- Research
- Open access
- Published:
Upper and lower solution method for Hilfer fractional evolution equations with nonlocal conditions
Boundary Value Problems volume 2019, Article number: 187 (2019)
Abstract
This paper is concerned with the existence of extremal mild solutions for Hilfer fractional evolution equations with nonlocal conditions in an ordered Banach space E. By employing the method of lower and upper solutions, the measure of noncompactness, and Sadovskii’s fixed point theorem, we obtain the existence of extremal mild solutions for Hilfer fractional evolution equations with noncompact semigroups. Finally, an example is provided to illustrate the feasibility of our main results.
1 Introduction
In recent years, many authors began to consider Hilfer fractional differential equations, see [1,2,3,4,5,6,7]. Presently, Hilfer fractional evolution equations have also been widely dealt with by many scholars. In [2], Gu and Trujillo investigated a class of Hilfer fractional evolution equations and established the existence results of mild solutions to such issues, and then Furati et al. [8] considered an initial value problem for a class of Hilfer fractional differential equations.
Later, the nonlocal problems have had better effects in applications than the initial problem, many contributions have been made in applications of fractional evolution equations with nonlocal conditions, see [7, 9, 10] and the references therein. For example, Liang and Yang [11] investigated the exact controllability of the nonlocal Cauchy problem for the fractional integro differential evolution equations in Banach spaces E:
where \(D^{q}\) denotes the Caputo fractional derivative of order \(q\in (0,1)\), \(-A:D(A)\subset E\rightarrow E\) is the infinitesimal generator of a \(C_{0}\)-semigroup \(T(t)\) (\(t\geq 0\)) of uniformly bounded linear operators, B is a linear bounded operator; f is a given function and the operator is given by
Over the past year, some recent papers investigated the existence of mild solutions for Hilfer fractional evolution equations with nonlocal conditions. In [3], Min Yang et al. studied the existence and uniqueness of mild solutions to the following Hilfer fractional evolution equations:
with the associated \(C_{0}\)-semigroup being compact or not, where \(D^{\nu ,\mu }_{0+}\) denotes the Hilfer fractional derivative of order μ and type ν, \(0\leq \nu \leq 1\), \(0<\mu <1\). In [5], Ahmed et al. studied the existence of mild solutions for Hilfer fractional stochastic integro-differential equations of the form
where \((t,v(t))=(t,u(t),u(b_{1}(t))),\ldots ,u(b_{m}(t)))\) and \((t,\eta (t))=(t,u(t),u(a_{1}(t))),\ldots ,u(a_{n}(t)))\), \(D^{\nu , \mu }_{0+}\) denotes the Hilfer fractional derivative \(0\leq \nu \leq 1\), \(0<\mu <1\), −A is the infinitesimal generator of an analytic semigroup of bounded linear operators \(S(t),t\geq 0\) on a separable Hilbert space.
In [6], Ahmed et al. studied the existence and controllability results for nonlinear delay Hilfer fractional differential equation with impulsive condition of the form
where \(D^{\nu ,\mu }_{0+}\) is the Hilfer fractional derivative, A is the infinitesimal generator of a \(C_{0}\)-semigroup \(T(t)\) on E.
On the other hand, by employing the method of lower and upper solutions to study the existence of an extremal mild solution for a class of fractional evolution equation is an interesting issue, which has been the focus of attention in [9, 10, 12,13,14]. In [14], Chen and Li used the monotone iterative method and lower and upper solutions method to discuss the existence and uniqueness of mild solutions for a class of semilinear evolution equations with nonlocal conditions in an ordered Banach space E:
where \(A:D(A)\subset E\rightarrow E\) is a closed linear operator and −A generates a \(C_{0}\)-semigroup \(T(t)(t\geq 0)\) on E, \(f\in C(J \times E,E)\), \(J=[0,b]\), \(b>0\) is a constant, \(0< t_{1}< t_{2}<\cdots <t _{b}\), \(p\in \mathbb{N}\), \(c_{k}\) are real numbers, \(c_{k}\neq 0, k=1,2, \ldots ,p, u_{0}\in E\).
In [15], Vikram Singh et al. investigated the existence and uniqueness of mild solutions for Sobolev type fractional impulsive differential systems with nonlocal conditions
where \(^{c}D^{q}\), \(^{L}D^{q}\) denote Caputo and Riemann–Liouville fractional order derivatives of order \(q\in (0,1)\), respectively, by applying the monotone iterative technique coupled with the method of lower and upper solutions.
However, as far as we know, there have been few applicable results on the existence and uniqueness of solutions to the Hilfer fractional evolution equations by applying the monotone iterative technique and the method of upper and lower solutions. So far we have not seen relevant papers that study Hilfer fractional evolution equations with nonlocal problems by applying the monotone iterative technique and the method of lower and upper solutions. Motivated by these facts, in this work, we use the fixed point theorem combined with monotone iterative technique to discuss the existence of extremal mild solutions for Hilfer fractional evolution equations with nonlocal conditions
where \(D^{\nu ,\mu }_{0+}\) denotes the Hilfer fractional derivative of order μ and type ν, which will be given in the next section, \(0\leq \nu \leq 1\), \(\frac{1}{2}<\mu <1\), the state \(u(\cdot )\) takes value in a Banach space E with norm \(\|\cdot \|\) and \(-A:D(A)\subset E\rightarrow E\) is the infinitesimal generator of a \(C_{0}\)-semigroup \(\{T(t)\}_{t\geq 0}\) of uniformly bounded linear operators in E. \(J=[0,b](b>0)\), \(J'=(0,b]\), \(f:J'\times E \times E\rightarrow E\) are given functions satisfying some assumptions, \(u_{0}\in E\) and \(\tau _{i}(i=1,2, \ldots ,m)\) are prefixed points satisfying \(0<\tau _{1}\leq \cdots \leq \tau _{m}<b\), and \(\lambda _{i}\) are real numbers. Here the nonlocal condition \(I^{1-\gamma }_{0+}u(0)=u_{0}+\sum_{i=1}^{m} \lambda _{i} u(\tau _{i})\) can be applied in a physical problem with better effect than the initial condition \(I^{1-\gamma }_{0+}u(0)=u_{0}\). The operator G is given by
is a Volterra integral operator with integral kernel \(K\in C(\nabla , \mathbb{R^{+}})\), \(\nabla =\{(t,s):0\leq s\leq t\leq b\}\). Throughout this paper, we always assume that
As far as we know, the nonlocal condition can have a better effect than the initial condition \(u(0)=u_{0}\) in physics application. In this article, the nonlocal function \(g(u)\) can be given by \(g(u)=\sum_{i=1}^{m} \lambda _{i} u(\tau _{i})\), we only assume that \(\lambda _{i}(i=1,2,\ldots ,m)\) satisfy condition \((F1)\) (see in Sect. 2) without the compactness of nonlocal function. Firstly, we introduce the definition of mild solutions of problem (1.1), and then we prove the existence of extremal mild solutions of problem (1.1) by employing Sadovskii’s fixed point theorem. What is more, an existence result without using the noncompactness measure condition is obtained in ordered and weakly sequentially complete Banach spaces, which is very useful in application.
Our work is organized as follows: In Sect. 2, we review some essential facts and introduce some notations. In Sect. 3, we state and prove the existence of mild solutions for Hilfer fractional differential system (1.1). Finally, in Sect. 4, an example is given to illustrate the effectiveness of the abstract results.
2 Preliminaries
Throughout this paper, by \(C(J,E)\) and \(C(J',E)\) we denote the spaces of all continuous functions from J to E and \(J'\) to E, respectively. Let E be an ordered Banach space with the norm \(\|\cdot \|\) and partial order ≤, whose positive cone \(P=\{x\in E: x\geq \theta \}\) is normal with normal constant N.
Let \(\gamma =\nu +\mu -\nu \mu \), then \(1-\gamma =(1-\nu )(1-\mu )\), define \(C_{1-\gamma }(J,E)= \{u\in C(J',E):t^{1-\gamma }u(t) \in C(J,E) \}\). Clearly, \(C_{1-\gamma }(J,E)\) is a Banach space with the norm \(\|u\|_{\gamma }=\sup_{t\in J'}|t^{1-\gamma }u(t)|\). And \(C_{1-\gamma }(J,E)\) is also an ordered Banach space with the partial order ≤ induced by the positive cone \(P'=\{u\in C_{1-\gamma }(J,E)|u(t) \geq \theta , t\in J\}\), which is also normal with the same normal constant N.
For the convenience of discussion, we recall some definitions and basic results on fractional calculus; for more details, see [2,3,4, 8, 16].
Definition 2.1
The Riemann–Liouville fractional integral of order α of a function \(f:[0,\infty )\rightarrow R\) is defined as
provided the right-hand side is point-wise defined on \([0,\infty )\).
Definition 2.2
The Riemann–Liouville derivative of order α with the lower limit zero for a function \(f:[0,\infty )\rightarrow R\) can be written as
Definition 2.3
The Caputo fractional derivative of order α for a function \(f:[0,\infty )\rightarrow R\) can be written as
where \(n = [\alpha ] + 1\) and \([\alpha ]\) denotes the integer part of α.
Definition 2.4
(Hilfer fractional derivative see [1])
The generalized Riemann–Liouville fractional derivative of order \(0\leq \nu \leq 1\) and \(0<\mu <1\) with lower limit a is defined as
for functions such that the expression on the right-hand side exists.
Remark 2.1
-
(i)
If \(\nu =0\), \(0<\mu <1\), and \(a=0\), the Hilfer fractional derivative corresponds to the classical Riemann–Liouville fractional derivative
$$ D^{0,\mu }_{0+}f(t)=\frac{d}{\,dt}I^{1-\mu }_{0+}f(t)=D_{0+}^{\mu }f(t). $$ -
(ii)
If \(\nu =1\), \(0<\mu <1\), and \(a=0\), the Hilfer fractional derivative corresponds to the classical Caputo fractional derivative
$$ D^{1,\mu }_{0+}f(t)=I^{1-\mu }_{0+}\, \frac{d}{\,dt}f(t)={}^{c}D^{\mu }_{0^{+}}f(t). $$
Remark 2.2
The Hilfer fractional derivative is considered as an interpolator between the Riemann–Liouville and Caputo derivatives.
Remark 2.3
For \(0<\mu <1\), the Laplace transformation of Hilfer fractional derivatives is given by
where \((I_{0+}^{(1-\nu )(1-\mu )}f)(0+)\) is the Riemann–Liouville fractional integral of order \((1-\nu )(1-\mu )\) in the limits as \(t\rightarrow 0+\), and
The symbol \(\alpha (\cdot )\) is the Kuratowski noncompactness measure defined on a bounded subset Ω of E. For any \(\varOmega \subset C(J,E)\) and \(t\in J\), set \(\varOmega (t)=\{u(t) : u\in B\}\subset E\). If B is bounded in \(C(J,E)\), then \(\varOmega (t)\) is bounded in E, and \(\alpha (\varOmega (t))\leq \alpha (\varOmega )\). As is well known, the Kuratowski measure of noncompactness has the following properties.
Lemma 2.1
([17])
Let\(B\subset C(J,E)\)be bounded and equicontinuous, then\(\overline{co}B\subset C(J,E)\)is also bounded and equicontinuous.
Lemma 2.2
([18])
LetEbe a Banach space, and let\(D\subset E\)be bounded. Then there exists a countable set\(D_{0} \subset D\)such that\(\alpha (D) \leq 2\alpha (D_{0})\).
Lemma 2.3
([19])
LetEbe a Banach space, and let\(\varOmega \subset C(J,E)\)be equicontinuous and bounded, then\(\alpha (\varOmega (t))\)is continuous onJ, and\(\alpha (\varOmega )=\max_{t\in J} \alpha (\varOmega (t))\).
Lemma 2.4
([20])
Let\(\varOmega =\{u_{n}\}_{n=1}^{\infty }\subset C(J,E)\)be a bounded and countable set, and there exists a function\(m\in L^{1}(J,R^{+})\)such that, for every\(n\in N\),
Then\(\alpha (\varOmega (t))\)is Lebesgue integral onJ, and
Based on Lemma 2.12 in paper [2], we give the following the lemma.
Lemma 2.5
Assume that −Ais the infinitesimal generator of a\(C_{0}\)-semigroup\(\{T(t)\}_{t\geq 0}\)of uniformly bounded linear operators inE. If\(f\in C_{1-\gamma }(J,E)\)for any\(u\in C_{1-\gamma }(J,E)\), a functionuis a solution of the equation
if and only ifusatisfies the following integral equation:
where
the function\(\xi _{\mu }\)is the function of Wright type
Lemma 2.6
([2])
Assume thatAgenerates a\(C_{0}\)-semigroup\(\{T(t)\}_{t \geq 0}\)of uniformly bounded linear operators inEand\(T(t)\)is continuous in the uniform operator topology for\(t>0\). That is, there exists\(M\geq 1\)such that\(\sup_{t\in [0,+\infty )}|T(t)|\leq M\). Then the operators\(S_{\nu ,\mu }(t)\)and\(K_{\mu }(t)\)have the following properties.
- (i)
For any fixed\(t\geq 0\), \(\{S_{\nu ,\mu }(t)\}_{t>0}\)and\(\{K_{\mu }(t)\}_{t>0}\)are linear operators, and for any\(u\in E\),
$$ \bigl\Vert S_{\nu ,\mu }(t)u \bigr\Vert \leq \frac{Mt^{\gamma -1}}{\varGamma (\gamma )} \Vert u \Vert , \qquad \bigl\Vert K_{\mu }(t)u \bigr\Vert \leq \frac{Mt^{\mu -1}}{\varGamma (\mu )} \Vert u \Vert . $$ - (ii)
The operators\(S_{\nu ,\mu }(t)\)and\(K_{\mu }(t)\)are strongly continuous for all\(t\geq 0\).
- (iii)
If\(T(t)(t\geq 0)\)is an equicontinuous semigroup, then\(S_{\nu ,\mu }(t)\)and\(K_{\mu }(t)\)are equicontinuous inEfor\(t>0\).
In view of [2], from Lemma 2.6, we adopt the following definition of mild solution of system (2.2).
Definition 2.5
A function \(u\in C_{1-\gamma }(J,E) \) is said to be a mild solution of (2.2) if \(u_{0}\in E\), the integral equation
is satisfied for all \(t\in J'\).
Next, we present a useful lemma that plays an important role in our main results.
Lemma 2.7
Suppose thatAis the infinitesimal generator of a\(C_{0}\)-semigroup\(\{T(t)\}_{t\geq 0}\)of uniformly bounded linear operators inEfor\(0\leq \nu \leq 1\), \(0<\mu <1\), then
and
Proof
Let \(\lambda >0\), we consider the one-sided stable probability density as follows:
whose Laplace transform is given by
Then, using (2.5), we have
where \(\xi _{\mu }\) is a probability density function defined on \((0,\infty )\) such that
Since the Laplace inverse transform of \(\lambda ^{\nu (\mu -1)}\) is
where \(\delta (t)\) is the delta function.
From (2.6), (2.7), and the Laplace transform, it is obvious to see that
where ∗ denotes the convolution of functions. By Remark 2.2, we obtain
Combining (2.8) and (2.9) yields
Similarly, we have
and
Thus, it follows from (2.10) and (2.11) that
which completes the proof of Lemma 2.7. □
For the convenience of discussion, we assume the following:
- (H0)
Assume that A generates a \(C_{0}\)-semigroup \(\{T(t)\}_{t\geq 0}\) of uniformly bounded linear operators in E and \(T(t)\) is continuous in the uniform operator topology for \(t>0\). That is, there exists \(M\geq 1\) such that \(\sup_{t\in [0,+\infty )}\|T(t)\|\leq M\).
- (H1)
\(\lambda _{i}>0 (i=1,2,\ldots ,m)\) and \(\sum_{i=1}^{m} \lambda _{i}<\frac{\varGamma (\gamma )}{Mb^{\gamma -1}}\).
In view of [14] and [11], we present the following lemma.
Lemma 2.8
Assume that (H0) and (H1) hold. For any\(u\in C_{1-\gamma }(J)\)such that\(f(\cdot ,u,Gu)\in C_{1-\gamma }(J)\), problem (1.1) has a unique mild solution\(u\in C_{1-\gamma }(J)\)given by
where\(\overline{\varTheta }= [I-\sum_{i=1}^{m}\lambda _{i}S_{\nu , \mu }(\tau _{i}) ]^{-1}\).
Proof
By assumption (H0), we have
By operator spectrum theorem, the operator \(\overline{\varTheta }:= (I-\sum_{i=1}^{m} \lambda _{i} S_{\nu ,\mu }(\tau _{i})) )^{-1}\) exists and is bounded. Furthermore, by Neumann’s expression, we obtain
According to Definition 2.5, a solution of system (2.2) can be expressed by
Next, we substitute \(t=\tau _{i}\) into (2.13), and by applying \(\lambda _{i}\) to both sides of (2.13), we have
Thus, we have
Since \(I-\sum_{i=1}^{m}\lambda _{i}S_{\nu ,\mu }(\tau _{i})\) has a bounded inverse operator Θ̅, it implies
Submitting (2.1) to (2.14), we obtain that (2.13). It implies that u is also a solution of the integral of Eq. (2.13) when u is a solution of system (2.12).
The necessity has been proved. Next, we will prove its sufficiency. Applying \(I^{1-\gamma }_{0+}\) to both sides of (2.12), and by Lemma 2.7, we have
Therefore, we have
Substituting \(t=\tau _{i}\) into (2.12), we have
Then we obtain
It follows from (2.16) and (2.17) that \(I^{1-\gamma }_{0+}u(0)=u_{0}+ \sum_{i=1}^{m} \lambda _{i} u(\tau _{i})\).
Next, by using \(D^{\nu ,\mu }_{0+}\) to both sides of (2.12) and Lemma 2.9, we have
Hence,
This proof is completed. □
From Lemma 2.8, we adopt the following definition of a mild solution of problem (1.1).
Definition 2.6
A function \(u\in C_{1-\gamma }(J,E) \) is said to be a mild solution of problem (1.1) if it satisfies the operator equation
where the operators \(S_{\nu ,\mu }(t)\) and \(K_{\mu }(t)\) are given by (2.3).
Definition 2.7
A \(C_{0}\)-semigroup \(\{T(t)\}_{t\geq 0}\) in E is said to be positive if the order inequality \(T(t)x\geq \theta \) holds for each \(x\geq \theta \), \(x\in E\), and \(t\geq 0\).
Remark 2.4
For any \(C\geq 0\), \(-(A+CI)\) also generates a \(C_{0}\)-semigroup \(S(t)=e^{-Ct}T(t)(t\geq 0)\) on E. And \(S(t)(t\geq 0)\) is a positive \(C_{0}\)-semigroup if \(T(t)(t\geq 0)\) is a positive \(C_{0}\)-semigroup. For details, see [18, 21].
For \(u\in E\), we define two families \(\{S_{\nu ,\mu }^{*}(t)\}_{t \geq }\) and \(\{K_{\mu }^{*}(t)\}_{t\geq 0}\) of operators by
where \(\xi _{\mu }(\sigma )\) is given by (2.3).
Since \(T(t)(t\geq 0)\) is positive, by Remark 2.4, it is easy to know that \(S(t)(t\geq 0)\) is also positive. And by the definition of \(\xi _{\mu }(\sigma )\), the operators \(S_{\nu ,\mu }^{*}(t)\) and \(~K_{\mu }^{*}(t)\) are also positive for all \(t\geq 0\).
To prove our main result, for any \(C>0\), we consider the following system:
First, we assume the following:
- (F0)
For any \(C\geq 0\), \(-(A+CI)\) also generates a \(C_{0}\)-semigroup \(S(t)=e^{-Ct}T(t)(t\geq 0)\) on E and \(S(t)\) is continuous in the uniform operator topology for \(t>0\). That is, there exists \(M^{*} \geq 1\) such that \(\sup_{t\in [0,+\infty )}|S(t)|\leq M^{*}\).
- (F1)
\(\lambda _{i}>0 (i=1,2,\ldots ,m)\) and \(\sum_{i=1}^{m} \lambda _{i}<\frac{\varGamma (\gamma )}{M^{*}b^{\gamma -1}}\).
By assumption (F1), we have
By operator spectrum theorem, the operator \(I-\sum_{i=1}^{m} \lambda _{i} S_{\nu ,\mu }^{*}(\tau _{i}))\) has a bounded inverse operator
Furthermore, by Neumann’s expression, Θ̅ can be expressed by
By the positivity of \(C_{0}\)-semigroup \(S(t)(t\geq 0)\), it is easy to know that \(S_{\nu ,\mu }^{*}(t)\) is positive, we have
So, Θ is a positive operator, and
In view of Lemma 2.8, we present the following lemma.
Lemma 2.9
Assume that (F0) and (F1) hold. For any\(u\in C_{1-\gamma }(J)\)such that\(f(\cdot ,u,Gu)\in C_{1-\gamma }(J)\), problem (2.20) has a unique mild solution\(u\in C_{1-\gamma }(J)\)given by
where\(\overline{\varTheta }= [I-\sum_{i=1}^{m}\lambda _{i}S_{\nu , \mu }^{*}(\tau _{i}) ]^{-1}\).
From Lemma 2.9 and Definition 2.7, we state the following definition of a mild solution of problem (2.20).
Definition 2.8
A function \(u\in C_{1-\gamma }(J,E)\) is said to be a mild solution of problem (2.20) if, for any \(u\in C_{1-\gamma }(J,E)\), the integral equation
is satisfied.
In the following, we will state some lemmas whose proofs are similar to those of the paper [2]. Here, we omit it.
Lemma 2.10
Under assumption (F0), the operators\(S_{\nu ,\mu }^{*}(t)\)and\(K_{\mu }^{*}(t)\)have the following properties:
- (i)
For any fixed\(t>0\), \(\{K_{\mu }^{*}(t)\}_{t>0}\)and\(\{S_{\nu , \mu }^{*}(t)\}_{t>0}\)are linear operators, and for any\(u\in E\),
$$ \bigl\Vert K_{\mu }^{*}(t) \bigr\Vert \leq \frac{M^{*}t^{\mu -1}}{\varGamma (\mu )}, \qquad \bigl\Vert S_{\nu ,\mu }^{*}(t) \bigr\Vert \leq \frac{M^{*}t^{\gamma -1}}{\varGamma (\gamma )}. $$ - (ii)
The operators\(\{K_{\mu }^{*}(t)\}_{t>0}\)and\(\{S_{\nu ,\mu } ^{*}(t)\}_{t>0}\)are strongly continuous for\(t>0\).
- (iii)
If\(S(t)(t\geq 0)\)is an equicontinuous semigroup, then\(S_{\nu ,\mu }^{*}(t)\)and\(K_{\mu }^{*}(t)\)are equicontinuous inEfor\(t>0\).
To end this section, we state a fixed point theorem, which plays a major role in the proof of our main results.
Lemma 2.11
(Sadovskii’s fixed point theorem)
LetDbe a convex, closed, and bounded subset of a Banach spaceEand\(Q:D\rightarrow D\)be a condensing map. ThenQhas one fixed point inD.
Lemma 2.12
([22])
Let\(a\geq 0\), \(\mu >0\), \(c(t)\), and\(u(t)\)be the nonnegative locally integrable functions on\(0\leq t< T<+\infty \)such that
then
3 Main results
In this section, we discuss the existence of extremal mild solutions for problem (1.1).
Definition 3.1
An abstract function \(u\in C_{1-\gamma }(J,E)\) is called a solution of problem (1.1) if \(u(t)\) satisfies all the equalities of (1.1).
Definition 3.2
If the function \(v_{0}\in C_{1-\gamma }(J,E)\) satisfies
then \(v_{0}\) is said to be a lower solution of problem (1.1). If all the inequalities in (3.1) are reversed, then \(v_{0}\) is called an upper solution of problem (1.1).
Theorem 3.1
Assume thatEis an ordered Banach space, its positive conePis normal, and −Agenerates a positive\(C_{0}\)-semigroup\(\{T(t)\}_{t \geq 0}\)onE, \(f\in C(J\times E\times E, E)\), and\(u_{0}\in E\). If problem (1.1) has a lower solution\(v_{0}\in C_{1-\gamma }(J,E)\)and an upper solution\(w_{0}\in C_{1-\gamma }(J,E)\)with\(v_{0}\leq w_{0}\). Suppose also that conditions (F0), (F1) and the following conditions are satisfied:
- (F2)
There exists a constant\(C>0\)satisfying
$$ f(t,u_{2},v_{2})-f(t,u_{1},v_{1}) \geq -C(u_{2}-u_{1}) $$for\(\forall \in J\), and\(v_{0}(t)\leq u_{1}\leq u_{2}\leq w_{0}(t)\), \(Gv_{0}(t)\leq v_{1}\leq v_{2}\leq Gw_{0}(t)\).
- (F3)
There exists a constant\(L>0\)satisfying
$$ \alpha \bigl(\bigl\{ f(t,u_{n},v_{n})\bigr\} \bigr)\leq L\bigl(\alpha \bigl(\{u_{n}\}\bigr)+\alpha \bigl(\{v _{n}\}\bigr)\bigr) $$for\(\forall t\in J\), and increasing or decreasing monotonic sequences\(\{u_{n}\}\subset [v_{0}(t),w_{0}(t)]\)and\(\{v_{n}\}\subset [Gv_{0}(t),Gw _{0}(t)]\).
- (F4)
Let\(v_{n}=Qv_{n-1}\), \(w_{n}=Qw_{n-1}\), \(n=1,2,\ldots \) , such that the sequences\(v_{n}(0)\)and\(w_{n}(0)\)are convergent.
Then problem (1.1) has minimal and maximal mild solutions\(\underline{u}\)andu̅between\(v_{0}\)and\(w_{0}\), which can be obtained by using the monotone iterative procedure starting from\(v_{0}\)and\(w_{0}\)respectively.
Proof
Since \(C>0\), problem (1.1) can be written as system (2.20). By (2.21), we can define operator \(Q:[v_{0},w_{0}]\to C_{1-\gamma }(J,E)\) as follows:
Since f is continuous, it is easily seen that the map \(Q:[v_{0},w _{0}]\to C_{1-\gamma }(J,E) \) is continuous. And by Lemma 2.9, the mild solutions of problem (1.1) are equivalent to the fixed points of the operator Q. We will divide the proof in the following steps.
Step 1. We show that \(Q:[v_{0},w_{0}]\rightarrow C_{1-\gamma }(J,E)\) is an increasing monotone operator.
In fact, for \(\forall t\in J'\), \(v_{0}(t)\leq u\leq v\leq w_{0}\), by assumptions (F2) and (F3), we have
So
Thus, from (3.2) we have \(Qu\leq Qv\).
Step 2. We show that \(v_{0}\leq Qv_{0}\) and \(Qw_{0}\leq w_{0}\). Let \(h(t)= D^{\nu ,\mu }_{0+}v_{0}(t)+Av_{0}(t)+Cv_{0}(t)\), \(h\in C_{1- \gamma }(J,E)\), and \(h(t)\leq f(t,v_{0}(t),Gv_{0}(t))+Cv_{0}(t)\), \(t \in J'\). By Definitions 2.7 and 3.2, we have
It implies that \(v_{0}\leq Qv_{0}\). Similarly, it can prove that \(Qw_{0}\leq w_{0}\). Thus, \(Q:[v_{0},w_{0}]\to [v_{0},w_{0}]\) is a continuous increasing monotone operator.
Now, we define two sequences \(\{v_{n}\}\) and \(\{w_{n}\}\) in \([v_{0},w_{0}]\) by the iterative scheme
Then, from the monotonicity of Q, we have
Step 3. We prove that \(\{v_{n}\}\) and \(\{w_{n}\}\) are convergent in \(J'\).
Let \(B=\{v_{n}: n\in \mathbb{N}\}\) and \(B_{0}=\{v_{n-1}: n\in \mathbb{N}\}\). Then \(B=Q(B_{0})\). From \(B_{0}=B\cup \{v_{0}\}\) it follows that \(\alpha (B_{0}(t))=\alpha (B(t))\) for \(t\in J'\). Let \(\varphi (t):=\alpha (B(t))\), \(t\in J'\), we will show that \(\varphi (t) \equiv 0\) in \(J'\).
For \(t\in J'\), by (1.2) and Lemma 2.4, we get
therefore
For \(t\in J'\), from (3.2), using Lemma 2.2, assumptions (F3) and (F4), we have
Hence, by Lemma 2.12, \(\varphi (t)\equiv 0\) in J. So, for any \(t\in J\), \(\{v_{n}(t)\}\) is precompact and \(\{v_{n}(t)\}\) has a convergent subsequence. And by the monotonicity of (3.3), we prove that \(\{v_{n}(t)\}\) itself is convergent, i.e., \(\lim_{n\rightarrow \infty }v_{n}(t)=\underline{u}(t)\), \(t\in J\). Similarly, \(\lim_{n\rightarrow \infty }w_{n}(t)=\overline{u}(t)\), \(t\in J\).
Evidently, \(\{v_{n}(t)\}\in C_{1-\gamma }(J,E)\), so \(\underline{u}(t)\) is bounded integrable on J. For any \(t\in J\),
If \(n\to \infty \) in (3.5), by the Lebesgue dominated convergence theorem, we obtain
Thus, we have \(\underline{u}(t)\in C_{1-\gamma }(J,E)\) and \(\underline{u}=Q\underline{u}\). In a similar way, we can prove that there exists \(\overline{u}(t)\in C_{1-\gamma }(J,E)\) such that \(\overline{u}=Q\overline{u}\). Combining this with the monotonicity of (3.4), we see that \(v_{0}\leq \underline{u}\leq \overline{u} \leq w_{0}\), which implies that \(\underline{u}\) and u̅ are the minimal and maximal mild solutions of problem (1.1) in \([v_{0},w _{0}]\). □
Remark 3.1
If we replace positive cone P is normal by positive cone P is regular, then the conclusion in Theorem 3.1 is also valid. For more details, see [14].
As a supplement to Theorem 3.1, we further discuss the existence of mild solutions for problem (1.1) in a weakly sequentially complete Banach space, we only need to verify that conditions (F1) and (F2) are satisfied.
Corollary 3.1
Assume thatEis an ordered and weakly sequentially complete Banach space, its positive conePis normal, and −Agenerates a positive\(C_{0}\)-semigroup\(\{T(t)\}_{t\geq 0}\)onE, \(f\in C(J\times E \times E, E)\), and\(u_{0}\in E\). If problem (1.1) has a lower solution\(v_{0}\in C_{1-\gamma }(J,E)\)and an upper solution\(w_{0}\in C_{1- \gamma }(J,E)\)with\(v_{0}\leq w_{0}\). Suppose also that conditions (F0)–(F4) are satisfied. Then problem (1.1) has minimal and maximal mild solutions\(\underline{u}\)andu̅between\(v_{0}\)and\(w_{0}\), which can be obtained by a monotone iterative procedure starting from\(v_{0}\)and\(w_{0}\), respectively.
Proof
In view of Theorem 3.1, if E is weakly sequentially complete, then conditions (F3) and (F4) hold automatically. And by Theorem 2.2 in [23], any monotonic and order bounded sequence is precompact. By the monotonicity of (3.4), it is easy to see that \(v_{n}(t)\) and \(w_{n}(t)\) are convergent on J. Thus, \(v_{n}(0)\) and \(w_{n}(0)\) are convergent, i.e., condition (F4) holds. For \(t\in J\), let \(\{u_{n}\} \subset [v_{0}(t),w_{0}(t)]\) and \(\{v_{n}\}\subset [Gv_{0},Gw_{0}(t)]\) be two increasing or decreasing sequences. By (F2), \(\{f(t,u_{n},v _{n})+Cx_{n}\}\) is an ordered monotonic and ordered bounded sequence in E. Then \(\alpha (\{f(t,u_{n},v_{n})+Cx_{n}\})=0\), (F3) holds, and by Theorem 3.1 our conclusion is valid. □
Theorem 3.2
Assume thatEis an ordered Banach space, its positive conePis normal, and −Agenerates a positive and equicontinuous\(C_{0}\)-semigroup\(\{T(t)\}_{t\geq 0}\)onE, \(f\in C(J\times E \times E, E)\), and\(u_{0}\in E\). If problem (1.1) has a lower solution\(v_{0}\in C_{1-\gamma }(J,E)\)and an upper solution\(w_{0}\in C_{1- \gamma }(J,E)\)with\(v_{0}\leq w_{0}\). Suppose also that conditions (F0)–(F3) are satisfied and
- (F5)
There exists a nonnegative constant\(L_{1}\)with
$$ \frac{2M^{*}b^{\mu }( L_{1}+2bL_{1}K_{0}+C)}{\varGamma (\mu )} \biggl[\frac{(b ^{\gamma -1}-\varGamma (\gamma ))M^{*}\sum_{i=1}^{m}\lambda _{i}+\varGamma ( \gamma )}{\varGamma (\gamma )(1-M^{*}\sum_{i=1}^{m}\lambda _{i})} \biggr]< 1 $$such that
$$ \alpha \bigl(\bigl\{ f(t,u_{n},v_{n})\bigr\} \bigr)\leq L_{1}\bigl(\alpha \bigl(\{u_{n}\}\bigr)+\alpha \bigl( \{v _{n}\}\bigr)\bigr) $$for\(\forall t\in J\), and an equicontinuous countable set\(\{u_{n}\} \subset [v_{0}(t),w_{0}(t)]\), \(\{v_{n}\}\subset [Gv_{0}(t),Gw_{0}(t)]\).
Then problem (1.1) has a minimal mild solution\(\underline{u}\)and maximal mild solutionu̅in\([v_{0},w_{0}]\), and
where\(v_{n}(t)=Qv_{n-1}(t)\), \(w_{n}(t)=Qw_{n-1}(t)\), which satisfy
Proof
From the proof of Theorem 3.1, we know that \(Q : [v_{0},w_{0}]\rightarrow [v_{0},w_{0}]\) is continuous. First, we will prove that \(Q:[v_{0},w _{0}]\rightarrow C(J,E)\) is an equicontinuous operator. Since \(T(t)(t\geq 0)\) is an equicontinuous \(C_{0}\)-semigroup, and \(S(t)(t\geq 0)\) is also an equicontinuous \(C_{0}\)-semigroup, by the normality of the cone P, there exists \(\overline{M}>0\) such that
For any \(u\in C_{1-\gamma }(J,E)\), let \(y(t)=t^{1-\gamma }u(t)\), for \(t_{1}=0\), \(0< t_{2}\leq b\), we get
For \(0< t_{1} < t_{2} \leq b\), by (3.2), we get that
where
Here we calculate
Therefore, it is not difficult to see that \(\|J_{i}\|\) tends to 0, when \(t_{2}-t_{1}\rightarrow 0\), \(i=1,2,\ldots ,6\).
For \(J_{1}\), by Lemma 2.10, we get
For \(J_{2}\), by Lemma 2.10, we get
For \(J_{3}\), by Lemma 2.10, we have
For \(J_{4}\), by Lemma 2.10, we have
For \(J_{5}\), by Lemma 2.10, we have
Noting that
and
exists, and by the Lebesgue dominated convergence theorem, we have
It is easy to see that \(\lim_{t_{2}\rightarrow t_{1}}J_{5}=0\).
For \(J_{6}\), by Lemma 2.10, we have
In conclusion,
as \(t_{2}\rightarrow t_{1}\), i.e.,
which means that \(Q:[v_{0},w_{0}]\rightarrow [v_{0},w_{0}]\) is equicontinuous.
So, for any \(D \subset [v_{0},w_{0}]\), \(Q(D) \subset [v_{0},w_{0}]\) is bounded and equicontinuous. Therefore, by Lemma 2.2, there exists a countable set \(D_{0}=\{u_{n}\} \subset D\) such that
For \(t \in J\), by the definition of the operator Q, we have
Since \(Q(D_{0}) \) is bounded and equicontinuous, we know from Lemma 2.3 that
And by (3.6), we have
where
Thus, \(Q : [v_{0},w_{0}]\rightarrow [v_{0},w_{0}]\) is a condensing operator. By Lemma 2.11, our conclusion is valid. □
4 Applications
In this section, we present an example that illustrates the applicability of our main results.
Example 4.1
We consider the following fractional partial differential equation:
where \(D^{\nu ,\mu }_{0+}\) is the Hilfer fractional derivative, \(0\leq \nu \leq 1\), \(0<\mu <1\), \(t\in J=[0,b] \), \(\lambda _{i}\neq 0\), \(i=1,2, \ldots ,m\), integer \(\mathbb{N}\geq 1\), \(\varOmega \subset \mathbb{R} ^{N}\) is a bounded domain with a sufficiently smooth boundary ∂Ω, \(f:J\times E\times E\rightarrow E\) is continuous and
\(\alpha =(\alpha _{1},\alpha _{2},\ldots ,\alpha _{n})\) is an n-dimensional multi-index, \(|\alpha |=\alpha _{1}+\alpha _{2}+\cdots +\alpha _{n}\), coefficient function \(a_{\alpha }(x)\in C^{2m}(\overline{ \varOmega })\).
Let \(E=L^{p}(\varOmega )\) with \(1< p<\infty \), \(P=\{u\in L^{p}(\varOmega )\}:u(x) \geq 0,\mbox{ q.e. }x\in \varOmega \}\), and define the operator \(A:D(A)\subset E \rightarrow E\) as follows:
Then E is a Banach space, P is a normal cone of E, and −A generates a positive \(C_{0}\)-semigroup \(T(t)(t\geq 0)\) in E (see [21]). Let \(f(t,u(t),Gu(t))=f(t,x, u(t,x),Gu(t,x))\), \(u_{0}=u_{0}( \cdot )\), then problem (4.1) can be written as abstract (1.1).
Theorem 4.1
If the following conditions are satisfied:
- (H1)
Let\(u_{0}(x)\geq 0\), \(x\in \varOmega \), and there exists a function\(w=w(t,x)\in C_{1-\gamma }(J\times \varOmega )\)such that
$$ \textstyle\begin{cases} D^{\nu ,\mu }_{0+}u(t,x)\geq \sum_{|\alpha |\leq 2m}a_{\alpha }D^{\alpha }_{x} u(t,x)+f(t,x, u(t,x),Gu(t,x)), \\ I^{(1-\nu )(1-\mu )}_{0+}u(0,x)=u_{0}+\sum_{i=1}^{m}\lambda _{i}u(\tau _{i},x). \end{cases} $$(4.2) - (H2)
There exists a constant\(M>0\)such that
$$ f(t,x,u_{2},v_{2})-f(t,x,u_{1},v_{1}) \geq -M(u_{2}-u_{1}) $$for any\(t\in J\), and\(0\leq u_{1}\leq u_{2}\leq w(t,x)\), \(0\leq v_{1} \leq v_{2}\leq Gw(t,x)\).
- (H3)
\(\lambda _{i}>0\) (\(i=1,2,\ldots ,m\)) and\(\sum_{i=1}^{m} \lambda _{i}<\frac{\varGamma (\gamma )}{M^{*}b^{\gamma -1}}\).
- (H4)
There exists a constant\(L>0\)such that
$$ \alpha \bigl(\bigl\{ f(t,u_{n},v_{n})\bigr\} \bigr)\leq L\bigl(\alpha \bigl(\{u_{n}\}\bigr)+\alpha \bigl(\{v _{n}\}\bigr)\bigr) $$for\(\forall t\in J\), and increasing or decreasing monotonic sequences\(\{u_{n}\}\subset [v_{0}(t),w_{0}(t)]\)and\(\{v_{n}\}\subset [Gv_{0}(t),Gw _{0}(t)]\).
Then problem (4.1) has minimal and maximal mild solutions between 0 and\(w(x,t)\), which can be obtained by a monotone iterative procedure starting from 0 and\(w(t)\), respectively.
Proof
Assumption (H1) implies that \(v_{0}\equiv 0\) and \(w_{0}\equiv w(x,t)\) are lower and upper solutions of problem (4.1), respectively, and from (H2), it is easy to verify that all conditions (F1)–(F3) are satisfied under the constant \(M=1\). So our conclusion follows from Theorem 3.1. □
5 Conclusions
The purpose of this paper was to obtain existence results of mild solutions for a class of evolution equations with Hilfer fractional derivative. The method is inspired by using the fixed point theorem combined with the method of lower and upper solutions, some existence result of mild solutions for Hilfer fractional evolution equations with nonlocal conditions has been obtained. Here, we do not require that \(C_{0}\)-semigroup \(\{T(t)\} _{t\geq 0}\) is compact.
References
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Gu, H., Trujillo, J.J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)
Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679–705 (2017)
Hilfer, R.: In: Hilfer, R. (ed.) Fractional Time Evolution, Applications of Fractional Calculus in Physics, pp. 87–130. World Scientific, Singapore (2000)
Ahmed, H.M., EI-Borai, M.M.: Hilfer fractional stochastic integro-differential equations. Appl. Math. Comput. 331, 182–189 (2018)
Ahmed, H.M., EI-Borai, M.M., EI-Owaidy, H.M., Ghanem, A.S.: Impulsive Hilfer fractional differential equations. Adv. Differ. Equ. 2018, 226 (2018)
Gou, H., Li, B.: Study on the mild solution of Sobolev type Hilfer fractional evolution equations with boundary conditions. Chaos Solitons Fractals 112, 168–179 (2018)
Furati, K.M., Kassim, M.D., Tatar, N.e-.: Existence and uniqueness for a problem involving Hilfer factional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)
Mu, J., Li, Y.: Monotone interactive technique for impulsive fractional evolution equations. J. Inequal. Appl. 2011, 125 (2011)
Mu, J.: Extremal mild solutions for impulsive fractional evolution equations with nonlocal initial conditions. Bound. Value Probl. 2012, 71 (2012)
Liang, J., Yang, H.: Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl. Math. Comput. 254, 20–29 (2015)
Mu, J.: Monotone iterative technique for fractional evolution equations in Banach spaces. J. Appl. Math. 2011, Article ID 767186 (2011)
Shu, X.B., Xu, F.: Upper and lower solution method for fractional evolution equations with order \(1<\alpha <2\). J. Korean Math. Soc. 51(6), 1123–1139 (2014)
Chen, P., Li, Y.: Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions. Results Math. 63, 731–744 (2013)
Singh, V., Pandey, D.N.: A study of Sobolev type fractional impulsive differential systems with fractional nonlocal conditions. Int. J. Appl. Comput. Math. 4, 12 (2018)
Li, F., Liang, J., Xu, H.: Existence of mild solutions for fractional integrodifferential equations of Sobolev type with nonlocal conditions. J. Math. Anal. Appl. 391, 510–525 (2012)
Liu, L.S., Guo, F., Wu, C.X., Wu, Y.H.: Existence theorems of global solutions for nonlinear Volterra type integral equations in Banach spaces. J. Math. Anal. Appl. 309, 638–649 (2005)
Li, Y.: The positive solutions of abstract semilinear evolution equations and their applications. Acta Math. Sin. 39(5), 666–672 (1996) (in Chinese)
Guo, D., Sun, J.: In: Ordinary Differential Equations in Abstract Spaces. Shandong Science and Technology, Jinan (1989) (in Chinese)
Heinz, H.R.: On the behavior of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 71, 1351–1371 (1983)
Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)
Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its applications to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)
Du, Y.: Fixed points of increasing operators in order Banach spaces and applications. Appl. Anal. 38, 1–20 (1990)
Acknowledgements
The authors would like to thank the referees for their useful suggestions that have significantly improved the paper. Supported by the National Natural Science Foundation of China (Grant No. 11661071).
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Funding
The authors are supported financially by the National Natural Science Foundation of China (11661071).
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gou, H., Li, Y. Upper and lower solution method for Hilfer fractional evolution equations with nonlocal conditions. Bound Value Probl 2019, 187 (2019). https://doi.org/10.1186/s13661-019-01298-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-01298-z