- Research
- Open access
- Published:
New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity
Boundary Value Problems volume 2019, Article number: 194 (2019)
Abstract
In this paper, we investigate the stability of the solutions of a viscoelastic plate equation with a logarithmic nonlinearity. We assume that the relaxation function g satisfies the minimal condition
where ξ and G satisfy some properties. With this very general assumption on the behavior of g, we establish explicit and general energy decay results from which we can recover the exponential and polynomial rates when \(G(s) = s^{p}\) and p covers the full admissible range \([1, 2)\). Our new results substantially improve and generalize several earlier related results in the literature such as Gorka (Acta Phys. Pol. 40:59–66, 2009), Hiramatsu et al. (J. Cosmol. Astropart. Phys. 2010(06):008, 2010), Han and Wang (Acta Appl. Math. 110(1):195–207, 2010), Messaoudi and Al-Khulaifi (Appl. Math. Lett. 66:16–22, 2017), Mustafa (Math. Methods Appl. Sci. 41(1):192–204, 2018), and Al-Gharabli et al. (Commun. Pure Appl. Anal. 18(1):159–180, 2019).
1 Introduction
In the present paper, we consider the following viscoelastic plate problem with logarithmic nonlinearity:
where \(\varOmega \subseteq \mathbb{R}^{2}\) is a bounded domain with a smooth boundary ∂Ω. The vector ν is the unit outer normal to ∂Ω and the constant k is a small positive real number. The function g is the kernel and satisfies some conditions to be specified later.
1.1 Problems with logarithmic nonlinearity
The logarithmic nonlinearity appears naturally in inflation cosmology and supersymmetric filed theories, quantum mechanics, and many other branches of physics such as nuclear physics, optics, and geophysics [1, 7–9] and [10]. These specific applications in physics and other fields attract a lot of mathematical scientists to work with such problems. Birula and Mycielski [8] and [11] introduced the following problem:
which is a relativistic version of logarithmic quantum mechanics and can also be obtained by taking the limit \(p \to 1\) for the p-adic string equation [12, 13]. They showed that wave equations with the logarithmic nonlinearity have stable, localized, soliton-like solutions in any number of dimensions. In [14], Cazenave and Haraux established the existence and uniqueness of the solution for the following Cauchy problem:
Gorka [1] considered the corresponding one-dimensional Cauchy problem for equation (3) and established the global existence of weak solutions for all \((u_{0},u_{1}) \in H^{1}_{0} \times L^{2}\) by using some compactness arguments. In [7], Bartkowski and Gorka investigated weak solutions and also proved existence results of classical solutions. Hiramatsu et al. [2] investigated a numerical study of the solution of the following problem:
However, there was no theoretical analysis for this problem. In [15], Han considered the initial boundary value problem (4) in \(\varOmega \subset \mathbb{R}^{3}\) and obtained global existence of weak solutions for all \((u_{0},u_{1}) \in H^{1}_{0} ( \varOmega )\times L^{2} (\varOmega )\). For more recent work dealing with logarithmic nonlinearity, we refer to [16–20].
1.2 Plate problems
Regarding the plate equations, we start with the result obtained by Lagnese [21]. He considered a viscoelastic plate equation and introduced a dissipative mechanism on the boundary of the system, and then he proved that when the time goes to infinity, the energy decays to zero. In [22], Rivera et al. investigated the energy of the solutions of a viscoelastic plate equation and they proved that first and second order energy decays exponentially provided that the kernel also decays exponentially. Messaoudi [23] established an existence result of the following problem:
obtained global solution in case \(m \ge p\), and proved blow-up when the initial energy is negative and \(m< p\). These results, for the same problem in [23], were improved and extended by Chen and Zhou [24]. Santos and Junior [25] studied the following system:
where
and
with boundary damping, and they obtained stability results. For more results in this direction, see [3, 26–29].
1.3 Viscoelastic problems
The importance of the viscoelastic properties of materials has been realized because of the rapid developments in rubber and plastic industry. Many advances in the studies of constitutive relations, failure theories, and life prediction of viscoelastic materials and structures were reported and reviewed in the last two decades [30]. Dafermos [31, 32] considered a one-dimensional viscoelastic problem of the form
and established various existence results and then proved, for smooth monotone decreasing relaxation functions, that the solutions go to zero as t goes to infinity. However, no rate of decay has been specified. In [33], Cavalcanti et al. considered the equation
where \(a:\varOmega \rightarrow \mathbb{R}^{+}\) is a function which may vanish on a part of the domain Ω but satisfies \(a(x)\ge a_{0}\) on \(\omega \subset \varOmega \) and g satisfies, for two positive constants \(\xi _{1}\) and \(\xi _{2}\),
They established an exponential decay result under some restrictions on ω. For more results, we refer to [34–37]. However, in all the above mentioned works, the rates of decay in relaxation functions were either of exponential or polynomial type. In 2008, Messaoudi [36, 37] generalized the decay rates allowing an extended class of relaxation functions and gave general decay rates from which the exponential and the polynomial decay rates were only special cases. However, the optimality in the polynomial decay case was not obtained. Precisely, he considered relaxation functions that satisfy
where \(\xi :\mathbb{R}^{+} \to \mathbb{R}^{+}\) is a nonincreasing differentiable function and showed that the rate of the decay of the energy is the same rate of decay of g, which is not necessarily of exponential or polynomial decay type. After that a series of papers using (8) have appeared; see, for instance, [38–44]. Inspired by the experience with frictional damping initiated in the work of Lasiecka and Tataru [45], another step forward was done by considering relaxation functions satisfying
This condition, with several constraints imposed on χ, was used by several authors with different approaches. We refer to previous studies [46–50], and [51], where general decay results in terms of χ were obtained. Here, it should be mentioned that in [52] it was the first time where Lasiecka and Wang established not only general but also optimal results in which the decay rates were characterized by an ODE of the same type as the one generated by inequality (9) satisfied by g. Mustafa and Messaoudi [53] established an explicit and general decay rate for relaxation function satisfying
where \(H\in C^{1}(\mathbb{R})\) with \(H(0)=0\) and H is a linear or strictly increasing and strictly convex function \(C^{2}\) near the origin. In [54], Cavalcanti et al. considered a nonlinear viscoelastic wave equation with a relaxation function satisfying (10) and some additional requirements on H. They characterized the decay of the energy by the solution of a corresponding ODE as in [45]. Messaoudi and Al-Khulaifi [4] treated the same problem considered in [54] with a relaxation function satisfying
They obtained a more general stability result for which the results of [36, 37] are only special cases. Moreover, the optimal decay rate for the polynomial case is achieved without any extra work and conditions as in [49] and [45]. Very recently, Al-Gharabli et al. [6] considered (1) with a relaxation function which satisfies (11), proved the existence of the solutions locally and globally, and established a general decay result depending on the behavior of g. Now, there are two natural questions that arose in dealing with the general decay of viscoelastic problems:
- QI.
Can we extend the range of polynomial decay rate optimality from \(p \in [1,\frac{3}{2})\) to \(p \in [1,2)\) in the case of (11)?
- QII.
Can we get a general decay result for a class of relaxation functions satisfying
$$ g^{\prime }(t)\le -\xi (t)H\bigl(g(t)\bigr), \quad \forall t \ge 0, $$(12)where ξ is a positive nonincreasing differentiable defined function on \([0,\infty )\) and H is some increasing convex function such that (12) yields (11) as a special case? Mustafa [5] answered these questions for a viscoelastic wave equation and established an optimal decay result.
Motivated by the papers of Gorka [1], Hiramatsu et al. [2], Mustafa [5], and Al-Gharabli et al. [6], we intend to establish a two-fold objective:
- (1)
extend the work for the wave equation in [1, 2], and [5] to a viscoelastic plate equation with logarithmic nonlinearity. We believe this is a natural extension done for many problems such as thermoelastic plate.
- (2)
consider a more general damping instead of the one considered in [6]. In fact, the results of [6] are special cases of this work when \(G(s)=s^{p}\) and our assumption allows p to cover the full admissible range \([1, 2)\).
Remark 1.1
Let us note here that though the logarithmic nonlinearity is somehow weaker than the polynomial nonlinearity, both the existence and stability result are not obtained by straightforward application of the method used for polynomial nonlinearity. We need to make some extra condition on the nonlinearity coefficient k (see condition (A3)).
This paper is organized as follows. In Sect. 2, we present some notation and material needed for our work. In Sect. 3, we present the local and global existence of the solutions of the problem. The stability results are presented in Sect. 4.
2 Preliminaries
In this section, we present some notations and material needed for the proof of our results. We use the standard Lebesgue space \(L^{2}( \varOmega )\) and the Sobolev space \(H^{2}_{0}(\varOmega )\) with their usual scalar products and norms. Throughout this paper, c is used to denote a generic positive constant, and we consider the following hypotheses:
- (A1)
\(g: \mathbb{R}^{+}\to \mathbb{R}^{+}\) is a \(C^{1}\)- nonincreasing function satisfying
$$ g(0)>0 \quad \text{and} \quad 1- \int _{0}^{\infty }g(s)\,ds=\ell >0. $$(13) - (A2)
There exists a positive nonincreasing differentiable function \(\xi :\mathbb{R}^{+}\to \mathbb{R}^{+}\) with \(\xi (0)>0\), and a \(C^{1}\) function \(G:(0,\infty )\to (0,\infty )\) satisfies
$$ g^{\prime }(t)\le -\xi (t) G\bigl(g(t)\bigr), \qquad G(0)=G^{\prime }(0)=0, \quad \forall t\ge 0, $$(14)and G is a linear or strictly increasing and strictly convex \(C^{2}\) function on \((0,r]\), \(0 < r < 1\).
- (A3)
The constant k in (1) satisfies \(0< k< k_{0}\), where \(k_{0}\) is the positive real number satisfying
$$ {\sqrt{\frac{2\pi \ell }{k_{0} c_{p}}}}=e^{-\frac{3}{2}-\frac{1}{k _{0}}} $$(15)and \(c_{p}\) is the smallest positive number satisfying
$$ \Vert \nabla u \Vert ^{2}_{2} \le c_{p} \Vert \Delta u \Vert ^{2}_{2} , \quad \forall u \in H_{0}^{2}(\varOmega ), $$where \(\|\cdot \|_{2}=\|\cdot\|_{L^{2}(\varOmega )}\).
Remark 2.1
If G is a strictly increasing and strictly convex \(C^{2}\) function on \((0, r]\), with \(G(0) = G'(0) = 0\), then it has an extension G̅, which is a strictly increasing and strictly convex \(C^{2}\) function on \((0,+\infty )\). For instance, if \(G(r) = a\), \(G'(r) = b\), \(G''(r) = C\), we can define G̅ for \(t > r\) by
For simplicity, we will use G for both G and G̅.
Remark 2.2
Since G is strictly convex on \((0,r]\) and \(G(0)=0\), then
Remark 2.3
The function \(f(s)=\sqrt{\frac{2\pi \ell }{c_{p} s}}-e^{- \frac{3}{2}-\frac{1}{s}}\) is a continuous and decreasing function on \((0,\infty )\) with
Then there exists unique \(k_{0} >0\) such that \(f(k_{0})=0\). Moreover,
which implies that the selection of k in (A3) is possible.
The modified energy functional associated with problem (1) is given by
where
Direct differentiation of (19), using (1), leads to
Lemma 2.1
([55, 56] (Logarithmic Sobolev inequality))
Letube any function in\(H^{1}_{0}(\varOmega )\)andabe any positive real number. Then
Corollary 2.1
Letube any function in\(H^{2}_{0}(\varOmega )\)andabe any positive real number. Then
3 Local and global existence
In this section, we state the existence results of [6] for problem (1).
Definition 3.1
Let \(T>0\). A function
is called a weak solution of (1) on \([0,T]\) if, for any \(w\in H^{2}_{0} (\varOmega )\) and \(t\in [0,T]\),
Theorem 3.1
Assume that (A1) and (A3) hold and let\((u_{0},u_{1}) \in H^{2} _{0}(\varOmega ) \times L^{2}(\varOmega )\). Then problem (1) has a weak solution
For the global existence, we introduce the following functionals:
and
From (25) and (26), one can easily see that
Lemma 3.1
The following inequalities hold:
where\(d_{0} =\sup_{0< s<1} {\sqrt{s}}\vert \ln s\vert \), \(\vert \varOmega \vert \)is the Lebesgue measure ofΩ, and\(c_{*}\)is the smallest embedding constant
(\(c_{*}\)exists thanks to the embedding of\(H^{2}_{0}(\varOmega )\)in\(L^{\infty }(\varOmega )\), \(\varOmega \subset \mathcal{R}^{2}\)).
Proof
Let
So, using (29), we have
this gives the right inequality in (28). On the other hand, using Hölder’s inequality and (29), we find
which implies the left inequality in (28). □
Lemma 3.2
Assume that (A1)–(A3). Let\((u_{0},u_{1})\in H^{2}_{0}(\varOmega ) \times L^{2}(\varOmega )\)such that
Then
Proof
From (26), we have
Substituting (32) in (25), we find
Since \(I(0)>0\) and I is continuous on \([0,T]\), there exists \(t_{0} \in (0,T]\) such that \(I(t)>0\) for all \(t\in [0,t_{0})\). Let us denote by \(t_{0}\) the largest real number in \((0,T]\) such that \(I>0\) on \([0,t_{0})\). If \(t_{0} =T\), then (31) is satisfied. We assume by contradiction that \(t_{0}\in (0,T)\). Thus \(I(t_{0})=0\) and
If \(\|\Delta u(t_{0})\|_{2}^{2} =0\), then (28) and (29) give
Consequently, if \(g>0\) on \([0,t_{0})\), we get
Then
which is not true since \(I>0\) on \([0,t_{0})\). If g is not positive on \([0,t_{0})\), then let \(t_{1} \in [0,t_{0})\) be the smallest real number such that \(g(t_{1})=0\). Because \(g(0)>0\) and g is positive, nonincreasing, and continuous on \(\mathbb{R}^{+}\) (condition (A1)), then \(t_{1} >0\) and \(g=0\) on \([t_{1} ,\infty )\). Therefore, from (35), we deduce that
then \(\|\Delta u(s)\|_{2}=0\) for any \(s\in [0,t_{1})\), which implies that \(I(t)=0\) for any \(t\in [0,t_{1})\). As before, this is a contradiction to the fact that \(I>0\) on \([0,t_{0})\). Then we conclude that \(\|\Delta u(t_{0})\|_{2}^{2} >0\). On the other hand, we have
By using (34) and Lemma 3.1, we have
By recalling (30), we arrive at \(I(t_{0})>0\), which contradicts the assumption \(I(t_{0})=0\). Hence, \(t_{0} =T\) and then
□
4 Stability
In this section, we state and prove our stability results. We start by establishing several lemmas needed for the proof of our main result.
Lemma 4.1
([6])
Assume thatgsatisfies (A1). Then, for\(u\in H^{2}_{0}(\varOmega )\),
and
Lemma 4.2
Assume that (A1)–(A3) and (30) hold. Then the functional
satisfies, along the solutions of (1),
Proof
By using (1), we easily see that
We now use Lemma 4.1 and Young’s inequality to obtain, for any \(\mu >0\),
By choosing \(\mu =\ell \) and combining (37) and (38), we obtain (36). □
Lemma 4.3
Assume that (A1)–(A3) and (30) hold. Then the functional
satisfies, along the solutions of (1) and for any\(\epsilon _{0} \in (0,1)\)and\(\delta >0\),
Proof
Direct computations, using (1), yield
Similar to (37), we estimate the right-hand side terms of (40). So, by using Young’s inequality, the first term gives, for any \(\delta >0\),
Using Lemma 4.1, Young’s and Poincaré’s inequalities, the second and fifth terms lead to
and
Similarly, the third term can be estimated as follows:
Let \(\epsilon _{0} \in (0,1)\) and \(h(s)=s^{\epsilon _{0}} (\vert \ln {s}\vert -s )\). Notice that h is continuous on \((0,\infty )\) and its limit at 0 is 0, and its limit at ∞ is −∞. Then h has a maximum \(d_{\epsilon _{0}}\) on \([0,\infty )\), so the following inequality holds:
Applying (45) to \(u \ln {\vert u\vert }\), using the Cauchy–Schwarz inequality, the embedding of \(H^{2}_{0}(\varOmega )\) in \(L^{\infty }(\varOmega )\), and performing the same calculations as before, we get, for any \(\delta _{1} >0\),
Then, putting \(\frac{\delta }{4}=c\delta _{1}\) and using Hölder’s inequality and Lemma 4.1, we find
The above inequalities imply (39). □
Lemma 4.4
Assume that (A1)–(A3) and (30) hold, and let\(\epsilon _{0} \in (0,1)\). Then, forksmall enough, there exist positive constants\(\varepsilon _{1}\), \(\varepsilon _{2}\), m, and\(t_{0}\)such that the functional
satisfies
and
Proof
For the proof of (47), we see that, using similar calculations as before,
therefore, from (31) and (33), we obtain
then
Hence, for \(\varepsilon _{1} ,\,\varepsilon _{2}>0\) satisfying
equivalence (47) holds.
Now, we prove inequality (48). Since g is positive and \(g(0)>0\), then, for any \(t_{0} >0\), we have
By using (20), (36), (39), and the definition of \(E(t)\), for \(t\ge t_{0}\) and any \(m>0\), we have
Using the logarithmic Sobolev inequality, for \(0< m<2 \varepsilon _{1}\), we get
At this point we choose δ so small that
Whence δ is fixed, the choice of any two positive constants \(\varepsilon _{1}\) and \(\varepsilon _{2}\) satisfying
will make
Then we choose \(\varepsilon _{1}\) and \(\varepsilon _{2}\) so small that (49) and (52) remain valid and, further,
Consequently, we get (47) and
Thanks to (A3), we choose
This selection will make
Then, using (54) and selecting m and k so small that
and
we arrive at the desired result (48). □
Remark 4.1
Using (13), (19), (25), (31), and (33), we have
Then, using (20),
Using (55), we obtain
Remark 4.2
In the case of Gis linear and since ξ is nonincreasing, we have
Lemma 4.5
If (A1)–(A2) are satisfied, then we have the following estimate:
whereqis small enough andG̅is defined in Remark (2.1) and the functionalIis defined by
Proof
To establish (58), let us define the following functional:
Then, using (19), (20), and the dentition of \(\lambda (t)\), we have
Thus, q can be chosen so small so that, for all \(t > 0\),
Without loss of the generality, for all \(t > 0\), we assume that \(\lambda (t)> 0\), otherwise we get an exponential decay from (48). The use of Jensen’s inequality and using (59), (2.2), and (62) give
hence (58) is established. □
Theorem 4.1
Let\((u_{0},u_{1}) \in H^{2}_{0}(\varOmega ) \times L^{2}(\varOmega )\). Assume that (A1)–(A3) and (30) hold. Then there exist positive constants\(C_{1}\), \(C_{2}\), \(t_{0}\), and\(t_{1}\)such that the solution of (1) satisfies, for all\(t \geq t_{1}\),
where\({K_{2}}(s)=s K^{\prime }(\varepsilon _{1}s)\)and\(K(t)= ( [G ^{-1} ]^{\frac{1}{1+\epsilon _{0}}} )^{-1}(t)\).
Proof
Case 1: G is linear.
We multiply (48) by \(\xi (t)\) and use (56) and (57) to get
Multiply (66) by \(\xi ^{\epsilon _{0}}(t) E^{\epsilon _{0}}(t)\) and recall that \(\xi ^{\prime } \le 0\) to obtain
Use of Young’s inequality, with \(q=\epsilon _{0}+1\) and \(q^{*}=\frac{ \epsilon _{0}+1}{\epsilon _{0}}\), gives, for any \(\varepsilon ^{\prime } >0\),
We then choose \(0<\varepsilon ^{\prime } <\frac{m}{c}\) and use that \(\xi ^{\prime } \le 0\) and \(E^{\prime } \le 0\) to get, for \(c_{1} =m- \varepsilon ^{\prime } c\),
which implies
Let \(L_{1}=\xi ^{\epsilon _{0} +1}E^{\epsilon _{0}}L +cE\). Then \(L_{1}\sim E\) (thanks to (47)) and
Integrating over \((t_{0},t)\) and using the fact that \(L_{1} \sim E\), we obtain (64).
Case 2: G is nonlinear.
Using (48), (56), and (58), we obtain, \(\forall t\ge t_{0}\),
Combining the strictly increasing property of G̅ and the fact that \(\frac{1}{t} < 1\) whenever \(t > 1\), we obtain
and then (67) becomes, for \(\forall t \ge t_{1}=\max {\{t_{0},1\}}\),
Set
In fact,
So, (69) reduces to
Now, for \(\varepsilon _{1}< r\) and using (71) and the fact that \(E^{\prime }\le 0\), \(K^{\prime }>0\), \(K^{\prime \prime }>0\) on \((0,r]\), we find that the functional \(L_{2}\), defined by
satisfies, for some \(\alpha _{1},\alpha _{2}>0\),
and, for all \(t\ge t_{1}\),
Let \(K^{*}\) be the convex conjugate of K in the sense of Young (see [57]), then
and \(K^{*}\) satisfies the following generalized Young inequality:
So, with \(A=K^{\prime } (\frac{\varepsilon _{1}}{t^{\frac{1}{1+ \epsilon _{0}}}} \cdot \frac{E(t)}{E(0)} )\) and \(B=K^{-1}(\chi (t))\), we arrive at
Then, multiplying (76) by \(\xi (t)\) and using (59), (70), we get
Using the nonincreasing property of ξ, we obtain, for all \(t \ge t_{1}\),
Therefore, by setting \(L_{3}:=\xi L_{2}+cE \sim E\), we conclude that
This gives, for a suitable choice of \(\varepsilon _{1}\),
or
An integration of (77) yields
Using the facts that \(K',K'' > 0\) and the nonincreasing property of E, we deduce that the map \(t \mapsto E(t)K^{\prime } (\frac{ \varepsilon _{1}}{t^{\frac{1}{1+\epsilon _{0}}}} \cdot \frac{E(t)}{E(0)} )\) is nonincreasing; consequently, we have
Multiplying each side of (79) by \(\frac{1}{t^{\frac{1}{1+ \epsilon _{0}}}}\), we have
Next, we set \({K_{2}}(s)=s K^{\prime }(\varepsilon _{1}s)\), which is strictly increasing, and consequently we obtain
Finally, for two positive constants \(k_{2}\) and \(k_{3}\), we infer
This finishes the proof. □
The following examples illustrate our results.
Example 4.2
Let \(g(t)=a e^{-b(1+t)}\), where \(b>0\) and \(a>0\) is small enough so that (A1) holds. Then \(g^{\prime }(t)=-\xi (t) G(g(t))\), where \(G(t)=t\) and \(\xi (t)=b\). Therefore, we can use (64) to deduce
Example 4.3
Let \(g(t)=\frac{a}{(1+t)^{q}}\), where \(q >1+\epsilon _{0}\) and a is chosen so that hypothesis (A1) is satisfied. Then
where b is a fixed constant. Since \(\varPhi (s)=s^{ \frac{(\epsilon _{0}+1)(q+1)}{q}}\), then (65) gives
References
Gorka, P.: Logarithmic Klein–Gordon equation. Acta Phys. Pol. 40, 59–66 (2009)
Hiramatsu, T., Kawasaki, M., Takahashi, F.: Numerical study of q-ball formation in gravity mediation. J. Cosmol. Astropart. Phys. 2010(06), 008 (2010)
Han, X., Wang, M.: General decay estimate of energy for the second order evolution equations with memory. Acta Appl. Math. 110(1), 195–207 (2010)
Messaoudi, S.A., Al-Khulaifi, W.: General and optimal decay for a quasilinear viscoelastic equation. Appl. Math. Lett. 66, 16–22 (2017)
Mustafa, M.I.: Optimal decay rates for the viscoelastic wave equation. Math. Methods Appl. Sci. 41(1), 192–204 (2018)
Al-Gharabli, M.M., Guesmia, A., Messaoudi, S.A.: Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Commun. Pure Appl. Anal. 18(1), 159–180 (2019)
Bartkowski, K., Górka, P.: One-dimensional Klein–Gordon equation with logarithmic nonlinearities. J. Phys. A, Math. Theor. 41(35), 355201 (2008)
Bialynicki-Birula, I., Mycielski, J.: Wave equations with logarithmic nonlinearities. Bull. Acad. Pol. Sci., Cl. 3(23), 461 (1975)
Barrow, J.D., Parsons, P.: Inflationary models with logarithmic potentials. Phys. Rev. D 52(10), 5576 (1995)
Enqvist, K., McDonald, J.: Q-balls and baryogenesis in the MSSM. Phys. Lett. B 425(3–4), 309–321 (1998)
Bialynicki-Birula, I., Mycielski, J.: Nonlinear wave mechanics. Ann. Phys. 100(1–2), 62–93 (1976)
Górka, P., Prado, H., Reyes, E.: Nonlinear equations with infinitely many derivatives. Complex Anal. Oper. Theory 5(1), 313–323 (2011)
Vladimirov, V.S.: The equation of the p-adic open string for the scalar tachyon field. Izv. Math. 69(3), 487 (2005)
Cazenave, T., Haraux, A.: Équations d’évolution avec non linéarité logarithmique. In: Annales de la Faculté des Sciences de Toulouse: Mathématiques, vol. 2, pp. 21–51 (1980)
Han, X.: Global existence of weak solutions for a logarithmic wave equation arising from q-ball dynamics. Bull. Korean Math. Soc. 50(1), 275–283 (2013)
Kafini, M., Messaoudi, S.: Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay. Appl. Anal., 1–18 (2018)
Peyravi, A.: General stability and exponential growth for a class of semi-linear wave equations with logarithmic source and memory terms. Appl. Math. Optim., 1–17 (2018)
Xu, R., Lian, W., Kong, X., Yang, Y.: Fourth order wave equation with nonlinear strain and logarithmic nonlinearity. Appl. Numer. Math. 141, 185–205 (2019)
Lian, W., Xu, R.: Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. 9(1), 613–632 (2019)
Wang, X., Chen, Y., Yang, Y., Li, J., Xu, R.: Kirchhoff-type system with linear weak damping and logarithmic nonlinearities. Nonlinear Anal. 188, 475–499 (2019)
Lagnese, J.E.: Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping. Int. Ser. Numer. Math. 91, 211–236 (1989)
Rivera, J.M., Lapa, E.C., Barreto, R.: Decay rates for viscoelastic plates with memory. J. Elast. 44(1), 61–87 (1996)
Messaoudi, S.A.: Global existence and nonexistence in a system of Petrovsky. J. Math. Anal. Appl. 265(2), 296–308 (2002)
Chen, W., Zhou, Y.: Global nonexistence for a semilinear Petrovsky equation. Nonlinear Anal., Theory Methods Appl. 70(9), 3203–3208 (2009)
de Lima Santos, M., Junior, F.: A boundary condition with memory for Kirchhoff plates equations. Appl. Comput. Math. 148(2), 475–496 (2004)
Guesmia, A., et al.: Existence globale et stabilisation interne non linéaire d’un système de Petrovsky. Bull. Belg. Math. Soc. Simon Stevin 5(4), 583–594 (1998)
Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989) Google Scholar
Lasiecka, I.: Exponential decay rates for the solutions of Euler–Bernoulli equations with boundary dissipation occurring in the moments only. J. Differ. Equ. 95(1), 169–182 (1992)
Al-Mahdi, A.M.: Optimal decay result for Kirchhoff plate equations with nonlinear damping and very general type of relaxation functions. Bound. Value Probl. 2019(1), 82 (2019)
Christensen, R.: Theory of Viscoelasticity: An Introduction. Elsevier, Amsterdam (2012)
Dafermos, C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37(4), 297–308 (1970)
Dafermos, C.M.: An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7(3), 554–569 (1970)
Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 2002, 44 (2002)
Berrimi, S., Messaoudi, S.A.: Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping. Electron. J. Differ. Equ. 2004, 88 (2004)
Cavalcanti, M.M., Oquendo, H.P.: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim. 42(4), 1310–1324 (2003)
Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal., Theory Methods Appl. 69(8), 2589–2598 (2008)
Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341(2), 1457–1467 (2008)
Liu, W.: General decay of solutions to a viscoelastic wave equation with nonlinear localized damping. In: Annales Academiæ Scientiarum Fennicæ. Mathematica, vol. 34, pp. 291–302 (2009)
Liu, W.: General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. J. Math. Phys. 50(11), 113506 (2009)
Messaoudi, S.A., Mustafa, M.I.: On the control of solutions of viscoelastic equations with boundary feedback. Nonlinear Anal., Real World Appl. 10(5), 3132–3140 (2009)
Mustafa, M.I.: Uniform decay rates for viscoelastic dissipative systems. J. Dyn. Control Syst. 22(1), 101–116 (2016)
Mustafa, M.I.: Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlinear Anal., Real World Appl. 13(1), 452–463 (2012)
Park, J.Y., Park, S.H.: General decay for quasilinear viscoelastic equations with nonlinear weak damping. J. Math. Phys. 50(8), 083505 (2009)
Wu, S.-T.: General decay for a wave equation of Kirchhoff type with a boundary control of memory type. Bound. Value Probl. 2011(1), 55 (2011)
Lasiecka, I., Tataru, D., et al.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507–533 (1993)
Alabau-Boussouira, F., Cannarsa, P.: A general method for proving sharp energy decay rates for memory-dissipative evolution equations. C. R. Math. 347(15–16), 867–872 (2009)
Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I., Falcao Nascimento, F.A.: Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete Contin. Dyn. Syst., Ser. B 19(7), 1987–2012 (2014)
Cavalcanti, M.M., Cavalcanti, A.D., Lasiecka, I., Wang, X.: Existence and sharp decay rate estimates for a von Karman system with long memory. Nonlinear Anal., Real World Appl. 22, 289–306 (2015)
Lasiecka, I., Messaoudi, S.A., Mustafa, M.I.: Note on intrinsic decay rates for abstract wave equations with memory. J. Math. Phys. 54(3), 031504 (2013)
Mustafa, M.I.: On the control of the wave equation by memory-type boundary condition. Discrete Contin. Dyn. Syst., Ser. A 35(3), 1179–1192 (2015)
Xiao, T.-J., Liang, J.: Coupled second order semilinear evolution equations indirectly damped via memory effects. J. Differ. Equ. 254(5), 2128–2157 (2013)
Lasiecka, I., Wang, X.: Intrinsic decay rate estimates for semilinear abstract second order equations with memory. In: New Prospects in Direct, Inverse and Control Problems for Evolution Equations, pp. 271–303. Springer, Berlin (2014)
Mustafa, M.I., Messaoudi, S.A.: General stability result for viscoelastic wave equations. J. Math. Phys. 53(5), 053702 (2012)
Cavalcanti, M.M., Cavalcanti, V.N.D., Lasiecka, I., Webler, C.M.: Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Adv. Nonlinear Anal. 6(2), 121–145 (2017)
Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061–1083 (1975)
Chen, H., Luo, P., Liu, G.: Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity. J. Math. Anal. Appl. 422(1), 84–98 (2015)
Arnol’d, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer, Berlin (2013)
Acknowledgements
The author thanks KFUPM for its continuous support and also thanks an anonymous referee for his/her very careful reading and valuable suggestions. This work was funded by KFUPM under Project #SB181018.
Availability of data and materials
Not applicable.
Authors’ information
Not applicable.
Funding
This work is funded by KFUPM under Project (SB181018).
Author information
Authors and Affiliations
Contributions
I read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that he has no competing interests.
Additional information
Abbreviations
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Al-Gharabli, M.M. New general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Bound Value Probl 2019, 194 (2019). https://doi.org/10.1186/s13661-019-01308-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-01308-0