- Research
- Open access
- Published:
Existence of positive ground state solutions of Schrödinger–Poisson system involving negative nonlocal term and critical exponent on bounded domain
Boundary Value Problems volume 2019, Article number: 185 (2019)
Abstract
In this paper, we prove the existence of positive ground state solutions of the Schrödinger–Poisson system involving a negative nonlocal term and critical exponent on a bounded domain. The main tools are the mountain pass theorem and the concentration compactness principle.
1 Introduction
In this paper, we consider the following Schrödinger–Poisson system:
where \(\lambda >0\) is a parameter, \(2< q<6\), and Ω is a smooth bounded domain in \({\mathbb{R}}^{3}\).
System (1.1) is related to the stationary analogue of the nonlinear parabolic Schrödinger–Poisson system
The first equation in (1.2) is called the Schrödinger–Poisson equation, which describes quantum particles interacting with the electromagnetic field generated by a motion. Similar problems have been widely investigated, and it is well known that they have a strong physical meaning because they appear in quantum mechanics models (see e.g. [3]) and in semiconductor theory [10, 12]. Variational methods and critical point theory are always powerful tools in studying nonlinear differential equations. For more details as regards the physical relevance of the Schrödinger–Poisson system, we refer to [1, 13] and some related results [14, 16,17,18, 20].
The Schrödinger–Poisson system on whole space \({\mathbb{R}}^{N}\) has attracted a lot of attention. Few works concern the existence of solutions for the Schrödinger–Poisson system on a bounded domain, particularly, critical nonlinearity except [2, 7, 8]. Up to now, Schrödinger–Poisson system (1.1) has never been studied by variational methods. Lei and Suo [8] studied the following Schrödinger–Poisson system:
where Ω is a smooth bounded domain in \({\mathbb{R}}^{3}\), \(\kappa >0\) is a real parameter, and \(1< p<2\). There exists \(\kappa ^{*}>0\) such that there at least two positive solutions, and one of them is a positive ground state solution for \(\kappa \in (0, \kappa ^{*})\). Zhang [19] considered the negative nonlocal Schrödinger–Poisson system on a bounded domain and obtained thtat there are at least two solutions involving a singularity term by using the Nehari method. Li and Tang [9] obtained at least two positive solutions \((u,\phi _{u})\in D^{1,2}({\mathbb{R}}^{3})\times D ^{1,2}({\mathbb{R}}^{3})\) involving a negative nonlocal term in \({\mathbb{R}}^{3}\).
Our paper is motivated by all the results mentioned [2, 7,8,9, 19]. Up to now, there was no information about system (1.1) on a bounded domain Ω; this is what we are interested in. To deal with our system (1.1), we should estimate the critical value as regards the difficulty caused by the critical exponent.
Now our main results can be stated as follows.
Theorem 1.1
Let\(2< q\leq 4\). Then there exists\(\lambda ^{*}>0\)such that system (1.1) has at least one positive ground state solution for all\(\lambda >\lambda ^{*}\).
Theorem 1.2
Let\(4< q<6\). Then system (1.1) has at least one positive ground state solution for all\(\lambda >0\).
2 Preliminaries
Let X be the usual Sobolev space \(H_{0}^{1}(\varOmega )\) with the inner product \((u,v)=\int _{ \varOmega }\nabla u\nabla v \,dx\) and norm \(\|u\|=\sqrt{(u,u)}\); \(|u|_{s}\) denotes the norm of the space \(L^{s}( \varOmega )\), \(2\leq s\leq 6\). For any \(r>0\) and \(x\in \varOmega \), \(B_{r}(x)\) denotes the ball of radius r centered at x. C and \(C_{i}\) (\(i=1,2,3,\dots \)) denote various positive constants, which may vary from line to line.
It is well known that system (1.1) can be reduced to a nonlinear Schrödinger equation with nonlocal term. Indeed, the Lax–Milgram theorem implies that for all \(u\in X\), there exists a unique \(\phi _{u} \in X\) such that
It is standard to see that system (1.1) is variational and its solutions are the critical points of the functional defined in X by
For simplicity, in many cases, we just say that \(u\in X\), instead of \((u,\phi _{u})\in X\times X\), is a weak solution of system (1.1). It is easy to see that \(I\in C^{1}(X,{\mathbb{R}})\) (see [8, 9]) and
Let S be the best Sobolev constant, namely
As it is well known, the function
is an extremal function for the minimum problem (2.1), that is, it is a positive solution of the equation
and
see [11].
Before proving our Theorem 1.1, we need the following lemma.
Lemma 2.1
(see [6])
For every\(u\in H_{0}^{1}(\varOmega )\), there exists a unique solution\(\phi _{u}\in H_{0}^{1}(\varOmega )\)of
and
- (1)
\(\phi _{u}\geq 0\);moreover, \(\phi _{u}> 0\)when\(u\neq 0\);
- (2)
for each\(t\neq 0\), \(\phi _{tu}=t^{2}\phi _{u}\);
- (3)
\(\int _{\varOmega } \phi _{u} u^{2}\,dx=\int _{\varOmega }|\nabla \phi _{u}|^{2}\,dx \leq S^{-1}|u|_{ \frac{12}{5}}^{4}\leq C\|u\|^{4}\);
- (4)
if\(F(u)=\int _{\varOmega } \phi _{u} u^{2}\,dx\), then\(F: H_{0}^{1}( \varOmega )\rightarrow H_{0}^{1}(\varOmega )\)is\(C^{1}\), and
$$ \bigl\langle F'(u),v\bigr\rangle =4 \int _{\varOmega } \phi _{u} uv\,dx, \quad \forall v\in H_{0}^{1}(\varOmega ). $$
3 The Palais–Smale condition
First, we prove the following mountain-pass geometry of the functional I.
Lemma 3.1
Let\(2< q<6\)and\(\lambda >0\). Then the functionalIsatisfies the following conditions:
- (i)
There exist two constants\(\alpha , \rho >0\)such that
$$ I(u)\geq \alpha >0 \quad \textit{with } \Vert u \Vert =\rho . $$ - (ii)
There exists\(e\in X\)with\(\|e\|>\rho \)such that\(I(e)<0\).
Proof
(i). We have
Therefore, since \(q>2\), there exist \(\alpha , \rho >0\) such that \(I(u)\geq \alpha >0\) with \(\|u\|=\rho \).
(ii). For \(u\in X\setminus \{0\}\), we have
as \(t\rightarrow +\infty \). Then we can find \(e\in X\) such that \(\|e\|>\rho \) and \(I(e)<0\). This completes the proof. □
Therefore by using the mountain pass theorem without \((PS)_{c}\) condition (see [15]) it follows that there exists a \((PS)_{c}\) sequence \(\{u_{n}\}\subset X\) such that
where
Lemma 3.2
Let\(2< q<6\)and\(\lambda >0\). Let\(\{u_{n}\}\subset X\)be a\((PS)_{c}\)sequence ofIwith\(0< c<\frac{1}{3}S^{\frac{3}{2}}\). Then there exists\(u\in X\)such that\(u_{n}\rightarrow u\)inX.
Proof
Let \(\{u_{n}\}\subset X\) be a \((PS)_{c}\) for I, that is,
We claim that \(\{u_{n}\}\) is bounded in X. In the case \(2< q\leq 4\), we deduce that
in the case \(4< q<6\), we have
which implies that \(\{u_{n}\}\) is bounded in X. Going if necessary to a subsequence, still denoted by \(\{u_{n}\}\), we can assume that for n large enough,
By the concentration compactness principle (see [5, 11]) there exists at most countable set J, points \(\{x_{j}\}_{j\in J} \subset \varOmega \), and values \(\{v_{j}\}_{j\in J},\{\mu _{j}\}_{j\in J} \subset R^{+}\) such that
where \(\delta _{x_{j}}\) is the Dirac mass at \(x_{j}\). Moreover, we have
We claim that \(J=\emptyset \). Suppose, on the contrary, that \(J\neq \emptyset \), that is, there exists \(j_{0}\in J\) such that \(\mu _{j_{0}}\neq 0\).
On the one hand, for any \(\varepsilon >0\) small, assume that \(\psi _{\varepsilon ,j}(x)\in C_{0}^{\infty }(\mathbb{R}^{3})\) is such that \(\psi _{\varepsilon ,j}(x)\in [0,1]\),
Since \(\{u_{n}\}\subset X\) is bounded and \(\{\psi _{\varepsilon ,j}u _{n}\}\) is also bounded, we have
and by the Hölder inequality we get
and by Lemma 2.1 and (3.2) we obtain
and
which, combined with \(\mu _{j_{0}}\neq 0\) and (3.5), gives
From (3.3)–(3.5) and (3.12) in the case \(2< q\leq 4\), we have
and in the case \(4< q<6\), we have
where we use \(\nu _{j}\geq \mu _{j}\) and \(\nu _{j}\geq S^{\frac{3}{2}}\). Therefore by \(c<\frac{1}{3}S^{\frac{3}{2}}\) it is a contradiction. This implies that J is empty, which means that \(\int _{ \varOmega }|u_{n}|^{6}\,dx \rightarrow \int _{ \varOmega }|u|^{6}\,dx\). We can also get \(u_{n}\rightarrow u\) in X (see Lemma 2.2 in [8]). So Lemma 3.2 holds. □
Lemma 3.3
If\(2< q\leq 4\), then there exist\(\lambda ^{*}>0\)and\({\overline{v}} _{0}\in H_{0}^{1}(\varOmega )\)such that
If\(4< q<6\), then there exists\({\overline{v}}_{1}\in H_{0}^{1}(\varOmega )\)such that
Proof
We choose a function \(\eta \in C_{0}^{\infty }(\varOmega )\) such that \(0\leq \eta (x)\leq 1\), \(|\nabla \eta |\leq C\) in Ω. \(\eta (x)=1\) for \(|x|< 2r_{0}\), and \(\eta (x)=0\) for \(|x|>3r_{0}\). Define
It is known (see [15]) that
Set
We can also prove that \(\max_{s\geq 0}h(su_{\epsilon })\) is attained at \(s_{0}\) for \(0< s_{1}< s_{0}< s_{2}\), that is,
Combining (3.13) with (3.14), \(4< q<6\), we deduce
Similarly, in the case \(2< q\leq 4\), by (3.13) and (3.15) we have
provided that λ is large enough. Thus there exists \(\lambda ^{*}>0\) such that \(I(su_{\epsilon })<\frac{1}{3}S^{ \frac{3}{2}}\) for all \(\lambda >\lambda ^{*}\). This completes the proof. □
4 Proof of theorems
Proof of Theorems 1.1 and 1.2
Due to Lemma 3.1, \(I(u)\) satisfies the mountain pass geometry. From Lemmas 3.2 and 3.3 we obtain the \((PS)_{c}\) condition with \(0< c<\frac{1}{3}S^{\frac{3}{2}}\). Therefore system (1.1) has a nontrivial solution \(u_{0}\), and \(I(u_{0})=c>0\), which is a mountain pass solution. Since \(I(|u|)=I(u)\), by a result due to Brézis and Nirenberg (Theorem 10 in [4]) we conclude that \(u_{0}\geq 0\). By the strong maximum principle we have \(u_{0}>0\) in Ω. Therefore \(u_{0}\) is a positive solution of system (1.1) with \(I(u_{0})>0\).
Next, we show that system (1.1) has a positive ground state solution in X when \(2< p\leq 4\) or \(4< p<6\).
Define
There exists \(\{u_{n}\}\subset X\) such that \(u_{n}\neq 0\). Since \(u_{0}\) is a solution of system (1.1), by the definition of m we have
Obviously, from Lemma 3.2 we can easily deduce that \(\{u_{n}\}\) is bounded in X. Then there exist a nonnegative subsequence of \(\{u_{n}\}\) (still denoted by \(\{u_{n}\}\)) and \(u_{1}\in X\) such that \(u_{n}\rightharpoonup u_{1}\) in X. We can obtain that \(u_{n}\rightarrow u_{1}\) in X and \(I(u_{1})=m\) with \(u_{1}>0\) by the last section in [8], that is, \(u_{1}\) is a positive ground state solution to system (1.1). This completes the proof. □
References
Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)
Batkam, C.J.: High energy sign changing solutions to Schrödinger–Poisson type systems (2015) arXiv:1501.05942
Benguria, R., Brezis, H., Lieb, E.H.: The Thomas–Fermi–von Weizsacker theory of atoms and molecules. Commun. Math. Phys. 79, 167–180 (1981)
Berestycki, H., Capuzza-Dolcetta, I., Nirenberg, L.: Variational methods for indefinite superlinear homogeneous elliptic problems. Nonlinear Differ. Equ. Appl. 2, 553–572 (1995)
Chabrowski, J.: Concentration compactness principle at infinity and semilinear elliptic equations involving critical and subcritical Sobolev exponent. Calc. Var. Partial Differ. Equ. 3, 493–512 (1995)
d’Aprile, T., Mugnai, D.: Non-existence results for the coupled Klein–Gordon Maxwell equations. Adv. Nonlinear Stud. 4, 307–322 (2004)
Lei, C.Y., Liao, J.F.: Multiple positive solutions for Schrödinger–Poisson system involving singularity and critical exponent. Math. Methods Appl. Sci. 42, 2417–2430 (2019)
Lei, C.Y., Suo, H.M.: Positive solutions for a Schrödinger–Poisson system involving concave-convex nonlinearities. Commun. Math. Appl. 74, 1516–1524 (2017)
Li, M.M., Tang, C.L.: Multiple positive solutions for Schrödinger–Poisson system in Ω involving concave-convex nonlinearities with critical exponent. Commun. Pure Appl. Anal. 16(5), 1587–1602 (2017)
Lions, P.L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109, 33–97 (1984)
Lions, P.L.: The concentration compactness principle in the calculus of variations. The limit case, parts 1, 2. Rev. Mat. Iberoam. 1(2,3), 145–201 (1985) 45–121
Markowich, P., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990)
Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
Wang, L., Radulescu, V.D., Zhang, L.B.: Infinitely many solutions for fractional Kirchhoff–Schrödinger–Poisson systems. J. Math. Phys. 60(1), 011506, 18 pp. (2019)
Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
Xiang, M.Q., Radulescu, V.D., Zhang, L.B.: Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM Control Optim. Calc. Var. 24(3), 1249–1273 (2018)
Xiang, M.Q., Radulescu, V.D., Zhang, L.B.: Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity 31(7), 3228–3250 (2018)
Xiang, M.Q., Radulescu, V.D., Zhang, L.B.: A critical fractional Choquard–Kirchhoff problem with magnetic field. Commun. Contemp. Math. 21(4), 1850004, 36 pp. (2019)
Zhang, Q.: Existence, uniqueness and multiplicity of positive solutions for Schrödinger–Poisson system with singularity. J. Math. Anal. Appl. 437, 160–180 (2016)
Zhang, W., Zhang, J., Xie, X.L.: On ground states for the Schrödinger–Poisson system with periodic potentials. Indian J. Pure Appl. Math. 47(3), 449–470 (2016)
Acknowledgements
The authors wish to thank the referees and the editor for their valuable comments and suggestions.
Availability of data and materials
Not applicable.
Funding
This research was supported by the National Science Foundation of China grant 11271305 and 11531010.
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this paper. All authors wrote, read, and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zheng, W., Gan, W. & Liu, S. Existence of positive ground state solutions of Schrödinger–Poisson system involving negative nonlocal term and critical exponent on bounded domain. Bound Value Probl 2019, 185 (2019). https://doi.org/10.1186/s13661-019-01296-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-01296-1