- Research
- Open access
- Published:
Positive bound state solutions for the nonlinear Schrödinger–Poisson systems with potentials
Boundary Value Problems volume 2019, Article number: 193 (2019)
Abstract
In this paper, we study the following Schrödinger–Poisson system in \(\mathbb{R} ^{3}\)
with \(\frac{3}{4}<\sigma <1\), \(p\in (3,\frac{3+2\sigma }{3-2 \sigma })\). Then, under some suitable assumptions on the coefficients not requiring any symmetry property, we prove the existence of a bound state solution of the above problem.
1 Introduction
This paper concerns the non-autonomous Schrödinger–Poisson system
where \(\frac{3}{4}<\sigma <1\), \(p\in (3,\frac{3+2\sigma }{3-2\sigma })\), \(A(y)\), \(B(y)\), and \(b(y)\) are positive functions. Here \(B(y):\mathbb{R} ^{3} \rightarrow R\) denotes the nonnegative measurable function which represents a nonconstant charge corrector to the density \(u^{2}\) and \(A(y)\) and \(b(y)\) are called the potentials of system (1.1). Moreover, the fractional Laplacian \((-\Delta )^{\sigma }\) in \(\mathbb{R} ^{N}\) is defined by
where P.V. stands for the Cauchy principal value, \(C_{N,\sigma }\) is a normalization constant.
This kind of system also arises in many fields of physics. Indeed, one considers the following system:
where i is the imaginary unit, \((-\Delta )^{\sigma }\) is the fractional operator. From the physical as well as the mathematical point of view, a central issue is the existence and dynamic of standing waves of (1.2). By standing waves, we want to look for the form \(\psi =e^{-iht}u\) of the solution of (1.2), where \(y\in \mathbb{R} ^{3}\), \(t>0\). It is clear that ψ solves (1.2) if and only if u solves (1.1). The fractional Schrödinger equation in (1.2) is an important model in the study of fractional quantum mechanics. In Refs. [12, 13], Laskin introduced this equation by expanding the Feynman path integral from the Brownian-like to the Lévy-like quantum mechanical paths.
Many researches have been devoted to the study of (1.1) when \(\sigma =1\), i.e.,
which mainly concerns either the autonomous or the non-autonomous case. But it is well known that, dealing with system (1.3), one has to face different kinds of difficulties, which are related to potentials and the unboundedness of the space \(\mathbb{R} ^{3}\). So many studies were devoted to the autonomous or the non-autonomous case in which the coefficients are supposed to be radial. In [19], the existence of multiple solutions of (1.3) have been found in a radial setting under some suitable assumptions on \(A(y)\), \(B(y)\), \(b(y)\). In [16], the author considered the case that \(B=1\), \(A(y)\), \(b(y)\) are radial and satisfy some decay conditions and proved the existence of nontrivial positive classical mountain-pass solution of (1.3). Moreover, some more general case, replacing \(b(y)|u|^{p-1}u\) by \(f(x,u)\), was considered in [25, 29]. More recently, many contributions to (1.3) have also been given in which no symmetry assumptions are given on the coefficients appearing in (1.3). Cerami and Molle [6] obtained the existence of bound state, finite energy solution of (1.3) under suitable assumptions on the decay rate of the coefficients A, B, b. In [17], Mercuri and Tyler proved the existence of mountain-pass solutions and least energy solutions to the nonlinear Schrödinger–Poisson system (1.3) with \(A(y)=b(y)=1\) and \(p\in (2,5)\) under different assumptions on \(B: \mathbb{R} ^{3}\rightarrow \mathbb{R} _{+}\) at infinity. Furthermore, they also studied the singularly perturbed problem and found necessary conditions for concentration at points to occur for solutions to the singularly perturbed problem in various functional settings. For more results on the existence of positive or sign-changing solutions, ground and bound states, one can refer to [1, 2, 5, 9, 18, 20, 24] and the references therein.
Since fractional Schrödinger equation is coupled with a fractional Poisson term \(\phi (y)u\), the existence of multiple nonlocal terms causes some mathematical difficulties and makes the study of system (1.1) very interesting. In recent years, several scholars paid their attention to the existence of positive, ground state, semiclassical, and other solutions to fractional Schrödinger–Poisson system or similar problems. For the information, one can refer to [21–23, 27–29] and the references therein. However, it is worth to point out that in most of the papers mentioned above, the study involves positive ground state solutions to (1.1). In the present paper we consider a situation that has to be studied in a different way. We will find the positive solution that differs from positive ground state solution. Here a solution u of (1.1) is nontrivial if \(u\neq 0\). A solution of (1.1) is a nontrivial bound state solution if u is a nontrivial solution. A solution u with \(u>0\) is called a positive solution. A solution is called a nontrivial ground state solution if its energy (see (2.3)) is minimal among all the nontrivial solutions of (1.1).
In order to state our main result, we give the conditions imposed on \(A(y)\), \(B(y)\), and \(b(y)\) as follows:
- (\(A_{1}\)):
\(A(y)=A_{\infty }+W(y)\), where \(A_{\infty }\in \mathbb{R} ^{+} \backslash \{0\}\) and \(W(y)\in L^{3/2\sigma }(\mathbb{R} ^{3})\) is a nonnegative function such that
$$ \lim_{ \vert y \vert \rightarrow \infty } \vert y \vert ^{-3\sigma -3}W(y)=0. $$- (\(A_{2}\)):
\(0\not \equiv B(y)\in L^{2}(\mathbb{R} ^{3})\) is a nonnegative function such that, for some \(\epsilon >2\sigma \) and \(\hat{c},c, \bar{R}>0\),
$$ B(y)\leq \frac{\hat{c}}{(1+ \vert y \vert )^{\epsilon }}\leq \frac{c}{ \vert y \vert ^{\epsilon }}, \quad \vert y \vert >\bar{R}. $$- (\(A_{3}\)):
\(b(y)=b_{\infty }-\beta (y)\), where \(b_{\infty }\in \mathbb{R} ^{+}\backslash \{0\}\) and \(0\leq \beta (y)< b_{\infty }\) and
$$ \lim_{ \vert y \vert \rightarrow \infty } \vert y \vert ^{-3\sigma -3}\beta (y)=0. $$
Now we state our main result as follows.
Theorem 1.1
Suppose that conditions\((A_{1})\), \((A_{2})\), \((A_{3})\)hold and\(p\in (3,\frac{3+2 \sigma }{3-2\sigma })\). Then (1.1) admits a bound state solution\((u,\phi )\in H^{\sigma }(\mathbb{R} ^{3})\times D^{\sigma }(\mathbb{R} ^{3})\), whose components are positive functions.
Remark 1.2
It should be pointed out that in this paper, we just consider (1.1) with \(\frac{3}{4}<\sigma <1\). But it would be interesting if one can find an analogous result to Theorem 1.1 to (1.1) for all \(0<\sigma <1\). However, in the radial setting, Bellazzini et al. [4] studied (1.1) with \(A(y)=0\), \(B(y)=b(y)=1\) by discussing the existence of the optimizers of the Gagliardo–Nirenberg type inequalities.
To the best of our knowledge, this is the first result on the existence of bound state solution of (1.1) with competing coefficients. It is worth mentioning that the conditions imposed on our potentials decay algebraically at infinity, which is a contrast to the fact that the potentials decay exponentially at infinity in [6].
Here we give the following notations which can be used in this paper.
- (i)
\(H^{\sigma }(\mathbb{R} ^{3})\) is the usual Sobolev space endowed with the standard scalar product and norm
$$ (u,v)= \int _{\mathbb{R} ^{3}}\bigl[(-\Delta )^{\frac{\sigma }{2}}u(-\Delta )^{\frac{ \sigma }{2}}v+uv\bigr], \qquad \Vert u \Vert ^{2}_{H^{\sigma }}= \int _{\mathbb{R} ^{3}} \bigl( \bigl\vert (-\Delta )^{\frac{\sigma }{2}}u \bigr\vert ^{2}+u^{2} \bigr). $$ - (ii)
\(D^{\sigma }(\mathbb{R} ^{3})\) is the completion of \(C_{0}^{\infty }(\mathbb{R} ^{3})\) with the norm defined by \(\Vert u\Vert ^{2}_{D^{\sigma }}= \int _{\mathbb{R} ^{3}}|(-\Delta )^{\frac{\sigma }{2}}u|^{2}\).
- (iii)
\(\|u\|_{q}\) is the norm of the Lebesgue space \(L^{q}(\mathbb{R} ^{3})\).
- (iv)
Denote by \(C>0\) various positive constants which may vary from one line to another and which are not important for the analysis of the problem.
This paper is organized as follows. In Sect. 2, we give some preliminary results which contain some known results and some useful estimates. And then the proof of Theorem 1.1 is given in Sect. 3.
2 Preliminaries
In this part we mainly give some basic knowledge which will be used later. We first show that the second equation of (1.1) can be solved. For \(u\in H^{\sigma }(\mathbb{R} ^{3})\), the linear functional \(J_{u}\) is defined in \(D^{\sigma }(\mathbb{R} ^{3})\) by
Applying condition \((A_{2})\) and Hölder’s inequality, we find that
By the Lax–Milgram theorem, we know that there exists unique \(\phi _{u}\in D^{\sigma }(\mathbb{R} ^{3})\) such that
So, \(\phi _{u}\) is a weak solution of \((-\Delta )^{\sigma }\phi =B(y)u ^{2}\), and there holds
where \(C_{\sigma }=\pi ^{-\frac{3}{2}}2^{-2\sigma }\frac{\varGamma (\frac{3-2 \sigma }{2})}{\varGamma (\sigma )}\).
Thus, substituting \(\phi _{u}\) into the first equation of (1.1), then (1.1) is reduced to
Moreover, it is well known that solutions of (1.1) correspond to the critical points of the energy functional
Without loss of generality, in what follows, we assume that \(A_{\infty }=b_{\infty }=1\), and let us now define
Then in the following, we summarize some properties of Φ, useful to studying our problem, and which can be verified by using the same argument as the case of Poisson equations in \(D^{1,2}(\mathbb{R} ^{3})\) (see [8, 19]).
Lemma 2.1
-
(1)
Φis continuous;
-
(2)
Φmaps bounded sets into bounded sets;
-
(3)
\(\varPhi (tu)=t^{2}\varPhi (u)\).
Lemma 2.2
Suppose that\(u_{n}\rightharpoonup u\)in\(H^{\sigma }(\mathbb{R} ^{3})\), then
- (1)
\(\varPhi (u_{n})\rightarrow \varPhi (u)\)in\(D^{\sigma }(\mathbb{R} ^{3})\);
- (2)
\(\int _{\mathbb{R} ^{3}}B(y)\phi _{u_{n}}u_{n}^{2}\,dy\rightarrow \int _{\mathbb{R} ^{3}}B(y)\phi _{u}u^{2}\,dy\);
- (3)
\(\int _{\mathbb{R} ^{3}}B(y)\phi _{u_{n}}\varphi \,dy\rightarrow \int _{\mathbb{R} ^{3}}B(y)\phi _{u}\varphi \,dy\), \(\forall \varphi \in H^{\sigma }(\mathbb{R} ^{3})\).
It is not difficult to show that the functional I is bounded neither from below, nor from above. So it is convenient to consider I restricted to a natural constraint, the Nehari manifold, which contains all the critical points of I.
Set
So, for all \(u\in \mathcal{N}\), we are led to
which tells that I is bounded from below on \(\mathcal{N}\).
Then we have the following.
Lemma 2.3
-
(i)
\(\mathcal{N}\)is a\(C^{1}\)regular manifold diffeomorphic to sphere of\(H^{\sigma }(\mathbb{R} ^{3})\);
-
(ii)
Iis bounded from below on\(\mathcal{N}\)by a positive constant;
-
(iii)
uis a free critical point ofIif and only ifuis a critical point ofIconstrained on\(\mathcal{N}\).
Proof
(i) Let \(u\in H^{\sigma }(\mathbb{R} ^{3})\backslash \{0\}\) with \(\Vert u\Vert _{H ^{\sigma }}=1\). Then we claim that there exists a unique \(t\in \mathbb{R} ^{+}\backslash \{0\}\) such that \(tu\in \mathcal{N}\). In fact, considering that t satisfies
we have
with \(d_{1},d_{2},d_{3}>0\). So, from \(p>3\), the equation \(1+d_{1}+t ^{2}d_{2}-t^{p-1}d_{3}=0\) has a unique solution \(t:=t_{u}>0\) and then \(t_{u}u\in \mathcal{N}\), which is called the projection of u on \(\mathcal{N}\), satisfies
(ii) Now suppose that \(u\in \mathcal{N}\). Then
which yields
Thus, using (2.4) and (2.9), we find
(iii) First, it is obvious that if \(u\neq 0\) is a critical point of I, \(I'(u)=0\) and then \(u\in \mathcal{N}\). On the other hand, writing \(G(u)=\langle I'(u), u\rangle \), then from (2.9), for \(u\in \mathcal{N}\), we get
Letting u be a critical point of I constrained on \(\mathcal{N}\), then there is \(\lambda \in \mathbb{R} \) such that
Hence
which, by (2.11), implies that \(\lambda =0\) and then \(I'(u)=0\). □
Now, we introduce the following problem:
Concerning problem (2.12), we have the following proposition.
Proposition 2.4
(2.12) has a ground state, positive solution\(U\in H^{\sigma }(\mathbb{R} ^{3})\), which is radially symmetric about the origin, unique up to translations, and satisfies
and
Moreover, the linearized operator\(L_{0}:=(-\Delta )^{\sigma }+1-p|U|^{p-1}\)is non-degenerate, i.e., its kernel is given by
Throughout this paper, we write by \(I_{\infty }: H^{\sigma }(\mathbb{R} ^{3}) \rightarrow \mathbb{R} \) the functional of (2.12), that is,
and by \(\mathcal{N}_{\infty }\) the corresponding Nehari manifold
Furthermore, for any \(u\in H^{\sigma }(\mathbb{R} ^{3})\setminus \{0\}\), there exists a unique \(h_{u}>0\) such that \(h_{u}u\in \mathcal{N}_{\infty }\), called the projection of u on \(\mathcal{N}_{\infty }\), and
On the other hand, we find that \(\forall u\in \mathcal{N}_{\infty }\),
and in what follows, we denote
Remark 2.5
It is worth noticing that any sign-changing solution \(u_{0}\) of (2.12) satisfies \(I_{\infty }(u_{0})\geq 2m_{\infty }\). In fact, suppose that \(u_{0}=u_{0}^{+}-u_{0}^{-}\) and \(\langle I'_{ \infty }(u_{0}), u_{0}\rangle =\Vert u_{0}\Vert ^{2}_{H^{\sigma }}-\|u_{0}\| _{p+1}^{p+1}\). Then we have
which implies \(u_{0}^{+}\in \mathcal{N}_{\infty }\) and so \(I_{\infty }(u_{0}^{+})\geq m_{\infty }\). Similarly, \(I_{\infty }(u_{0}^{-}) \geq m_{\infty }\). Hence, \(I_{\infty }(u_{0})\geq 2m_{\infty }\).
Next, we deal with the behavior of the Palais–Smale sequences of I. This study will be important for our research of the critical point of I.
Lemma 2.6
Let\(u\in H^{\sigma }(\mathbb{R} ^{3})\), \(t_{u}u\), \(h_{u}u\)be the projections of it on\(\mathcal{N}\)and\(\mathcal{N}_{\infty }\)respectively. Then
Proof
Since \(t_{u}u\in \mathcal{N}\) and \(h_{u}u\in \mathcal{N}_{\infty }\), we have
and
So from \((A_{3})\), we find
and then our result follows. □
Lemma 2.7
Let\(\{u_{n}\}\)be a (PS) sequence ofIconstrained on\(\mathcal{N}\), that is, \(u_{n}\in \mathcal{N}\)and (i) \(I(u_{n})\)is bounded, (ii) \(\nabla I|_{\mathcal{N}}(u_{n})\rightarrow 0\)in\(H^{\sigma }(\mathbb{R} ^{3})\). Then there exist a solution\(u^{*}\)of (1.1), a number\(k\in \mathbb{N}\cup \{0\}\), kfunctions\(u^{1},\ldots ,u^{k}\)of\(H^{\sigma }(\mathbb{R} ^{3})\), and sequences of points\(\{y_{n}^{j}\}\), \(0\leq j\leq k\), such that
- (1)
\(|y_{n}^{j}|\rightarrow +\infty \), \(|y_{n}^{i}-y_{n}^{j}|\rightarrow +\infty \), if\(i\neq j\), \(n\rightarrow +\infty \);
- (2)
\(u_{n}-\sum_{j=1}^{k}u^{j}(\cdot -y_{n}^{j})\rightarrow u^{*}\)in\(H^{\sigma }(\mathbb{R} ^{3})\);
- (3)
\(I(u_{n})\rightarrow I(u^{*})+\sum_{j=1}^{k}I_{\infty }(u^{j})\);
- (4)
\(u^{j}\)are nontrivial weak solutions of (2.12). Here, we must emphasize that in the case\(k=0\), the above holds without\(u^{j}\).
Proof
First, since \(I(u_{n})\) is bounded, using (2.10), one has
which tells that \(\{u_{n}\}\) is bounded in \(H^{\sigma }(\mathbb{R} ^{3})\). Now we claim that
In fact, from the assumption, we find
where \(\lambda _{n}\in \mathbb{R} \) and G can be seen in (2.11). So, by (2.16), we get
Being \(\langle \nabla I(u_{n}),u_{n}\rangle =0\) and \(\langle \nabla G(u _{n}),u_{n}\rangle <0\) from (2.11), it follows from (2.17) that \(\lambda _{n}\rightarrow 0\) as \(n\rightarrow +\infty \). So, by the boundedness of \(\nabla G(u_{n})\), we have \(\lambda _{n}\nabla G(u_{n})=o(1)\) and then the claim holds by applying (2.16).
On the other hand, since \(u_{n}\) is bounded in \(H^{\sigma }(\mathbb{R} ^{3})\), there is \(u^{*}\in H^{\sigma }(\mathbb{R} ^{3})\) such that, up to a subsequence, \(u_{n}\rightharpoonup u^{*}\) in \(H^{\sigma }(\mathbb{R} ^{3})\) and in \(L^{p+1}(\mathbb{R} ^{3})\), and \(u_{n}\rightarrow u^{*}\) a.e. in \(\mathbb{R} ^{3}\). So, applying Lemma 2.2 and (2.15), we get that \(u^{*}\) is a weak solution of (1.1).
If \(u_{n}\rightarrow u^{*}\) in \(H^{\sigma }(\mathbb{R} ^{3})\), we are done. Otherwise, we assume \(z_{n}^{1}(y)=u_{n}(y)-u^{*}(y)\) and proceed as done in [8], our desired results follow. □
3 Proof of the main result
To prove our main theorem, we first give some important results.
Proposition 3.1
We have\(\inf_{\mathcal{N}}I=m_{\infty }\)and the infimum is not achieved.
Proof
First we write \(m:= \inf_{\mathcal{N}}I\) and by Lemma 2.3, \(m>0\). Now let us show that \(m\geq m_{\infty }\). For all \(u\in \mathcal{N}_{\infty }\), by the assumptions on \(B(y)\), \(W(y)\), \(\beta (y)\), and (2.7), we find
from which, considering that \(\mathcal{N}_{\infty }\) and \(\mathcal{N}\) are diffeomorphic to sphere of \(H^{\sigma }(\mathbb{R} ^{3})\), we find
Next, we will prove the opposite side \(m\leq m_{\infty }\). To do this, take \(u_{n}=t_{n}U_{n}\), where \(U_{n}=U(y-z_{n})\), \(t_{n}=t_{U_{n}}\), and \(\{z_{n}\}\) is a sequence of points in \(\mathbb{R} ^{3}\) such that \(|z_{n}|\rightarrow \infty \) as \(n\rightarrow \infty \). Now we claim that
In fact, since \(U_{n}\) is bounded and weakly converges to zero in \(H^{\sigma }(\mathbb{R} ^{3})\) and from Lemma 2.2, we find
Using condition \((A_{1})\), we can get that
Thus, by (2.4), in order to prove (3.1), we just need to show that \(t_{n}\rightarrow 1\) as \(n\rightarrow \infty \). To this end, being \(t_{n}U_{n}\in \mathcal{N}\), we obtain that
Noting that
and
Thus, from (3.2)–(3.4), we find that \(\lim_{n\rightarrow \infty }t_{n}=1\) and then \(m\leq \lim_{n\rightarrow \infty }I(u_{n})=m_{\infty }\).
Finally, to finish our proof, we assume by contradiction that there exists \(u_{*}\in \mathcal{N}\) such that \(I(u_{*})=m=m_{\infty }\). Letting \(h_{u_{*}}>0\) such that \(h_{u_{*}}u_{*}\in \mathcal{N}_{ \infty }\), then using Lemma 2.6, one has
which implies \(h_{u_{*}}=1\) and
Thus, \(u_{*}\in \mathcal{N}_{\infty }\) and \(I_{\infty }(u_{*})=m_{ \infty }\). But it follows from Proposition 2.4 that up to translations, U is unique and \(m_{\infty }=I_{\infty }(U)\). So, by the uniqueness of the family achieving \(m_{\infty }\), we infer that
for some \(z_{0}\in \mathbb{R} ^{3}\). This contradicts (3.5) and our result has been proved. □
Proposition 3.2
The functionalIconstrained on\(\mathcal{N}\)satisfies a\((PS)_{d}\)sequence for all\(d\in (m_{\infty },2m_{\infty })\). Moreover, if\(\{u_{n}\}\)is a\((PS)_{m_{\infty }}\)sequence, then, up to a subsequence, we have
with\(z_{n}\in \mathbb{R} ^{3}\), \(|z_{n}|\rightarrow +\infty \).
Proof
Let \(\{u_{n}\}\) be a \((PS)_{d}\) sequence of I constrained on \(\mathcal{N}\). Then it follows from (3) of Lemma 2.7 that
where \(u_{n}\rightharpoonup u^{*}\) and \(I_{\infty }(u^{j})\geq m_{ \infty }\). Since \(m_{\infty }< d<2m_{\infty }\), from (3.6), we can infer that \(k<2\). Now if \(k=1\), there are the following two possibilities:
- (i)
\(u^{*}\neq 0\), being \(I(u^{*})>m_{\infty }\), we see
$$ 2m_{\infty }>d=\lim_{n\rightarrow \infty }I(u_{n})= I \bigl(u^{*}\bigr)+I_{ \infty }\bigl(u^{1} \bigr)>2m_{\infty }, $$this is a contradiction.
- (ii)
\(u^{*}=0\), then \(I(u^{*})=0\) and
$$ d=\lim_{n\rightarrow \infty }I(u_{n})=I_{\infty } \bigl(u^{1}\bigr)\in (m_{ \infty },2m_{\infty }), $$this is impossible since either \(I_{\infty }(u^{1})=m_{\infty }\) or \(I_{\infty }(u^{1})\geq 2m_{\infty }\) if \(u^{1}\) is changing sign.
Therefore, from the above, we can deduce \(k=0\). □
From Proposition 3.1, we know that (1.1) can not be solved by minimization. So we will prove the existence of a higher level solution by the barycenter technique, which has been successfully used in the case of scalar filed equation (see [3]). Let us now recall the definition of barycenter of a function \(u\in H^{\sigma }(\mathbb{R} ^{3})\setminus \{0\}\), which was also introduced in [6, 7]. Set
and then \(\alpha (u)\) is bounded and continuous. So the function
is well defined, continuous and has compact support. Thus, we can define \(\gamma :H^{\sigma }(\mathbb{R} ^{3})\setminus \{0\}\rightarrow \mathbb{R} ^{3}\) as
Then \(\gamma (u)\) is well defined and the following properties hold:
- 1.
γ is continuous in \(H^{\sigma }(\mathbb{R} ^{3})\setminus \{0\}\).
- 2.
If u is a radial function, \(\gamma (u)=0\).
- 3.
For all \(t\neq 0\) and for all \(u\in H^{\sigma }(\mathbb{R} ^{3})\setminus \{0\}\), \(\gamma (tu)=\gamma (u)\).
- 4.
Given \(z\in \mathbb{R} ^{3}\) and taking \(u_{z}(y)=u(y-z)\), then \(\gamma (u_{z})=\gamma (u)+z\).
Now we define
Then we are led to the following lemma.
Lemma 3.3
Proof
First, it is obvious to see that \(a_{0}\geq m_{\infty }\). Next we argue by contradiction, suppose that \(a_{0}=m_{\infty }\). Then there exists \(\{u_{n}\}\) such that \(u_{n}\in \mathcal{N}\), \(\gamma (u_{n})=0\) and \(I(u_{n})\rightarrow m_{\infty }=m\). Moreover, by Ekeland’s variational principle (see [15] or [26]), there is another sequence \(\tilde{u}_{n}\in \mathcal{N}\) such that \(I( \tilde{u}_{n})\rightarrow m_{\infty }\), \(\nabla I|_{\mathcal{N}}( \tilde{u}_{n})\rightarrow 0\) and \(\|\tilde{u}_{n}-u_{n}\|_{H^{\sigma }}\rightarrow 0\). Thus, by the properties of \(\gamma (u)\), we have \(\gamma (\tilde{u}_{n})=o(1)\).
On the other hand, by Proposition 3.2, \(\tilde{u}_{n}(y)=U(y-z _{n})+o(1)\), where \(\{z_{n}\}\subset \mathbb{R} ^{3}\) and \(|z_{n}|\rightarrow +\infty \). So we get
which implies a contradiction. □
Now we define a set
and a function
Furthermore, we denote by \(\varphi _{\rho }[x,\tau ]\) the projection of \(\bar{\varphi }_{\rho }[x,\tau ]\) on \(\mathcal{N}\) and by \(\varphi _{\infty ,\rho }[x,\tau ]\) the projection of \(\bar{\varphi } _{\rho }[x,\tau ]\) on \(\mathcal{N}_{\infty }\). Thus, from the definitions of \(\varphi _{\rho }[x,\tau ]\) and \(\varphi _{\infty , \rho }[x,\tau ]\), there exist positive numbers \(t_{\rho ,x,\tau }:=t _{\bar{\varphi }_{\rho }[x,\tau ]}\) and \(h_{\rho ,x,\tau }:=h_{\bar{ \varphi }_{\rho }[x,\tau ]}\) such that
Then we have the following.
Proposition 3.4
-
(i)
\(\gamma (\varphi _{\rho }[x,1])=\rho x\)for all\(\rho >0\)and\(x\in \mathcal{S}\).
-
(ii)
For every\(\rho >0\), there exists\((\bar{x},\bar{\tau }) \in \mathcal{S}\times (0,1)\)such that\(\gamma (\varphi _{\rho }[ \bar{x},\bar{\tau }])=0\).
Proof
(i) Note that \(\bar{\varphi }_{\rho }[x,1](y)=U(y-\rho x)\). Then, by the properties of \(\gamma (u)\), we find
(ii) For all \(\rho >0\), define the map \(\mathcal{F}_{\rho }: \mathcal{S}\times [0,1]\rightarrow \mathbb{R} ^{3}\) by \(\mathcal{F}_{\rho }(x, \tau )=(1-\tau )\rho e_{1}+\tau \rho x\). Hence, using (i) and the invariance of topological degree by homotopy, we can deduce that
and then \(\gamma \circ \varphi _{\rho }[x,\tau ]=0\) has a solution \((\bar{x},\bar{\tau })\in \mathcal{S}\times [0,1)\). □
Proposition 3.5
There exists\(\rho _{a}\in \mathbb{R} ^{+}\backslash \{0\}\)such that, for all\(\rho >\rho _{a}\),
Proof
Being \(\varphi _{\rho }[x,1](y)=t_{\rho ,x,1}\bar{\varphi }_{\rho }[x,1](y)\) and \(\bar{\varphi }_{\rho }[x,1](y)=U(y-\rho x)\), with the same argument as the proof of (3.1), we can prove our result. □
Now we introduce a lemma, which can be found in [14].
Lemma 3.6
For any constant\(0<\kappa <N-2\sigma \), there is a constant\(C>0\)such that
From the above lemma, we have the following.
Lemma 3.7
There exists\(C>0\)such that
for all\(\xi \in \mathbb{R} ^{3}\)with\(|\xi |\geq 1\)and\(\rho >0\).
Proof
Without loss of generality, we can assume \(|\xi |=1\) and fix \(\xi =e_{1}\). Letting q such that \(((\frac{1}{2}-q)\rho )^{\epsilon }=((\frac{1}{2}+q)\rho )^{6+4\sigma }\) and \(\rho >\frac{\bar{R}}{ \frac{1}{2}-q}\), then using condition \((A_{2})\), Proposition 2.4, and Lemma 3.6, we have
where we used that
and similarly,
As a result,
□
Lemma 3.8
Let\(t_{\rho ,x,\tau }\)and\(h_{\rho ,x,\tau }\)be given in (3.8). There exists a constant\(C>0\)such that
Furthermore, \(t_{\rho ,x,\tau }=h_{\rho ,x,\tau }+o(\rho ^{-2\sigma })\).
Proof
First, it follows from (2.5) that
Note that
and
So (3.9) comes directly from (3.10)–(3.12) and since \(t_{\rho ,x,\tau }< C\), from Lemma 3.7, one has
On the other hand, by assumptions \((A_{1})\), \((A_{3})\) and the decay property of U, we are led to
where we used that
and similarly,
With the same argument as above, we can infer that
Combining (3.11) and (3.12), we have
and
Therefore,
Inserting (3.14), (3.15), and (3.16) into (3.10), we deduce
□
Proposition 3.9
There is a constant\(\rho _{\infty }>0\)such that, for all\(\rho >\rho _{\infty }\),
Proof
First, by using (2.4), we can obtain that
Then from Lemma 3.8, (3.13), and (3.14), for any \((x,\tau )\in \mathcal{S}\times [0,1]\), we get that
Next, we will estimate \(I_{\infty }(\varphi _{\infty ,\rho }[x,\tau ])\). Observe that
By direct computation, we have
and there exists \(C_{1}>0\) such that
So,
On the other hand, since for all \(a,b\in \mathbb{R} ^{+}\) and \(p\geq 1\), one has
Hence using (3.19), we find
which and (3.20) imply that, for all \(\tau \in [0,1]\) and \(x\in \mathcal{S}\),
where
Noting that \(\kappa (\frac{1}{2})<0\), from (3.17), we can infer that, for all \(x\in \mathcal{S}\) and \(\tau \in \delta (\frac{1}{2})\),
where \(\delta (\frac{1}{2})\) is a neighborhood of \(\frac{1}{2}\).
Furthermore, applying the same argument, we can prove that
This, combining with (3.22), completes our result. □
Now, we will prove the existence of a bound state solution of (1.1).
Proof of Theorem 1.1
Fix \(\rho > \max \{\rho _{a},\rho _{\infty }\}\), where \(\rho _{a}\), \(\rho _{\infty }\) are given in Propositions 3.5 and 3.9 respectively. It follows from Proposition 3.1 that \(m=m_{\infty }\) and m is not achieved. Thus we can not get our result by using minimization. However, we can prove that (2.2) has a bound state solution, whose energy can be higher than \(m_{\infty }\). For any \(c\in \mathbb{R} \), we let \(I^{c}:=\{u\in \mathcal{N}: I(u)\leq c\}\). By Propositions 3.1, 3.5, 3.9, and Lemma 3.3, we have
We end the proof by showing that there exists a number \(c^{*}\in [a _{0},\mathcal{A}]\) which is a critical level of \(I|_{\mathcal{N}}\). We use the contradiction argument. Assume that this is not the case. Then the Palais–Smale condition holds in \((m_{\infty }, 2m_{\infty })\) by Lemma 3.2. We can apply usual deformation arguments(see [26]) and assert the existence of a number \(\vartheta >0\) and a continuous function \(\eta : I^{\mathcal{A}}\rightarrow I^{a_{0}- \vartheta }\) such that \(a_{0}-\vartheta >\mathfrak{B}\) and \(\eta (u)=u\) for all \(u\in I^{a_{0}-\vartheta }\). Thus we see
On the other hand, since \(\varphi _{\rho }(\mathcal{S}\times \{1\}) \subseteq I^{\mathfrak{B}}\), applying the invariance of topological degree by homotopy as in Proposition 3.4,
Therefore there exists \((\bar{x},\bar{\tau })\in \mathcal{S}\times [0,1)\) such that
which contradicts (3.23).
Finally, to complete the proof, we only show that the solution of (2.2) corresponding to the critical level existing in the interval \((m_{\infty }, 2m_{\infty })\) is a constant sign solution. To this end, applying the same argument as Remark 2.5, if u is a solution of (2.2) with \(u^{+}\neq 0\) and \(u^{-}\neq 0\), then \(I(u)\geq 2m_{\infty }\). This concludes that it is positive. □
References
Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 779–791 (2010)
Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger–Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)
Bahri, A., Li, Y.: On a min-max procedure for the existence of a positive solution for certain scalar field equations in \(\mathbb{R} ^{N}\). Rev. Mat. Iberoam. 6, 1–15 (1990)
Bellazzini, J., Ghimenti, M., Mercuri, C., Moroz, V., Van Schaftingen, J.: Sharp Gagliardo–Nirenberg inequalities in fractional Coulomb–Sobolev spaces. Trans. Am. Math. Soc. 370, 8285–8310 (2018)
Bonheure, D., Mercuri, C.: Embedding theorems and existence results for nonlinear Schrödinger–Poisson systems with unbounded and vanishing potentials. J. Differ. Equ. 251, 1056–1085 (2011)
Cerami, G., Molle, R.: Positive bound state solutions for some Schrödinger–Poisson systems. Nonlinearity 29, 3103–3119 (2016)
Cerami, G., Passaseo, D.: The effect of concentrating potentials in some singularly perturbed problems. Calc. Var. Partial Differ. Equ. 17, 257–281 (2003)
Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)
D’Aprile, T., Wei, J.: Standing waves in the Maxwell Schrödinger equation and an optimal configuration problem. Calc. Var. Partial Differ. Equ. 25, 105–137 (2006)
Frank, R.L., Lenzmann, E.: Uniqueness of non-linear ground states for fractional Laplacians in \(\mathbb{R} \). Acta Math. 210, 261–318 (2013)
Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Math. 69, 1671–1726 (2016)
Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 29–305 (2000)
Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 31–35 (2002)
Long, W., Yang, J.: Positive or sign-changing solutions for a critical semilinear nonlocal equation. Z. Angew. Math. Phys. 67, 45 (2016)
Ma, L.: Mountain pass on a closed convex set. J. Math. Anal. Appl. 205, 531–536 (1997)
Mercuri, C.: Positive solutions of nonlinear Schrödinger–Poisson systems with radial potentials vanishing at infinity. Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl. 19, 211–227 (2008)
Mercuri, C., Tyler, T.M.: On a class of nonlinear Schrödinger–Poisson systems involving a nonradial charge density. Rev. Mat. Iberoam. To appear
Noussair, E.S., Wei, J.: On the effect of the domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem. Indiana Univ. Math. J. 46, 1255–1271 (1997)
Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198, 349–368 (2010)
Shen, L., Yao, X.: Least energy solutions for a class of fractional Schrödinger equation systems. J. Math. Phys. 59, 081501 (2018)
Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ. 260, 2119–2149 (2016)
Wang, D.B., Ma, Y., Guan, W.: Least energy sign-changing solutions for the fractional Schrödinger–Poisson systems in \(\mathbb{R} ^{3}\). Bound. Value Probl. (2019). https://doi.org/10.1186/s13661-019-1128-x
Wang, D.B., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for Schrödinger–Poisson system with critical growth. J. Math. Anal. Appl. 479, 2284–2301 (2019)
Wang, Z., Zhou, H.S.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in \(\mathbb{R} ^{3}\). Discrete Contin. Dyn. Syst. 18, 809–816 (2007)
Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser, Boston (1996)
Yu, Y., Zhao, F., Zhao, L.: The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system. Calc. Var. Partial Differ. Equ. 56, 116 (2017)
Zhan, J., do Ó, J.M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16, 15–30 (2016)
Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)
Acknowledgements
The author thanks the referees for thoughtful reading of the paper and nice suggestions to improve the results.
Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
Funding
This work was partially supported by NSFC (No. 11601194).
Author information
Authors and Affiliations
Contributions
All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Yang, J. Positive bound state solutions for the nonlinear Schrödinger–Poisson systems with potentials. Bound Value Probl 2019, 193 (2019). https://doi.org/10.1186/s13661-019-01303-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-01303-5