- Research
- Open access
- Published:
Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field
Boundary Value Problems volume 2019, Article number: 196 (2019)
Abstract
In this paper we investigate the existence of infinitely many solutions for nonlocal Schrödinger equation involving a magnetic potential
where \(s\in (0,1)\) is fixed, \(N>2s\), \(V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}^{+}\) is an electric potential, the magnetic potential \(A:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}^{N}\) is a continuous function, and \((-\triangle )_{A}^{s}\) is the fractional magnetic operator. Under suitable assumptions for the potential function V and nonlinearity f, we obtain the existence of infinitely many nontrivial high energy solutions by using the variant fountain theorem.
1 Introduction
The aim of the present paper is to investigate the multiplicity of solutions for the following fractional Schrödinger equation with magnetic field:
where \(0< s<1\), \(N>2s\), \(V:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}^{+}\) is an electric potential, and \(A:{\mathbb {R}}^{N}\rightarrow {\mathbb {R}}^{N}\) is a magnetic potential. The fractional magnetic operator \((-\triangle )_{A}^{s}\) is defined along all functions \(u\in C_{0}^{\infty }({\mathbb {R}}^{N}, {\mathbb {C}})\) as
for more details about this operator see [1]. Meanwhile, in [1], based on concentration compactness arguments, ground state solutions are obtained for problem (1.1) in three-dimensional space. In [2], the authors set up a bridge between the classical magnetic operator and the fractional one. Reference [3] considers the problem (1.1) with Kirchhoff function and obtains the existence of least energy solutions and infinitely many solutions under suitable conditions. In [4], the authors obtain the existence and the multiplicity of solutions for a nonlinear fractional magnetic Schrödinger equation by using variational methods and Ljusternick–Schnirelmann theory. In [5], the authors obtain the existence and the multiplicity of solutions for a nonlinear fractional magnetic Schrödinger equation with exponential critical growth. And in [6], the author obtains the existence of nontrivial solutions for a class of fractional magnetic Schrödinger equations via penalization techniques.
In previous years, the nonlinear magnetic Schrödinger equations
have been extensively studied, we refer the interested reader to [7–13] and the references therein. \(-(\bigtriangledown -iA)^{2}\) is a magnetic Schrödinger operator, in a suitable sense, \((-\triangle )_{A}^{s}u\) converges to \(-(\bigtriangledown -iA)^{2}u\) in the limit \(s\uparrow 1\). In this sense, nonlocal case can be regarded as an approximation of local case.
When potential function \(A\equiv 0\), the operator \((-\triangle )_{A} ^{s}\) is consistence with the usual notion of fractional Laplacian \((-\triangle )^{s}\), and Eq. (1.1) becomes the fractional Schrödinger equation
a great deal of research work has been done for this type of equations in recent years; for further details see for instance [14–24] and the references therein.
Inspired by the above work, we consider the existence of infinitely many solutions of problem (1.1). Firstly, we assume that the magnetic potential \(A: {\mathbb {R}}^{N} \rightarrow {\mathbb {R}}^{N}\) is a continuous function and the potential function \(V:{\mathbb {R}}^{N} \rightarrow {\mathbb {R}}^{+} \) satisfies:
\((V_{1})\)\(V\in C({\mathbb {R}}^{N})\) with \(\inf_{x\in {\mathbb {R}}^{n}}V(x) \geq V_{0}\), where \(V_{0}>0\) is a constant;
\((V_{2})\) For any \(c>0\), there exists \(h>0\) such that
where meas denotes the Lebesgue measure.
The nonlinearity \(f:{\mathbb {R}}^{N} \times {\mathbb {R}}^{+} \rightarrow {\mathbb {R}}\) is a Carathéodory function; we require:
- \((f_{1})\):
There exist \(C>0\) and \(p\in (2,2_{s}^{*})\) such that \(|f(x,t)|\leq C (1+|t|^{p-2})\) for any \(x\in {\mathbb {R}}^{N}\) and \(t\in {\mathbb {R}}^{+}\), where \(2_{s}^{*}=\frac{2N}{N-2s}\) is the fractional Sobolev exponent;
- \((f_{2})\):
\(\lim_{t\rightarrow 0^{+}}\frac{f(x,t)}{t}=0\) uniformly for \(x\in {\mathbb {R}}^{N}\);
- \((f_{3})\):
there exists \(\mu >2\) such that
$$ 0< \mu F(x,t)=\mu \int _{0}^{t} f(x,\tau )\tau \,d\tau \leq f(x,t)t^{2}, $$for every \((x,t)\in {\mathbb {R}}^{N} \times {\mathbb {R}}^{+}\);
- \((f_{4})\):
\(\lim_{|t|\rightarrow \infty }\frac{F(x,t)}{|t|^{2}}= \infty \) uniformly for \(x\in {\mathbb {R}}^{N}\).
Now we state our main result as follows. The fractional solution space \(H_{A,V}^{s}({\mathbb {R}}^{N}, {\mathbb {C}})\) and the energy functional \(J(u)\) are introduced in Sect. 2.
Theorem 1.1
Let\((V_{1})\)–\((V_{2})\)and\((f_{1})\)–\((f_{4})\)hold. Then problem (1.1) possesses infinitely many high energy solutions\(u^{k} \in H_{A,V}^{s}({\mathbb {R}}^{N}, {\mathbb {C}})\)for any\(k\geq k_{0}\ (k_{0} \in N)\), in the sense that\(J(u^{k})\rightarrow \infty \)as\(k\rightarrow \infty \).
Remark 1
To the best of our knowledge, Theorem 1.1 is the first result for the existence of infinitely many high energy solutions of the fractional Schrödinger equations with an external magnetic field by using the variant fountain theorem.
This paper is organized as follows. In Sect. 2 we introduce some preliminary knowledge and set up the functional. In Sect. 3, we prove Theorem 1.1 by using the variant fountain theorem.
2 Functional setting
In this section, we state some notations and preliminary knowledge which will be used in the next section.
Let \(H^{s}_{V}({\mathbb {R}}^{N})\) is a fractional Sobolev space, defined by
where
is the Gagliardo semi-norm and \(L_{V}^{2}({\mathbb {R}}^{N})\) is the real valued Lebesgue space, with \(V(x)|u|^{2}\) in \(L^{1}({\mathbb {R}}^{N})\), and \(H^{s}_{V}({\mathbb {R}}^{N})\) is equipped with the norm
Lemma 2.1
(Theorem 2.1 of [25])
Let\((V_{1})\)and\((V_{2})\)hold. Then, the embedding\(H^{s}_{V}({\mathbb {R}}^{N})\hookrightarrow L^{q}({\mathbb {R}}^{N})\)is continuous for any\(q\in [2,2_{s}^{*}]\), and the embedding\(H^{s}_{V}({\mathbb {R}}^{N})\hookrightarrow \hookrightarrow L^{q}({\mathbb {R}}^{N})\)is compact for any\(q\in [2,2_{s}^{*})\).
Let \(L^{2}({\mathbb {R}}^{N},{\mathbb {C}})\) denotes the Lebesgue space of complex functions \(u: {\mathbb {R}}^{N}\rightarrow {\mathbb {C}}\) with \(V(x)|u|^{2}\in L^{1}({\mathbb {R}}^{N})\), the real scalar product of \(L^{2}({\mathbb {R}}^{N},{\mathbb {C}})\) is endowed with
for all \(u,v\in L^{2}({\mathbb {R}}^{N},{\mathbb {C}})\), where v̄ denotes complex conjugation of \(v\in {\mathbb {C}}\).
Define \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) as the closure of \(C_{c}^{\infty }({\mathbb {R}}^{N},{\mathbb {C}})\) with the norm
where \([u]_{s,A}\) is the magnetic Gagliardo semi-norm
According to [1], we know that the space \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) is a real Hilbert space with the scalar product
Lemma 2.2
For each\(u\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), then\(|u|\in H^{s}_{V}({\mathbb {R}}^{N})\).
Proof
According to the definition of the space \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) and \(H_{V}^{s}({\mathbb {R}}^{N})\), the result clearly holds. So we will not repeat it. □
Lemma 2.3
For all\(p\in [2,2_{s}^{*}]\), the embedding
is continuous.
Proof
By using the pointwise diamagnetic inequality
and Lemma 2.1 the continuous injection \(H^{s}_{V}({\mathbb {R}}^{N}) \hookrightarrow L^{2_{s}^{*}}({\mathbb {R}}^{N})\), we find
for all \(u\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), where \(C>0\) is a real constant. Hence, by interpolation the assertion holds. □
Combining Lemma 2.1 with Lemma 2.2, we also obtain the following results.
Lemma 2.4
Let\((V_{1})\)and\((V_{2})\)hold. Then, for any bounded sequence\((u_{n})_{n}\)in\(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), the sequence\((|u_{n}|)_{n}\)has a subsequence converging strongly to someuin\(L^{p}({\mathbb {R}}^{N})\)for every\(p\in [2,2_{s}^{*})\).
Definition 2.5
We say that \(u\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) is a weak solution of problem (1.1), if for all \(\phi \in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), one has
For any \(u\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), we define the energy functional \(J: H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\rightarrow {\mathbb {R}}\) associated with the problem (1.1) as
By direct computation, we find that J is of \(C^{1}(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}}),{\mathbb {R}})\) and
for all \(u,v \in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\).
Since \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) is a Hilbert space, we let \(\{X_{j}\}\) be a sequence of subspace of \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) with \(\dim X_{j}<\infty \) for each \(j\in {\mathbb {N}}\). Furthermore, \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})=\bigoplus_{j\in {\mathbb {N}}}X_{j}\), the closure of the direct sum of all \(X_{j}\).
Set
and
for \(\tau _{k}>\delta _{k}>0\). Consider the \(C^{1}\) functional \(J_{\lambda }:H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\rightarrow {\mathbb {R}}\) defined by
where
Hence
for all \(u\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) and \(\lambda \in [1,2]\).
The following variant fountain theorem was established in [26].
Theorem 2.6
(Variant fountain theorem)
Assume that\(J_{\lambda }\in (H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}}),{\mathbb {R}})\)defined above satisfies:
- \((A_{1})\):
\(J_{\lambda }\)maps bounded sets into bounded sets uniformly for\(\lambda \in [1,2]\), and\(J_{\lambda }(-u)=J_{\lambda }(u)\)for all\((\lambda,u)\in [1,2]\times H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\);
- \((A_{2})\):
\(B(u)\geq 0\)for any\(u\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), \(A(u)\rightarrow \infty \)or\(B(u)\rightarrow \infty \)as\(\|u\|_{H _{A,V}^{s}}\rightarrow \infty \);
- \((A_{3})\):
there exist\(\tau _{k}>\delta _{k}>0\)such that
$$\begin{aligned} b_{k}(\lambda )=\inf_{u\in S_{k}}J_{\lambda }(u)> a_{k}(\lambda )=\max_{u\in W_{k}, \|u\|_{H_{A,V}^{s}}=\tau _{k}}J_{\lambda }(u),\quad \textit{for all }\lambda \in [1,2]. \end{aligned}$$Then
$$\begin{aligned} b_{k}(\lambda )\leq c_{k}(\lambda )=\inf _{\gamma \in \varGamma _{k}} \max_{u\in B_{k}}J_{\lambda }\bigl( \gamma (u)\bigr),\quad \textit{for all }\lambda \in [1,2], \end{aligned}$$where\(\varGamma _{k}=\{\gamma \in C(B_{k},H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})): \gamma \)is odd, \(\gamma |_{\partial _{B_{k}}}=\mathrm{id}\}\ (k\geq 2)\), moreover, for almost every\(\lambda \in [1,2]\), there exists a sequence\(u_{n}^{k}(\lambda )\)such that
$$\begin{aligned} &\sup_{n} \bigl\Vert u_{n}^{k}( \lambda ) \bigr\Vert _{H_{A,V}^{s}}< \infty,\qquad J'_{\lambda } \bigl(u_{n}^{k}(\lambda )\bigr)\rightarrow 0\quad \textit{and}\\ & J_{\lambda }\bigl(u _{n}^{k}(\lambda )\bigr) \rightarrow c_{k}(\lambda )\quad \textit{as }n\rightarrow \infty . \end{aligned}$$
3 Proofs of the main result
In order to prove Theorem 1.1, we need the following results.
Lemma 3.1
Let\(2\leq p<2_{s}^{*}\). For any\(k\in N\), define
Then\(\zeta _{k}\rightarrow 0\)as\(k\rightarrow \infty \).
Proof
Since \(Z_{k+1}\subset Z_{k}\), we have \(0<\zeta _{k+1}\leq \zeta _{k}\) for any \(k\in {\mathbb {N}}\). Suppose \(\zeta _{k} \rightarrow \zeta \) as \(k\rightarrow \infty \) for \(\zeta \geq 0\). By the definition of \(\zeta _{k}\), there exists \(u_{k}\in Z_{k}\) such that \(\|u_{k}\|_{L^{p}({\mathbb {R}}^{n})}< \frac{1}{2}\zeta _{k}\) for any \(k\in {\mathbb {N}}\).
We know that \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) is a real Hilbert space, so a reflexive Banach space, there exist \(v\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) and a subsequence of \(u_{k}\), without loss of generality still denoted by \(u_{k}\), such that \(u_{k}\rightharpoonup v\) in \(H_{A,V}^{s}({\mathbb {R}}^{N},C)\). That is,
for all \(\phi \in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\). Since each \(Z_{k}\) is convex and closed, it is closed for the weak topology. Consequently, \(v\in \bigcap_{k=1}^{\infty }Z_{k}=0\).
Hence, \(|u_{k}|\rightarrow 0\) in \(L^{p}({\mathbb {R}}^{N})\) as \(k\rightarrow \infty \). We know that ζ is nonnegative, we get \(\zeta _{k} \rightarrow 0\) as \(k\rightarrow \infty \). The proof is completed. □
Lemma 3.2
Let\((f_{1})\)–\((f_{2})\)hold. Then there exist two sequences\(\tau _{k}>\delta _{k}>0\)such that
Proof
According to assumptions \((f_{1})\) and \((f_{2})\), for any \(\varepsilon >0\), there exists \(C_{\varepsilon }>0\) such that
for all \((x,t)\in {\mathbb {R}}^{N} \times {\mathbb {R}}^{+}\).
Therefore, for \(u\in Z_{k}\), and ε small enough, by Lemma 2.3 and Lemma 3.1, we have
If we choose \(\delta _{k}=(8C_{1}\zeta _{k}^{p})^{\frac{1}{2-p}}\), we get
Then, for any \(u\in Z_{k}\), with \(\|u\|_{H_{A,V}^{s}}=\delta _{k}\), we have
Next, we prove \(J_{\lambda }(u)\rightarrow -\infty \) as \(\|u\|_{H_{A,V} ^{s}}\rightarrow \infty \) for all \(u\in W_{k}\). Suppose that this is not the case, then there exist a positive constant M and \(\{u_{n}\} \subset H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) such that \(J_{\lambda }(u_{n}) \geq -M\) as \(\|u_{n}\|_{H_{A,V}^{s}}\rightarrow \infty \) (while \(n\rightarrow \infty \)).
Let \(v_{n}=\frac{u_{n}}{\|u_{n}\|_{H_{A,V}^{s}}}\), then up to a subsequence, we get \(v_{n}\rightarrow v\) in \(W_{k}\).
We have
By \((f_{4})\) and Fatou’s lemma, we deduce the contradiction that
Thus, \(J_{\lambda }(u)\rightarrow -\infty \) as \(\|u\|_{H_{A,V}^{s}} \rightarrow \infty \) for all \(u\in W_{k}\). Choose \(\tau _{k}>\delta _{k}>0\) large enough and let \(\|u\|_{H_{A,V}^{s}}=\tau _{k}\), we obtain
The proof is completed. □
Lemma 3.3
Let\((V_{1})\)–\((V_{2})\)and\((f_{1})\)hold. Then any bounded sequence\(\{u_{n}\}_{n}\subset H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\)such that\(J'_{\lambda }(u_{n})\rightarrow 0\)as\(n\rightarrow \infty \)has a strongly convergent subsequence in\(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\).
Proof
Assume that \(\{u_{n}\}_{n}\) is bounded in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\). Going if necessary to a subsequence, by Lemma 2.4, we have
In order to prove that \(\{u_{n}\}_{n}\) converges strongly to u in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), we first give a simple notation. Let \(\omega \in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) be fixed and denote by \(\varPsi (\omega )\) the linear functional on \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) defined by
for any \(\varphi \in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\).
By \((f_{1})\), for all \(x\in {\mathbb {R}}^{N}\) and \(t\in {\mathbb {R}}^{+}\),
Using the Hölder inequality, we obtain
By Lemma 2.4, we have \(|u_{n}|\rightarrow |u|\) in \(L^{p}({\mathbb {R}}^{N})\) and \(|u_{n}|\rightarrow |u|\) in \(L^{2}({\mathbb {R}}^{N})\). Hence, \(u_{n} \rightarrow u\) in \(L^{p}({\mathbb {R}}^{N},{\mathbb {C}})\) and \(L^{2}({\mathbb {R}}^{N},{\mathbb {C}})\). According to the Brézis–Lieb lemma [27], we get
Obviously, \(\langle J'_{\lambda }(u_{n})-J'_{\lambda }(u), u_{n}-u \rangle \rightarrow 0\) as \(n\rightarrow \infty \), since \(u_{n}\rightharpoonup u\) in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) and \(J'_{\lambda }(u_{n})\rightarrow 0\) in the dual space of \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\). Thus
Combining with (3.6) and (3.7), we get
which yields \(u_{n}\rightarrow u\) in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\). □
Proof of Theorem 1.1
By \((f_{3})\) and (2.4), we know that \(B(u)\geq 0\) for all \(u\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) and \(A(u)\rightarrow \infty \) as \(\|u\|_{H_{A,V}^{s}}\rightarrow \infty \). Moreover, \(J_{\lambda }(-u)=J_{\lambda }(u)\) for all \(u\in H_{A,V} ^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) and \(\lambda \in [1,2]\). It follows from the conditions \((f_{3})\)–\((f_{4})\) and Lemma 2.4 that \(J_{\lambda }\) maps bounded sets into bounded sets uniformly for \(\lambda \in [1,2]\). Together with Lemma 2.2, the conditions \((A_{1})\)–\((A_{3})\) of Theorem 2.6 are verified. Thus, by Theorem 2.6, for a.e. \(\lambda \in [1,2]\), there exists a sequence \(\{u_{n}^{k}(\lambda )\}_{n=1}^{\infty }\) such that
We have
Combining with (3.1), we have
Hence
By (3.9), we know that if we choose a sequence \(\lambda _{m} \rightarrow 1\), then the sequence \(\{u_{n}^{k}(\lambda _{m})\}\) is bounded. Combining with Lemma 3.3, we see that \(\{u_{n}^{k}( \lambda _{m})\}\) has a strong convergent subsequence as \(n\rightarrow \infty \). We may assume that \(u_{n}^{k}(\lambda _{m})\rightarrow u^{k}( \lambda _{m})\) as \(n\rightarrow \infty \) for every \(m\in {\mathbb {N}}\) and \(k\geq k_{0}\). By (3.9) and (3.12), we get
Next, we show that \(\{u^{k}(\lambda _{m})\}_{m=1}^{\infty }\) is bounded in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\). If not, we consider \(v_{m}:=\frac{u ^{k}(\lambda _{m})}{\|u^{k}(\lambda _{m})\|_{H_{A,V}^{s}}}\). Then, up to a sequence, we get \(v_{m}\rightharpoonup v\) in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), \(|v_{m}|\rightarrow |v|\) in \(L^{p}({\mathbb {R}}^{N})\) for \(2\leq p< 2_{s}^{*}\) and \(v_{m}(x)\rightarrow v(x)\) a.e. \(x\in {\mathbb {R}}^{N}\).
Case 1: If \(v(x)\neq 0\) in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), we have
Thus,
On the other hand, by \((f_{4})\)
That is a contradiction.
Case 2: If \(v(x)=0\) in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\), we have
We have
By (3.13),
But by the assumption \((f_{3})\),
Combining with (3.19) and (3.20), we get \(\frac{\mu }{2}-1\leq 0\), i.e. \(\mu \leq 2\), which is in contradiction with the assumption. Therefore \(\{u^{k}(\lambda _{m})\}_{m=1}^{\infty }\) is bounded in \(H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\). By Lemma 3.3, we find that \(\{u^{k}(\lambda _{m})\}_{m=1}^{\infty }\) possesses a strong convergent subsequence with limit \(u^{k}\in H_{A,V}^{s}({\mathbb {R}}^{N},{\mathbb {C}})\) for all \(k\geq k_{0}\). Hence, \(u^{k}\) is a critical point of \(J=J_{1}\) with \(J(u^{k})\in [\bar{b_{k}},\bar{c_{k}}]\). Since \(\bar{b_{k}}\rightarrow \infty \) as \(k\rightarrow \infty \), we have infinitely many nontrivial critical points of J. Namely, problem (1.1) has infinitely many nontrivial solutions with high energy. The proof is completed. □
References
d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var. 24(1), 1–24 (2018)
Squassina, M., Volzone, B.: Bourgain–Brézis–Mironescu formula for magnetic operators. C. R. Math. Acad. Sci. Paris 354, 825–831 (2016)
Xiang, M., Pucci, P., Squassina, M., Zhang, B.: Nonlocal Schrödinger–Kirchhoff equations with external magnetic field. Discrete Contin. Dyn. Syst., Ser. A 37, 503–521 (2017)
Ambrosio, V., d’Avenia, P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differ. Equ. 264(5), 3336–3368 (2018)
Ambrosio, V.: On a fractional magnetic Schrödinger equation in \({\mathbb {R}}\) with exponential critical growth. Nonlinear Anal. 183, 117–148 (2019)
Ambrosio, V.: Existence and concentration results for some fractional Schrödinger equations in \({\mathbb {R}}^{N}\) with magnetic fields. Commun. Partial Differ. Equ. 44(8), 637–680 (2019)
Cingolani, S.: Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Differ. Equ. 188, 52–79 (2003)
Arioli, G., Szulkin, A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170, 277–295 (2003)
Tang, Z.: Multi-bump bound states of nonlinear Schrödinger equations with electromagnetic fields and critical frequency. J. Differ. Equ. 245, 2723–2748 (2008)
Di Cosmo, J., Van Schaftingen, J.: Semiclassical stationary states for nonlinear Schrödinger equations under a strong external magnetic field. J. Differ. Equ. 259, 596–627 (2015)
Cingolani, S., Secchi, S., Squassina, M.: Semiclassical limit for Schödinger equations with magnetic field and Hartree-type nonlinearities. Proc. R. Soc. Edinb., Sect. A, Math. 140(5), 973–1009 (2010)
Alves, C.O., Figueiredo, G.M., Furtado, M.F.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Commun. Partial Differ. Equ. 36(9), 1565–1586 (2011)
Zhu, A., Sun, X.: Multiple solutions for Schrödinger–Poisson type equation with magnetic field. J. Math. Phys. 56(9), 551–572 (2015)
Teng, K.: Multiple solutions for a class of Schrödinger equations in \({\mathbb {R}}^{N}\). Nonlinear Anal., Real World Appl. 21, 76–86 (2015)
Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26(2), 479–494 (2013)
Chen, C.: Infinitely many solutions for fractional Schrödinger equation in \({\mathbb {R}}^{N}\). Electron. J. Differ. Equ. 2016, 88 (2016)
Hou, G., Ge, B., Lu, J.: Infinitely many solutions for sublinear fractional Schrödinger-type equations with general potentials. Electron. J. Differ. Equ. 2018, 97 (2018)
Molica Bisci, G., Radulescu, V.D.: Ground state solutions of scalar field fractional Schrödinger equations. Calc. Var. Partial Differ. Equ. 54(3), 2985–3008 (2015)
Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equations. J. Math. Phys. 54(6), 349–381 (2013)
Felmer, P., Quaas, A., Tan, J.G.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb., Sect. A 142(6), 1237–1262 (2012)
Chen, W., Deng, S.: The Nehari manifold for nonlocal elliptic operators involving concave-convex nonlinearities. Z. Angew. Math. Phys. 66, 1387–1400 (2015)
Ambrosio, V.: Multiple solutions for a fractional p-Laplacian equation with sign-changing potential. Electron. J. Differ. Equ. 2016, 151 (2016)
Ambrosio, V.: Concentrating solutions for a class of nonlinear fractional Schrödinger equations in \({\mathbb {R}}^{N}\). Rev. Mat. Iberoam. 35(5), 1367–1414 (2019)
Isernia, T.: On a nonhomogeneous sublinear-superlinear fractional equation in \({\mathbb {R}}^{N}\). Riv. Mat. Univ. Parma Ser. 7 10(1), 167–186 (2019)
Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional p-Laplacian in \({\mathbb {R}}^{N}\). Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)
Zou, W.: Variant fountain theorem and their applications. Manuscr. Math. 104, 343–358 (2001)
Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)
Acknowledgements
The authors thank the anonymous referees for invaluable comments and insightful suggestions, which improved the presentation of this manuscript.
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
Each of the authors contributed to each part of this study equally, all authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Abbreviations
Not applicable.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Yang, L., An, T. & Zuo, J. Infinitely many high energy solutions for fractional Schrödinger equations with magnetic field. Bound Value Probl 2019, 196 (2019). https://doi.org/10.1186/s13661-019-01309-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-01309-z