- Research
- Open access
- Published:
The stability of solutions for the Fornberg–Whitham equation in \(L^{1}(\mathbb{R})\) space
Boundary Value Problems volume 2018, Article number: 142 (2018)
Abstract
The \(L^{2}(\mathbb{R})\) conservation law of solutions for the nonlinear Fornberg–Whitham equation is derived. Making use of the Kruzkov’s device of doubling the space variables, the stability of the solutions in \(L^{1}(\mathbb{R})\) space is established under certain assumptions on the initial value.
1 Introduction
In this article, we investigate the Fornberg–Whitham(FW) equation
which was first written down in Whitham [1]. The numerical and theoretical analysis of solutions for Eq. (1) are made in Fornberg and Whitham [2] in which the peakon solution
is found.
Recently, Holmes and Thompson [3] have established the existence and uniqueness of the FW equation in the Besov space in both non-periodic and periodic cases and discussed the sharpness of continuity on the data-to-solution map. A Cauchy–Kowalevski type result, which guarantees the existence and uniqueness of real analytic solutions for Eq. (1), is given and the blow-up criterion for solutions is obtained in [3]. Haziot [4] employs the estimates derived from the FW equation itself and some conclusions in [5] to derive sufficient conditions on the initial value which lead to wave breaking of solutions. For the detailed discussion about the discovery of wave breaking, we refer the reader to [2, 5–8].
We know that the dynamic properties of the Fornberg–Whitham equation are related to those of the Camassa–Holm (CH) [9], Degasperis–Procesi (DP) [10], and Novikov equations [11]. The four types of equations possess the peakon solutions. Here, we recall several works on the study of the CH, DP, and Novikov equations. The well-posedness of the Cauchy problem for a generalized CH equation is established in Himonas and Holliman [12]. The nonuniform dependence of the periodic CH equation and the well-posedness of the DP equation are discussed in [13] and [14], respectively. The continuity properties of the data-to-solution map for the periodic b-family equation including the CH and DP equations are obtained in [15]. Coclite and Karlsen [16] discuss the existence and stability of the entropy solution for the DP equation. The existence and uniqueness of global solutions for the DP equation are studied in Liu and Yin [17] in the case that the initial data satisfy the sign condition. Escher et al. [18] investigate the global weak solutions and blow-up structure for the DP model under certain assumptions. Matsuno [19] finds out the multisoliton solutions of the DP equation and analyzes their peakon limits. The uniform stability of peakons for the Camassa–Holm model is established in Constantin and Strauss [7]. Using the conservation law and assuming that the initial data satisfy the sign condition, Lin and Liu [20] obtain the stability of peakons for the Degasperis–Procesi equation. The Cauchy problem for the Novikov equation is considered in [21]. A generalized Novikov model with peakon solutions is studied in [22]. For other studies of the CH, DP, and Novikov equations, the reader is referred to [21–29] and the references therein.
Motivated by the works made in Coclite and Karlsen [16], the aim of this article is to investigate the stability of local strong solutions for the Fornberg–Whitham equation (1). We find out the \(L^{2}\) conservation law to the FW model. Assuming that the initial data belong to the space \(L^{1}(\mathbb{R})\cap H^{s}(\mathbb{R})\) with \(s> \frac{3}{2}\), we obtain the stability of local strong solution in the space \(L^{1}(\mathbb{R})\). We state that the \(L^{1}\) stability for Eq. (1) has never been established in the previous literature works. The main technique used in this work is the device of doubling the space variables presented in [30].
The structure of this paper is that several lemmas are given in Sect. 2 and the proof of our main result is presented in Sect. 3.
2 Several lemmas
Consider the Cauchy problem of Eq. (1)
Letting \(\Lambda^{2}=1-\partial_{x}^{2}\) and noting the expression \(VV_{xxx}=\frac{1}{2}(V^{2})_{xxx}-3V_{x}V_{xx}\), multiplying both sides of the first equation of problem (3) by \(\Lambda^{-2}\), we obtain the nonlocal form of problem (3) in the form
where \(\Lambda^{-2}g=\frac{1}{2}\int_{R}e^{-|x-y|}g\, dy\) for any \(g\in L^{\infty}\) or \(g\in L^{p}(\mathbb{R})\) with \(1\leq p\leq\infty\).
Lemma 1
If \(V_{0}(x)\in H^{s}(\mathbb{R})\), \(s>\frac{3}{2}\) and \(V(t,x)\) is the solution of problem (4), then
Proof
Setting \((1-\partial_{x}^{2})^{-2}V=W\), we get \(W-W_{xx}=V\) and
from which we have
which completes the proof. □
Lemma 2
Assume \(V(0,x)=V_{0}(x)\in H^{s}(\mathbb{R})\), \(s>\frac{3}{2}\). Then problem (3) or (4) has a unique strong solution V satisfying
where \(T=T(V_{0})>0\) is the maximal existence time.
Consider the ordinary differential equation
Lemma 3
Assume that \(V_{0}\in H^{s}\), \(s\geq3\), and \(T>0\) is the maximal existence time of the solution for problem (7). Then there exists a unique solution \(p\in C^{1}([0, T)\times\mathbb{R})\) to problem (7) and the map \(p(t, \cdot)\) is an increasing diffeomorphism of R with \(p_{x}(t,x)>0\) for \((t,x)\in[0, T)\times\mathbb{R}\).
Proof
Using Lemma 2, we have \(V\in C^{1}([0, T); H^{s-1}(\mathbb{R}))\) and \(H^{s}\in C^{1}(\mathbb{R})\). Therefore, we know that functions \(V(t,x)\) and \(V_{x}(t,x)\) are bounded, Lipschitz in space, and \(C^{1}\) in time. Making use of the existence and uniqueness theorem of ordinary differential equations, we conclude that problem (7) has a unique solution \(p\in C^{1}([0, T)\times\mathbb{R})\).
We differentiate (7) about the variable x and get
which results in
For every \(T'< T\), applying the Sobolev imbedding theorem gives rise to
from which we know that there exists a constant \(K_{0}>0\) to satisfy \(p_{x}(t,x)\geq e^{-K_{0}t}>0\) for \((t,x)\in[0, T)\times\mathbb{R}\). The proof is finished. □
Lemma 4
Suppose that T is the maximal existence time of the solution V to problem (4) and \(V_{0}\in H^{s}(\mathbb{R})\), \(s>\frac{3}{2}\). Then
Proof
Using the density argument presented in [17], we only need to consider the case \(s=3\) to prove Lemma 4. If the initial value \(V_{0}\in H^{3}(\mathbb{R})\), we obtain \(V\in C([0,T),H^{3}(\mathbb{R}))\cap C^{1}([0,T), H^{2}(\mathbb{R}))\). From (4), we have
and
Using the identity \(\int_{-\infty}^{\infty}e^{-2|x-y|}\,dy=1\) and \(\| V\|_{L^{2}}=\| V_{0}\|_{L^{2}}\) (see Lemma 1), we have
from which together with (13) we derive that (12) holds.
From (13)–(15), we derive that
from which we obtain
Using Lemma 3, for every \(t\in[0,T')\), \(T'< T\), we get that there exists a function \(K(t)>0\) such that
We deduce from (18) that the function \(p(t,\cdot)\) is strictly increasing on \(\mathbb{R}\) with \(\lim_{x\rightarrow\pm\infty}p(t, x)=\pm\infty\) as long as \(t\in[0,T')\). Applying (17) produces
The proof is finished. □
Lemma 5
Suppose that \(V_{1}(t,x)\) and \(V_{2}(t,x)\) are two solutions of problem (4) with initial data \(V_{1,0}(x), V_{2,0}(x)\in H^{s}(\mathbb{R})\) (\(s>\frac{3}{2}\)), respectively. Assume \(f(t,x)\in C_{0}^{\infty}([0,\infty)\times(-\infty,\infty)\). Then
where \(c_{0}>0\) depends on f.
Proof
We have
in which we have applied the Tonelli theorem. The proof is completed. □
Assume that \(\delta(\sigma)\) is a function which is infinitely differentiable on \((-\infty, +\infty)\) such that \(\delta(\sigma)\geq 0\), \(\delta(\sigma)=0\) for \(|\sigma|\geq1\) and \(\int_{-\infty}^{\infty}\delta(\sigma)\,d\sigma=1\). For an arbitrary \(h>0\), set \(\delta_{h}(\sigma )=\frac{\delta(h^{-1}\sigma)}{h}\). We conclude that \(\delta_{h}(\sigma)\) is a function in \(C^{\infty}(-\infty, \infty)\) and
Suppose that the function \(W_{1}(x)\) is locally integrable in \((-\infty, \infty)\). The approximation function of \(W_{1}\) is defined by
We call \(x_{0}\) a Lebesgue point of function \(W_{1}(x)\) if
We introduce notation about the concept of a characteristic cone. For any \(M>0\), we define \(M>N=\max_{t\in[0, T]}\| V\| _{L^{\infty}}<\infty\). Let ℧ designate the cone \(\{(t,x): |x|< M-Nt, 0\leq t\leq T_{0}=\min(T, MN^{-1}) \}\). We let \(S_{\tau}\) designate the cross section of the cone ℧ by the plane \(t=\tau, \tau\in[0, T_{0}]\).
Let \(K_{r+2\rho}=\{x: |x|\leq r+2\rho\}\) where \(r>0\), \(\rho>0\) and \(\zeta _{T}=[0,T]\times\mathbb{R}\). The space of all infinitely differentiable functions \(f(t,x)\) with compact support in \([0,T]\times\mathbb{R}\) is denoted by \(C_{0}^{\infty}(\zeta_{T})\).
Lemma 6
([30])
Let the function \(U(t,x)\) be a bounded and measurable function in some cylinder \(\Omega_{T}=[0, T]\times K_{r}\). If for some \(\rho\in(0, \min[r, T])\) and any number \(h\in(0,\rho )\), then the following function
satisfies \(\lim_{h\rightarrow0}U_{h}=0\).
Lemma 7
([30])
If the function \(G(U)\) satisfies a Lipschitz condition on the interval \([-N, N]\), then the function
satisfies the Lipschitz condition in \(U_{1}\) and \(U_{2}\), respectively.
Lemma 8
Suppose that V is the strong solution of problem (4), \(f(t,x)\in C_{0}^{\infty}(\zeta_{T})\) and \(f(0,x)=0\). Then
where k is an arbitrary constant.
Proof
Here we mention that the method to prove this lemma comes from [30]. We assume that \(\Phi(V)\) is an arbitrary twice differentiable function on the line \(-\infty< V<\infty\). We multiply the first equation of Eq. (4) by the function \(\Phi'(V)f(t,x)\), where \(f(t,x)\in C_{0}^{\infty}(\zeta_{T})\). Integrating over \(\zeta_{T}\) and integrating by parts (transferring the derivatives with respect to t and x to function f), for any constant k, we have
and
Integration by parts yields
Choosing that \(\Phi^{h}(V)\) is an approximation of the function \(|V-k|\), setting \(\Phi(V)=\Phi^{h}(V)\), and making use of the properties of the \(\operatorname{sign}(V-k)\), (23), (24) and sending \(h\rightarrow0\), we notice that the last term in (24) becomes zero. Thus, we have
The proof is finished. □
3 Main result
Now, we give the main result of this work.
Theorem 1
Assume that \(V_{1}\) and \(V_{2}\) are two local strong solutions of Eq. (1) with initial data \(V_{1,0}(x),V_{2,0}(x)\in L^{1}(\mathbb{R})\cap H^{s}(\mathbb{R})\), \(s>\frac {3}{2}\). Let T be the maximal existence time of the solutions. Then
where \(c_{0}>0\) is a constant.
Proof
From Lemma 2, we know the existence of local strong solutions for Eq. (1). Let \(f(t,x)\in C_{0}^{\infty}(\zeta_{T})\). Assume \(f(t,x)=0\) outside the cylinder
We let
where \((\cdots)=(\frac{t+\tau}{2}, \frac{x+y}{2})\) and \((\ast)=(\frac {t-\tau}{2}, \frac{x-y}{2})\). The function \(\delta_{h}(\sigma)\) is defined in (20). We obtain
We apply the technique of Kruzkov’s device of doubling the space variables [30]. In (22), we set \(k=V_{1}(\tau,y)\) and \(f=\xi (t,x,\tau,y)\) for a fixed point \((\tau,y)\). We note that \(V_{1}(\tau, y)\) is defined almost everywhere in \(\zeta_{T}=[0,T]\times\mathbb{R}\). We integrate (22) over \(\zeta_{T}\) for variable \((\tau, y)\) and then get
Similarly, it has
Using (30) and (31), we acquire the inequality
We claim that the following inequality
holds.
In fact, for the choice of ξ, the first two terms in the integrand of (32) can be represented in the form
From Lemma 4, we know \(\| V_{1}\|_{L^{\infty}}< C_{T}\) and \(\| V_{2}\|_{L^{\infty}}< C_{T}\); from Lemma 7, we know \(D_{h}\) satisfies the Lipschitz condition in \(V_{1}\) and \(V_{2}\), respectively. By the choice of ξ, we derive that \(D_{h}=0\) outside the region
Furthermore, we get
Noticing \(|\lambda(\ast)|\leq\frac{c}{h^{2}}\) and the definition of \(D_{h}\) gives rise to
where the constant c does not depend on h. Using Lemma 6, we get \(B_{11}(h)\rightarrow0\) as \(h\rightarrow0\). The integral \(B_{12}\) does not depend on h. Substituting \(t=\alpha\), \(\frac{t-\tau}{2}=\beta\), \(x=\eta\), \(\frac{x-y}{2}=\mu\) and noting the identity
we derive that
Thus, we have
We write
and
from which we have
Using Lemmas 5 and 6, we have \(B_{21}(h)\rightarrow0\) as \(h\rightarrow 0\). Using (37), we have
From (36), (37), (42), and (43), we prove that inequality (33) holds.
Set
Let
and choose two numbers ρ and \(\tau\in(0, T_{0}), \rho<\tau\). In (33), we choose
where
We know that the function \(\chi(t,x)=0\) outside the cone ℧ and \(f(t,x)=0\) outside the set ⊎. If \((t,x)\in\mho\), we get the relations
Applying (46)–(48) and (33), we have
Using Lemma 5 and letting \(\varepsilon\rightarrow0\) and \(M\rightarrow \infty\), we obtain
Using the properties of the function \(\delta_{h}(\sigma)\) for \(h\leq\min (\rho, T_{0}-\rho)\) yields
where c is independent of h. Denoting
we get
and
Similarly, we obtain
It follows from (54) and (55) that
Send \(\rho\rightarrow0\), \(\tau\rightarrow t\), and note that
Thus, from (50), (51), (56)–(57), we have
Using the Gronwall inequality and (58), we complete the proof. □
References
Whitham, G.B.: Variational methods and applications to water waves. Proc. R. Soc. A 299(1456), 6–25 (1967)
Fornberg, G., Whitham, G.B.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A 289, 373–404 (1978)
Holmes, J., Thompson, R.C.: Well-posedness and continuity properties of the Fornberg–Whitham equation in Besov spaces. J. Differ. Equ. 263, 4355–4381 (2017)
Haziot, S.V.: Wave breaking for the Fornberg–Whitham equation. J. Differ. Equ. 263, 8178–8185 (2017)
Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)
Constantin, A., Ivanov, R.I.: Dressing method for the Degasperis–Procesi equation. Stud. Appl. Math. 138, 205–226 (2017)
Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)
Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)
Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)
Degasperis, A., Procesi, M.: Asymptotic integrability. In: Symmetry and Perturbation Theory, Rome, 1998, pp. 23–37. World Scientific, Singapore (1999)
Novikov, V.: Generalizations of the Camassa–Holm equation. J. Phys. A 42(34), 342002 (2009)
Himonas, A., Holliman, C.: The Cauchy problem for a generalized Camassa–Holm equation. Adv. Differ. Equ. 19(1–2), 161–200 (2014)
Himonas, A., Kenig, C., Misiolek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35(6), 1145–1162 (2010)
Himonas, A., Holliman, C.: On well-posedness of the Degasperis–Procesi equation. Nonlinearity 25, 449–479 (2012)
Grayshan, K.: Continuity properties of the data-to-solution map for the periodic b-family equation. Differ. Integral Equ. 25(1–2), 1–20 (2012)
Coclite, G.M., Karlsen, K.H.: On the well-posedness of the Degasperis–Procesi equation. J. Funct. Anal. 223, 60–91 (2006)
Liu, Y., Yin, Z.Y.: Global existence and blow-up phenomena for the Degasperis–Procesi equation. Commun. Math. Phys. 267, 801–820 (2006)
Escher, J., Liu, Y., Yin, Z.Y.: Global weak solutions and blow-up structure for the Degasperis–Procesi equation. J. Funct. Anal. 241, 457–485 (2006)
Matsuno, Y.: Multisoliton solutions of the Degasperis–Procesi equation and their peakon limit. Inverse Probl. 21, 1553–1570 (2005)
Lin, Z., Liu, Y.: Stability of peakons for the Degasperis–Procesi equation. Commun. Pure Appl. Math. 62, 125–146 (2009)
Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Discrete Contin. Dyn. Syst. 31(2), 469–488 (2011)
Mi, Y.S., Mu, C.L.: On the Cauchy problem for the modified Novikov equation with peakon solutions. J. Differ. Equ. 254, 961–982 (2013)
Fu, Y., Liu, Y., Qu, C.Z.: On the blow-up structure for the generalized periodic Camassa–Holm and Degasperis–Procesi equation. J. Funct. Anal. 262, 3125–3158 (2012)
Yin, Z.Y.: Global weak solutions for a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182–194 (2004)
Lai, S.Y., Wu, Y.H.: A model containing both the Camassa–Holm and Degasperis–Procesi equations. J. Math. Anal. Appl. 374, 458–469 (2011)
Lai, S.Y., Wu, Y.H.: The existence of global strong and weak solutions for the Novikov equation. J. Math. Anal. Appl. 399, 682–691 (2013)
Lai, S.Y., Li, N., Wu, M.: The \(L^{1}\) stability of solutions for the Degasperis–Procesi equation. Dyn. Contin. Discrete Impuls. Syst., Ser. B, Appl. Algorithms 20, 379–390 (2013)
Yan, H.B., Yong, L., Hu, H.L.: On the \(L^{1}\) stability to a generalized Degasperis–Procesi equation. Abstr. Appl. Anal. 2013, Article ID 121489 (2013)
Eckhardt, J.: The inverse spectral transform for the conservative Camassa–Holm flow with decaying initial data. Arch. Ration. Mech. Anal. 224, 21–52 (2017)
Kruzkov, S.N.: First order quasi-linear equations in several independent variables. Math. USSR Sb. 10, 217–243 (1970)
Acknowledgements
The authors are very grateful to the reviewers for their helpful and valuable comments and suggestions, which have led to a meaningful improvement of the paper.
Availability of data and materials
Not applicable.
Funding
This work is supported by the National Natural Science Foundation of China (No. 11471263).
Author information
Authors and Affiliations
Contributions
The authors contributed equally to the writing of this paper. They read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Additional information
Abbreviations
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gao, X., Lai, S. & Chen, H. The stability of solutions for the Fornberg–Whitham equation in \(L^{1}(\mathbb{R})\) space. Bound Value Probl 2018, 142 (2018). https://doi.org/10.1186/s13661-018-1065-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-018-1065-0