t ) = {Q_{1}}y + {Q_{2}}y \cdot t, \quad \forall t \in [ {0,1} ] . \end{aligned}$$
In addition, \({K_{P}}:\operatorname{Im} L \to\operatorname{dom}L \cap\operatorname{Ker}P\) is defined as
$$ {K_{P}}y ( t ) = \frac{1}{{\Gamma ( \alpha ) }} \int_{0}^{t} {{{ ( {t - s} ) }^{\alpha- 1}}y ( s ) } \,\mathrm{d}s, \quad \forall t \in [ {0,1} ] . $$

Proof

Clearly, \(\operatorname{Im} P = \operatorname{Ker}L\) and \({P^{2}}x = Px\). By \(x = ( {x - Px} ) + Px\), we obtain \(x = \operatorname{Ker}P + \operatorname{Ker}L\). After a simple calculation, we get \(\operatorname{Ker}L \cap\operatorname{Ker}P = \{ 0 \} \). Thus, we have
$$ x = \operatorname{Ker}L \oplus\operatorname{Ker}P. $$
The next step is to prove \(\operatorname{Ker} Q = \operatorname{Im} L\). It is clear that \(\operatorname{Im} L \subset\operatorname{Ker} Q\). On the other hand, if \(y \in\operatorname{Ker} Q \subset Y\), then \({Q_{1}}y = {Q_{2}}y = 0\), i.e.,
$$ \textstyle\begin{cases} \frac{1}{\Lambda} ( {{\Lambda_{4}}{T_{1}}y - {\Lambda_{3}}{T _{2}}y} ) = 0, \\ \frac{1}{\Lambda} ( { - {\Lambda_{2}}{T_{1}}y + {\Lambda_{1}} {T_{2}}y} ) = 0. \end{cases} $$
By (1.3), we have \(\Lambda\ne0\). Hence, \({T_{1}}y = {T_{2}}y = 0\). Thus we get \(y \in\operatorname{Im} L\) and \(\operatorname{Ker} Q \subset\operatorname{Im} L\). For \(y \in Y\), we get
$$\begin{aligned}& Q_{1}^{2}y = \frac{1}{\Lambda} \bigl( {{\Lambda_{4}} {T_{1}} ( {{Q_{1}}y} ) - { \Lambda_{3}} {T_{2}} ( {{Q_{1}}y} ) } \bigr) = \frac{1}{\Lambda} ( {{\Lambda_{4}} {\Lambda_{1}} - { \Lambda_{3}} {\Lambda_{2}}} ) {Q_{1}}y = {Q_{1}}y, \\& {Q_{2}} ( {{Q_{1}}y} ) = \frac{1}{\Lambda} \bigl( { - { \Lambda_{2}} {T_{1}} ( {{Q_{1}}y} ) + { \Lambda_{1}} {T_{2}} ( {{Q_{1}}y} ) } \bigr) = \frac{1}{\Lambda} ( { - {\Lambda_{2}} {\Lambda _{1}} + { \Lambda_{1}} {\Lambda_{2}}} ) {Q_{1}}y = 0, \\& {Q_{1}} ( {{Q_{2}}y \cdot t} ) = \frac{1}{\Lambda} \bigl( {{\Lambda _{4}} {T_{1}} ( {{Q_{2}}y \cdot t} ) - {\Lambda_{3}} {T_{2}} ( {{Q_{2}}y \cdot t} ) } \bigr) = \frac{1}{\Lambda} ( {{\Lambda_{4}} {\Lambda_{3}} - {\Lambda_{3}} {\Lambda_{4}}} ) {Q_{2}}y = 0, \\& {Q_{2}} ( {{Q_{2}}y \cdot t} ) = \frac{1}{ \Lambda} \bigl( { - {\Lambda_{2}} {T_{1}} ( {{Q_{2}}y \cdot t} ) + {\Lambda_{1}} {T_{2}} ( {{Q_{2}}y \cdot t} ) } \bigr) = \frac{1}{\Lambda} ( { - {\Lambda_{2}} { \Lambda_{3}} + {\Lambda _{1}} {\Lambda_{4}}} ) {Q_{2}}y = {Q_{2}}y. \end{aligned}$$
Therefore, we have
$$ {Q^{2}}y = {Q_{1}} ( {{Q_{1}}y + {Q_{2}}y \cdot t} ) + {Q_{2}} ( {{Q_{1}}y + {Q_{2}}y \cdot t} ) t = {Q_{1}}y + {Q_{2}}y \cdot t = Qy. $$
If \(y \in Y\), let \(y = ( {y - Qy} ) + Qy\), where \(y - Qy \in\operatorname{Ker} Q = \operatorname{Im} L\), \(Qy \in \operatorname{Im} Q\). It follows from \(\operatorname{Ker} Q = \operatorname{Im} L\) and \({Q^{2}}y = Qy\) that \(\operatorname{Im} Q \cap \operatorname{Im} L = \{ 0 \} \). Then we get \(Y = \operatorname{Im} L \oplus\operatorname{Im} Q\). Thus,
$$ \dim\operatorname{Ker} L = \dim\operatorname{Im} Q = \operatorname{codim} \operatorname{Im} L = 2. $$
It implies that L is a Fredholm operator of index zero.
The last step is to prove that \({K_{P}}\) is the inverse operator of \(L| {_{\operatorname{dom}L \cap\operatorname{Ker} P}} \). In fact, for \(y \in\operatorname{Im} L\), we have
$$ L{K_{P}}y = D_{0 + }^{\alpha}I_{0 + }^{\alpha}y = y. $$
(3.6)
Additionally, for \(x \in\operatorname{dom}L \cap\operatorname{Ker} P\), we have \(x ( 0 ) = x' ( 0 ) = 0\) and \({K_{P}}Lx ( t ) = I_{0 + }^{\alpha}D_{0 + }^{\alpha}x ( t ) = x ( t ) + {c_{0}} + {c_{1}}t\). With the boundary condition \(x ( 0 ) = x' ( 0 ) = 0\), we get
$$ {K_{P}}Lx = x. $$
(3.7)
Combining (3.6) with (3.7), we obtain \({K_{P}} = { ( L| {_{\operatorname{dom}L \cap\operatorname{Ker} P}} ) ^{ - 1}}\). The proof is complete. □

Theorem 3.1 is proved by the following three steps.

Step 1. Let
$$ {\Omega_{1}} = \bigl\{ {x \in\operatorname{dom}L \setminus \operatorname{Ker} L | {Lx = \lambda Nx}, \lambda\in ( {0,1} ) } \bigr\} . $$
For any \(x \in{\Omega_{1}}\), \(x \notin\operatorname{Ker} L\), we have \(Nx \in\operatorname{Im} L = \operatorname{Ker} Q\), then \(QNx = 0\). By (3.5), we get
$$\begin{aligned}& {T_{1}}Nx = \int_{0}^{\xi}{{{ ( {\xi- s} ) }^{\alpha}}} \phi_{p ( s ) }^{ - 1} \bigl( {I_{0 + }^{\beta}f \bigl( {s,x ( s ) ,x' ( s ) } \bigr) } \bigr) \,\mathrm{d}s = 0, \\& \begin{aligned} {T_{2}}Nx &= \alpha \int_{0}^{1} {{{ ( {1 - s} ) }^{ \alpha- 1}} \phi_{p ( s ) }^{ - 1} \bigl( {I_{0 + }^{\beta}f \bigl( {s,x ( s ) ,x' ( s ) } \bigr) } \bigr) } \,\mathrm{d}s \\ & \quad {} - m\alpha ( {\alpha- 1} ) \int_{0}^{1} {{{ ( {1 - s} ) } ^{\alpha- 2}} \phi_{p ( s ) }^{ - 1} \bigl( {I_{0 + }^{\beta }f \bigl( {s,x ( s ) ,x' ( s ) } \bigr) } \bigr) } \,\mathrm{d}s \\ & \quad {}- \sigma \int_{0}^{\eta}{{{ ( {\eta- s} ) }^{\alpha}} \phi_{p ( s ) }^{ - 1} \bigl( {I_{0 + }^{\beta}f \bigl( {s,x ( s ) ,x' ( s ) } \bigr) } \bigr) } \,\mathrm{d}s = 0. \end{aligned} \end{aligned}$$
From \((\mathrm{H}_{2})\) and \((\mathrm{H}_{3})\), there exist two constants \({\varepsilon_{1}},{\varepsilon_{2}} \in ( {0,1} ) \) such that \(\vert {x ( {{\varepsilon_{1}}} ) } \vert \le {\mathrm{B}}\) and \(\vert {x' ( {{\varepsilon_{2}}} ) } \vert \le {\mathrm{D}}\). Furthermore, by \(x ( t ) = I_{0 + }^{\alpha}D_{0 + }^{ \alpha}x ( t ) + {c_{0}} + {c_{1}}t\), we get
$$ x' ( t ) = I_{0 + }^{\alpha- 1}D_{0 + }^{\alpha}x ( t ) + {c_{1}} = \frac{1}{{\Gamma ( {\alpha- 1} ) }} \int _{0}^{t} {{{ ( {t - s} ) }^{\alpha- 2}}D_{0 + }^{\alpha}x ( s ) \,\mathrm{d}s} + {c_{1}}. $$
Let \(t = {\varepsilon_{2}}\), then
$$ x' ( \varepsilon_{2} ) = \frac{1}{{\Gamma ( {\alpha- 1} ) }} \int_{0}^{{\varepsilon_{2}}} {{{ ( {{\varepsilon_{2}} - s} ) }^{\alpha- 2}}D_{0 + }^{\alpha}x ( s ) \,\mathrm{d}s} + {c_{1}}. $$
Since \(\vert {x' ( {{\varepsilon_{2}}} ) } \vert \le {\mathrm{D}}\), we have
$$ \begin{aligned} \vert {{c_{1}}} \vert &\le \bigl\vert {x' ( {{\varepsilon_{2}}} ) } \bigr\vert + \frac{1}{{\Gamma ( {\alpha- 1} ) }} \int _{0}^{{\varepsilon_{2}}} {{{ ( {{\varepsilon_{2}} - s} ) } ^{\alpha- 2}} \bigl\vert {D_{0 + }^{\alpha}x ( s ) } \bigr\vert \,\mathrm{d}s} \\ &\le{\mathrm{D}} + \frac{{\varepsilon_{2}^{\alpha- 1}}}{ {\Gamma ( \alpha ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}} \\ & \le{\mathrm{D}} + \frac{1}{{\Gamma ( \alpha ) }} { \bigl\Vert {D_{0 + }^{\alpha }x} \bigr\Vert _{\infty}}. \end{aligned} $$
Then
$$ \begin{aligned} { \bigl\Vert {x'} \bigr\Vert _{\infty}} & \le\frac{1}{{\Gamma ( {\alpha- 1} ) }} \int_{0}^{t} {{{ ( {t - s} ) }^{\alpha - 2}} \bigl\vert {D_{0 + }^{\alpha}x ( s ) } \bigr\vert \,\mathrm{d}s} + \vert {{c_{1}}} \vert \\ &\le\frac{{{t^{\alpha- 1}}}}{{\Gamma ( \alpha ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{ \infty}} + \mathrm{D} + \frac{1}{{\Gamma ( \alpha ) }} \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty} \\ &\le\frac{2}{ {\Gamma ( \alpha ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}} + \mathrm{D}. \end{aligned} $$
Let \(t = {\varepsilon_{1}}\), then
$$ x ( {{\varepsilon_{1}}} ) = \frac{1}{{\Gamma ( \alpha ) }} \int_{0}^{{\varepsilon_{1}}} {{{ ( {{\varepsilon_{1}} - s} ) }^{\alpha- 1}}D_{0 + }^{\alpha}x ( s ) \,\mathrm{d}s} + {c_{0}} + {c_{1}} {\varepsilon_{1}}. $$
From \(\vert {x ( {{\varepsilon_{1}}} ) } \vert \le{\mathrm{B}}\), we have
$$ \begin{aligned} \vert {{c_{0}}} \vert & \le \bigl\vert {x ( {{\varepsilon_{1}}} ) } \bigr\vert + \frac{1}{{\Gamma ( \alpha ) }} \int_{0}^{{\varepsilon_{1}}} {{{ ( {{\varepsilon_{1}} - s} ) } ^{\alpha- 1}} \bigl\vert {D_{0 + }^{\alpha}x ( s ) } \bigr\vert \,\mathrm{d}s} + \vert {{c_{1}}} \vert \\ &\le{\mathrm{B}} + \frac{ {\varepsilon_{1}^{\alpha}}}{{\Gamma ( {\alpha+ 1} ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}} + \mathrm{D} + \frac{1}{ {\Gamma ( \alpha ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}} \\ &\le{\mathrm{B}} + \mathrm{D} + \frac{{1 + \alpha}}{ {\Gamma ( {\alpha+ 1} ) }} { \bigl\Vert {D_{0 + }^{\alpha }x} \bigr\Vert _{\infty}}. \end{aligned} $$
Then
$$ \begin{aligned} {\Vert {x} \Vert _{\infty}} & \le \frac{1}{{\Gamma ( \alpha ) }} \int_{0}^{t} {{{ ( {t - s} ) }^{\alpha- 1}} \bigl\vert {D_{0 + }^{\alpha}x ( s ) } \bigr\vert \,\mathrm{d}s} + \vert {{c_{0}}} \vert + \vert {{c_{1}}} \vert \\ &\le\frac{{{t^{\alpha }}}}{{\Gamma ( {\alpha+ 1} ) }} { \bigl\Vert {D_{0 + }^{\alpha }x} \bigr\Vert _{\infty}}+ {\mathrm{B}} + 2{\mathrm{D}} + \frac {1}{{\Gamma ( \alpha ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{ \infty}} + \frac{{1 + \alpha}}{{\Gamma ( {\alpha+ 1} ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}} \\ &\le{\mathrm{B}} + 2{\mathrm{D }}+\frac{{2 ( {\alpha+ 1} ) }}{{\Gamma ( {\alpha+ 1} ) }} { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}}. \end{aligned} $$
Furthermore, by \(Lx = \lambda Nx\), we have
$$\begin{aligned}& D_{0 + }^{\alpha}x ( t ) = \lambda \phi_{p ( t ) } ^{ - 1} \bigl( {I_{0 + }^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) } \bigr), \\& \begin{aligned} {\phi_{p ( t ) }} \bigl( {D_{0 + }^{\alpha}x ( t ) } \bigr) &= {\phi_{p ( t ) }} \bigl( {\lambda\phi_{p ( t ) }^{ - 1} \bigl( {I_{0 + }^{ \beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) } \bigr) } \bigr) \\ &= {\phi_{p ( t ) }} ( \lambda ) I_{0 + }^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) \\ &= {\lambda^{p ( t ) - 1}} I_{0 + }^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) . \end{aligned} \end{aligned}$$
Combining \((\mathrm{H}_{1})\) and \(\lambda\in ( {0,1} ) \), we have
$$\begin{aligned} { \bigl\vert {D_{0 + }^{\alpha}x ( t ) } \bigr\vert ^{p ( t ) - 1}} & \le\frac{1}{{\Gamma ( \beta ) }} \int_{0}^{t} {{{ ( {t - s} ) }^{\beta- 1}} \bigl\vert {f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) } \bigr\vert \,\mathrm{d}s} \\ & \le\frac{1}{{\Gamma ( {\beta+ 1} ) }} \bigl( {{a_{1}} + {b_{1}}\Vert x \Vert _{\infty}^{\theta- 1} + {c_{1}} \bigl\Vert {x'} \bigr\Vert _{\infty}^{ \theta- 1}} \bigr) \\ &\le \frac{1}{{\Gamma ( {\beta+ 1} ) }} \biggl[ {{a_{1}} + {b_{1}} {{ \biggl( {\mathrm{B} + 2{\mathrm{D }}+\frac{{2 ( {\alpha+ 1} ) }}{{\Gamma ( {\alpha+ 1} ) }}{{ \bigl\Vert {D_{0 + } ^{\alpha}x} \bigr\Vert }_{\infty}}} \biggr) }^{\theta- 1}}} \\ & \quad {} + {c_{1}} {{ \biggl( {\frac{2}{{\Gamma ( \alpha ) }} {{ \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert }_{\infty}} + \mathrm {D}} \biggr) } ^{\theta- 1}} \biggr] . \end{aligned}$$
According to \({ ( {\vert a \vert + \vert b \vert } ) ^{p}} \le{2^{p}} ( {{{\vert a \vert }^{p}} + {{\vert b \vert } ^{p}}} ) \), \(p > 0\), we get
$$ { \bigl\vert {D_{0 + }^{\alpha}x ( t ) } \bigr\vert ^{p ( t ) - 1}} \le{A_{1}} + {A_{2}} \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{ \infty}^{\theta- 1}, $$
where
$$ {A_{1}} = \frac{{{a_{1}} + {b_{1}}{{ ( {2\mathrm{B} + 4{\mathrm {D}}} ) } ^{\theta- 1}} + {c_{1}}{{ ( {2{\mathrm{D}}} ) }^{\theta- 1}}}}{ {\Gamma ( {\beta+ 1} ) }}, \quad\quad {A_{2}} = \frac{{{b_{1}}{{ ( {\frac{{4 ( {\alpha+ 1} ) }}{{\Gamma ( {\alpha+ 1} ) }}} ) }^{\theta- 1}} + {c_{1}}{{ ( {\frac{4}{{\Gamma ( \alpha ) }}} ) }^{\theta- 1}}}}{{\Gamma ( {\beta+ 1} ) }}. $$
Hence, we have
$$ { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}} \le {2^{\frac{1}{ {p ( t ) - 1}}}} \bigl( {A_{1}^{\frac{1}{{p ( t ) - 1}}} + A_{2}^{\frac{1}{{p ( t ) - 1}}} \bigl\Vert {D_{0 + }^{ \alpha}x} \bigr\Vert _{\infty}^{\frac{{\theta- 1}}{{p ( t ) - 1}}}} \bigr) . $$
It follows from \(\frac{{\theta- 1}}{{p ( t ) - 1}} \in ( {0,1} ] \) and \({x^{k}} \le x + 1\), \(x > 0\), \(k \in ( {0,1} ] \) that
$$ { \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert _{\infty}} \le{ ( {2 {A_{1}}} ) ^{\frac{1}{{p ( t ) - 1}}}} + { ( {2 {A_{2}}} ) ^{\frac{1}{{p ( t ) - 1}}}} \bigl( {{{ \bigl\Vert {D_{0 + }^{\alpha}x} \bigr\Vert }_{\infty}} + 1} \bigr) . $$
By (3.3), there exists a constant \({\mathrm{M}_{1}} > 0\) such that \({\Vert {D_{0 + }^{\alpha}x} \Vert _{\infty}} \le {\mathrm{M} _{1}}\). Thus,
$$ {\Vert x \Vert _{\infty}} \le{\mathrm{B}} + 2{\mathrm{D }}+ \frac{ {2 ( {\alpha+ 1} ) }}{{\Gamma ( {\alpha+ 1} ) }} {\mathrm{M}_{1}}: = {\mathrm{M}_{2}}, \quad\quad { \bigl\Vert {x'} \bigr\Vert _{\infty}} \le\mathrm{D} + \frac{2}{{\Gamma ( \alpha ) }}{\mathrm {M}_{1}}: = \mathrm{M}_{3}, $$
this proves that \({\Omega_{1}}\) is bounded.
Step 2. Let
$$ {\Omega_{2}} = \{ x| x \in\operatorname{Ker} L, Nx \in \operatorname{Im} L \} . $$
If \(x ( t ) \in{\Omega_{2}}\), then \(x ( t ) = {c_{0}} + {c_{1}}t\), \({c_{0}},{c_{1}} \in{\mathbb{R}}\) and \({Nx \in\operatorname{Im} L}\). Thus, we have \({T_{1}}Nx = {T _{2}}Nx = 0\). When it is combined with \((\mathrm{H}_{3})\), we get \(\vert {x' ( t ) } \vert = \vert {c_{1}} \vert \le {\mathrm{D}}\). According to \((\mathrm{H}_{2})\), there exists \({\varepsilon _{1}} \in ( {0,1} ) \) such that \(\vert {x ( {{\varepsilon_{1}}} ) } \vert = \vert {{c_{0}} + {c_{1}}{\varepsilon _{1}}} \vert \le{\mathrm{B}}\). It is clear that \(\vert {{c_{0}}} \vert \le{\mathrm{B} + \mathrm{D}}\). So \({\Vert x \Vert _{\infty}} \le \mathrm{B} + 2\mathrm{D}: = {\mathrm{M}_{3}}\). Thus, \({\Omega_{2}}\) is bounded.
Step 3. Let
$$ {\Omega_{3}} = \bigl\{ {x \in\operatorname{Ker} L, \lambda Jx + ( {1 - \lambda} ) QNx = 0, \lambda\in [ {0,1} ] } \bigr\} , $$
where \(J:\operatorname{Ker} L \to\operatorname{Im} Q\) is a homeomorphism mapping:
$$ J ( {{c_{0}} + {c_{1}}t} ) = \frac{1}{\Lambda} ( {{\Lambda _{4}} {c_{0}} - {\Lambda_{3}} {c_{1}}} ) + \frac{1}{\Lambda} ( { - {\Lambda_{2}} {c_{0}} + { \Lambda_{1}} {c_{1}}} ) t, \quad {c_{0}},{c_{1}} \in{\mathbb{R}}. $$
Let \(x \in{\Omega_{3}}\), then \(x ( t ) = {c_{0}} + {c_{1}}t\), \({c_{0}},{c_{1}} \in{\mathbb{R}}\) and \(\lambda J ( {{c_{0}} + {c_{1}}t} ) + ( {1 - \lambda} ) QN ( {{c_{0}} + {c_{1}}t} ) = 0\), i.e.,
$$ \lambda J ( {{c_{0}} + {c_{1}}t} ) + ( {1 - \lambda} ) \bigl[ {{Q_{1}}N ( {{c_{0}} + {c_{1}}t} ) + {Q_{2}}N ( {{c_{0}} + {c_{1}}t} ) t} \bigr] = 0. $$
Then
$$\begin{aligned}& \lambda ( {{\Lambda_{4}} {c_{0}} - {\Lambda_{3}} {c_{1}}} ) + ( {1 - \lambda} ) \bigl[ {{\Lambda_{4}} {T_{1}}N ( {{c_{0}} + {c_{1}}t} ) - { \Lambda_{3}} {T_{2}}N ( {{c_{0}} + {c_{1}}t} ) } \bigr] = 0, \\& \lambda ( { - {\Lambda_{2}} {c_{0}} + { \Lambda_{1}} {c_{1}}} ) + ( {1 - \lambda} ) \bigl[ { - { \Lambda_{2}} {T_{1}}N ( {{c_{0}} + {c_{1}}t} ) + {\Lambda_{1}} {T_{2}}N ( {{c_{0}} + {c_{1}}t} ) } \bigr] = 0. \end{aligned}$$
Thus,
$$\begin{aligned}& \lambda{c_{0}} + ( {1 - \lambda} ) {T_{1}}N ( {{c_{0}} + {c_{1}}t} ) = 0, \end{aligned}$$
(3.8)
$$\begin{aligned}& \lambda{c_{1}} + ( {1 - \lambda} ) {T_{2}}N ( {{c_{0}} + {c_{1}}t} ) = 0. \end{aligned}$$
(3.9)
According to (3.8) and the first part of \((\mathrm{H}_{2})\), we have \(\vert {{c_{0}}} \vert \le{\mathrm{B}}\). Otherwise, if \(\vert {{c _{0}}} \vert > \mathrm{B}\), by the first part of \((\mathrm {H}_{2})\), we have
$$ \lambda c_{0}^{2} + ( {1 - \lambda} ) {c_{0}} {T_{1}}N ( {{c_{0}} + {c_{1}}t} ) > 0, $$
which is contradictory to (3.8). Similarly, by (3.9) and the first part of \((\mathrm{H}_{3})\), we have \({\vert {{c_{1}}} \vert \le {\mathrm{D}}}\). Otherwise, if \(\vert {{c_{1}}} \vert > \mathrm{D}\), by the first part of \((\mathrm{H}_{3})\), we have
$$ \lambda c_{1}^{2} + ( {1 - \lambda} ) {c_{1}} {T_{2}}N ( {{c_{0}} + {c_{1}}t} ) > 0, $$
which is contradictory to (3.9). Hence, \({\Omega_{3}}\) is bounded.
Let
$$ \Omega= \bigl\{ {x \in X, {{\Vert x \Vert }_{\infty}} < \max \{ {{ \mathrm{M}_{2}} ,{\mathrm{M}_{3}}} \} + 1} \bigr\} . $$
As indicated by Lemma 3.2, L is a Fredholm operator of index zero. Based on the Arzela-Ascoli theorem, we obtain that N is L-compact on Ω̅. Then, by Step 1 and Step 2, we get
\(( {a_{1}} )\)

\(Lx \ne\lambda Nx\), \(( {x,\lambda} ) \in [ { ( {\operatorname{dom}L\backslash\operatorname {Ker} L} ) \cap\partial\Omega} ] \times ( {0,1} ) \).

\(( {a_{2}} )\)

\(Nx \notin\operatorname{Im} L\), \(x \in\operatorname{Ker} L \cap\partial\Omega\).

Let
$$ H ( {x,\lambda} ) = \lambda J ( x ) + ( {1 - \lambda} ) QNx. $$
According to Step 3, we have \(H ( {x,\lambda} ) \ne0\) for \(x \in\operatorname{Ker} L \cap\partial\Omega\), then
$$ \begin{aligned} \deg ( QN| {_{\operatorname{Ker} L}, \Omega\cap\operatorname {Ker} L, 0} ) &= \deg \bigl( {H ( { \cdot,0} ) , \Omega\cap\operatorname{Ker} L, 0} \bigr) \\ &= \deg \bigl( {H ( { \cdot,1} ) , \Omega\cap\operatorname{Ker} L, 0} \bigr) \\ & = \deg ( {I, \Omega\cap\operatorname{Ker} L, 0} ) \ne0. \end{aligned} $$
Condition \((a_{3})\) of Theorem 2.1 is thus met. Through Theorem 2.1, we get that \(Lx=Nx\) has at least one fixed point in \(\operatorname{dom}L \cap \overline{ \Omega}\). Hence, BVP (1.1) has at least one solution.

Remark 3.1

The proof process would be similar to that of Step 3 if the second inequality of both \((\mathrm{H}_{2})\) and \((\mathrm{H}_{3})\), or the first of \((\mathrm{H}_{2})\) and the second of \((\mathrm {H}_{3})\), or the first of \((\mathrm{H}_{3})\) and the second of \((\mathrm{H}_{2})\) hold. It is hence omitted herein.

Corollary 3.1

Assume that the conditions of Theorem  3.1 hold. If \(\eta\le\xi\), BVP (1.1) has at least one solution.

Proof

Here we just need to verify the condition \(C \neq0\).

By (1.2), we have
$$\begin{aligned} C & = ( {\alpha+ 2} ) \bigl[ {1 - m ( {\alpha+ 1} ) } \bigr] + \xi ( {\alpha+ 1} ) ( {m\alpha- 1} ) + {\eta^{\alpha}} ( {\xi- \eta} ) \\ &= ( {\alpha+ 2} ) + ( {\alpha+ 1} ) \biggl( {\xi\alpha- \alpha- 2 - \frac{1}{2}\xi\alpha\eta+ \frac {1}{2}\alpha\eta+ \eta- \xi} \biggr) + {\eta^{\alpha}} ( {\xi - \eta} ) \\ &= 2 ( {\alpha+ 1} ) - \alpha+ ( {\alpha+ 1} ) \biggl( {\xi\alpha- \alpha- 2 - \frac{1}{2}\xi\alpha\eta+ \frac {1}{2}\alpha\eta+ \eta- \xi} \biggr) + {\eta^{\alpha}} ( {\xi - \eta} ) \\ & = ( {\alpha+ 1} ) \biggl[ {\alpha ( {\xi- 1} ) \biggl( {1 - \frac{1}{2} \eta} \biggr) + ( {\eta- \xi} ) } \biggr] + \bigl[ {{\eta^{\alpha}} ( {\xi- \eta} ) - \alpha} \bigr] . \end{aligned}$$
Obviously, by \(1 < \alpha\le2\) and \(0 < \eta\le\xi< 1\), we obtain \(C < 0\). The proof is complete. □

4 Example

Example 4.1

Consider the following BVP:
$$ \textstyle\begin{cases} {}^{C}D_{0 + }^{\frac{2}{3}}{\phi_{ ( {{t^{2}} + 2} ) }} ( {{}^{C}D_{0 + }^{\frac{3}{2}}x ( t ) } ) = \frac{1}{ {10}} + \frac{1}{{30}}\sin ( {x ( t ) } ) + \frac{1}{ {90}}\sin ( {x' ( t ) } ) , \quad t \in ( {0,1} ) , \\ x ( 0 ) + \frac{1}{4}x' ( 0 ) = 2\int_{0}^{ \frac{1}{2}} {x ( t ) \,\mathrm{d}t} , \\ x ( 1 ) - \frac{3}{4}x' ( 1 ) = 2\int_{0}^{ \frac{1}{2}} {x ( t ) \,\mathrm{d}t} , \\ {}^{C}D_{0 + }^{\alpha}x ( 0 ) = 0, \end{cases} $$
where \(p ( t ) = {t^{2}} + 2\), \(\alpha= \frac{3}{2}\), \(\beta= \frac{2}{3}\), \(\theta= 2\), \(f ( {t,x ( t ) ,x' ( t ) } ) = \frac{1}{{10}} + \frac{1}{{30}}\sin ( {x ( t ) } ) + \frac{1}{{90}}\sin ( {x' ( t ) } ) \), \({a_{1}} = \frac{1}{{10}}\), \({b_{1}} = \frac{1}{ {30}}\), \({c_{1}} = \frac{1}{{90}}\), \(b = \frac{1}{4}\), \(\xi= \frac{1}{2}\), \(\eta= \frac{1}{2}\), \(m = \frac{3}{4}\), \(\gamma= 2\), \(\sigma= 2\), \({{P_{L}} = 2}\). It is easy to verify that (1.2) and (1.3) hold. Let \(\mathrm{B} = 30\), \(\mathrm{D} = 90\), \(\mathrm{C} = - \frac{93}{32} <0\), if \(x ( t ) > 30\), \(x' ( t ) > 90\), then \(f ( {t,x ( t ) ,x' ( t ) } ) > 0\). Clearly, \((\mathrm{H}_{1})\) of Theorem 3.1 holds. By (3.3), we get
$$\begin{aligned}& \frac{{{4^{\theta- 1}} ( {{b_{1}}{{ ( {\alpha+ 1} ) } ^{\theta- 1}} + {c_{1}}{\alpha^{\theta- 1}}} ) }}{{\Gamma ( {\beta+ 1} ) {{ ( {\Gamma ( {\alpha+ 1} ) } ) }^{\theta- 1}}}} = \frac{2}{{5\Gamma ( {\frac{5}{3}} ) \Gamma ( {\frac{5}{2}} ) }} < \frac{1}{2}, \\& Nx ( t ) = \phi_{p ( t ) }^{ - 1} \bigl( {I_{0 + } ^{\beta}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) } \bigr) = \phi_{ ( {{t^{2}} + 2} ) }^{-1} \bigl( {I_{0 + }^{\frac{2}{3}}f \bigl( {t,x ( t ) ,x' ( t ) } \bigr) } \bigr) > 0. \end{aligned}$$
So, \((\mathrm{H}_{2})\) of Theorem 3.1 holds. Furthermore, by the definition of \({T_{2}}y\), we have
$$\begin{aligned} {T_{2}}Nu ( t ) & = \alpha \int_{0}^{1} {{{ ( {1 - s} ) } ^{\alpha- 1}}Nu ( s ) } \,\mathrm{d}s - m\alpha ( {\alpha - 1} ) \int_{0}^{1} {{{ ( {1 - s} ) }^{\alpha- 2}}Nu ( s ) } \,\mathrm{d}s \\ &\quad{}- \sigma \int_{0}^{\eta}{{{ ( {\eta- s} ) }^{\alpha}}Nu ( s ) } \,\mathrm{d}s \\ &= Nu ( s ) \biggl( {1 - m\alpha- \frac{{\sigma{\eta^{\alpha+ 1}}}}{ {\alpha+ 1}}} \biggr) \\ &= Nu ( s ) \biggl( { - \frac{1}{8} - \frac{1}{{5\sqrt{2} }}} \biggr) < 0. \end{aligned}$$
Thus, \((\mathrm{H}_{3})\) of Theorem 3.1 holds. Hence, there exists at least one solution.

5 Conclusions

The solvability for fractional Sturm-Liouville BVP with \(p ( t ) \)-Laplacian operator is discussed in the article by using Mawhin’s continuation theorem, and the existence of solutions has been obtained (see Theorem 3.1). The kernel space is expanded to higher dimensions on condition that \(\dim\operatorname{Ker}L=2\), and the system is more complex in comparison with the case when \(\dim\operatorname{Ker}L=1\). Moreover, when \(p(t)=p\), the \(p ( t ) \)-Laplacian operator will evolve into the famous p-Laplacian operator. Therefore, our results would develop previous findings to some extent.

Declarations

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11271364).

Authors’ contributions

The authors contributed equally in this article. They have all read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Mathematics, China University of Mining and Technology
(2)
Department of Basic, Xinjiang Institute of Engineering

References

  1. Torvik, P, Bagley, RL: On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51, 725-728 (1984) MATHGoogle Scholar
  2. Matignon, D: Stability results for fractional differential equations with applications to control processing. In: Comput. Eng. Syst. Appl, vol. 2, pp. 963-968 (1996) Google Scholar
  3. Bai, J, Feng, X: Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16, 2492-2502 (2007) View ArticleGoogle Scholar
  4. Magin, RL: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59, 1586-1593 (2010) View ArticleMATHGoogle Scholar
  5. Leszczynski, JS, Blaszczyk, T: Modeling the transition between stable and unstable operation while emptying a silo. Granul. Matter 13, 429-438 (2011) View ArticleGoogle Scholar
  6. Nazari, D, Shahmorad, S: Application of the fractional differential transform method to fractional-order integro-differential equations with nonlocal boundary conditions. J. Comput. Appl. Math. 234, 883-891 (2010) View ArticleMATHGoogle Scholar
  7. Ahmad, B, Agarwal, RP: Some new versions of fractional boundary value problems with slit-strips conditions. Bound. Value Probl. 2014, 175 (2014) View ArticleMATHGoogle Scholar
  8. Kosmatov, N, Jiang, W: Second-order functional problems with a resonance of dimension one. Differ. Equ. Appl. 3, 349-365 (2016) MATHGoogle Scholar
  9. Jiang, W, Kosmatov, N: Solvability of a third-order differential equation with functional boundary conditions at resonance. Bound. Value Probl. 2017, 81 (2017) View ArticleMATHGoogle Scholar
  10. Bai, Z, Liu, H: Positive solutions for boundary value problem of nonlinear fractional differential equation. J. Math. Anal. Appl. 311, 495-505 (2005) View ArticleMATHGoogle Scholar
  11. Luo, H, Hu, W: Existence and uniqueness of positive solutions for boundary value problem of nonlinear fractional differential equation. J. Yili Norm. Univ. 24, 1-7 (2012) Google Scholar
  12. Kosmatov, N: A boundary value problem of fractional order at resonance. Electron. J. Differ. Equ. 2010, 135 (2010) MATHGoogle Scholar
  13. Wei, Z, Dong, W, Chen, J: Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative. Nonlinear Anal. 73, 3232-3238 (2010) View ArticleMATHGoogle Scholar
  14. Bai, Z, Zhang, Y: Solvability of fractional three-point boundary value problems with nonlinear growth. Appl. Math. Comput. 218, 1719-1725 (2011) MATHGoogle Scholar
  15. Sun, J, Liu, Y: Existence of solutions for fractional differential systems with antiperiodic boundary conditions. Comput. Math. Appl. 64, 1557-1566 (2012) View ArticleMATHGoogle Scholar
  16. Hu, J, Lu, G, Zhang, S: Lyapunov stability theorem about fractional system without and with delay. Commun. Nonlinear Sci. Numer. Simul. 20, 905-913 (2015) View ArticleMATHGoogle Scholar
  17. Kosmatov, N, Jiang, W: Resonant functional problems of fractional order. Chaos Solitons Fractals 91, 573-579 (2016) View ArticleMATHGoogle Scholar
  18. Rakkiyappan, R, Cao, J, Velmurugan, G: Existence and uniform stability analysis of fractional-order complex-valued neural networks with time delays. IEEE Trans. Neural Netw. Learn. Syst. 26, 84-97 (2015) View ArticleMATHGoogle Scholar
  19. Wang, J, Xiang, H: Upper and lower solutions method for a class of singular fractional boundary value problems with p-Laplacian operator. Abstr. Appl. Anal. 2010, 1 (2010) Google Scholar
  20. Chen, T, Liu, W: Anti-periodic boundary value problem for fractional differential equation with p-Laplacian operator. Appl. Math. Lett. 25, 1671-1675 (2012) View ArticleMATHGoogle Scholar
  21. Chen, T, Liu, W, Hu, Z: A boundary value problem for fractional differential equation with p-Laplacian operator at resonance. Nonlinear Anal. 75, 3210-3217 (2012) View ArticleMATHGoogle Scholar
  22. Liu, Z, Lu, L: A class of BVPs for nonlinear fractional differential equations with p-Laplacian operator. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010) MATHGoogle Scholar
  23. Tang, X, Yan, C, Liu, Q: Existence of solutions of two-point boundary value problems for fractional p-Laplace differential equations at resonance. J. Appl. Math. Comput. 41, 119-131 (2013) View ArticleMATHGoogle Scholar
  24. Hu, Z, Liu, W, Liu, J: Existence of solutions of fractional differential equation with p-Laplacian operator at resonance. Abstr. Appl. Anal. 2014, 1 (2014) Google Scholar
  25. Mahmudov, NI, Unul, S: Existence of solutions of fractional boundary value problems with p-Laplacian operator. Bound. Value Probl. 2015, 99 (2015) View ArticleMATHGoogle Scholar
  26. Shen, T, Liu, W: Existence of solutions for fractional integral boundary value problems with \(p(t)\)-Laplacian operator. J. Nonlinear Sci. Appl. 9, 5000-5010 (2016) MATHGoogle Scholar
  27. Fan, X, Zhang, Q, Zhao, D: Eigenvalues of \(p(x)\)-Laplacian Dirichlet problem. J. Math. Anal. Appl. 302, 306-317 (2005) View ArticleMATHGoogle Scholar
  28. Zhang, Q: Existence of solutions for weighted \(p(r)\)-Laplacian system boundary value problems. Nonlinear Anal. 71, 3596-3611 (2007) View ArticleMATHGoogle Scholar
  29. Zhang, Q, Wang, Y, Qiu, Z: Existence of solutions and boundary asymptotic behavior of \(p(r)\)-Laplacian equation multi-point boundary value problems. Nonlinear Anal. 72, 2950-2973 (2010) View ArticleMATHGoogle Scholar
  30. Shen, T, Liu, W, Zhao, R: Fractional boundary value problems with \(p(t)\)-Laplacian operator. Adv. Differ. Equ. 2016, 118 (2016) View ArticleGoogle Scholar
  31. Mawhin, J: Topological degree and boundary value problems for nonlinear differential equations. In: Topological Methods for Ordinary Differential Equations. Springer, Berlin (1993) Google Scholar
  32. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) View ArticleMATHGoogle Scholar
  33. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999) MATHGoogle Scholar

Copyright

© The Author(s) 2017