- Research
- Open access
- Published:
The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order \(1<\beta<2\)
Boundary Value Problems volume 2019, Article number: 59 (2019)
Abstract
This paper deals with the existence of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order \(1<\beta<2\) and its Hyers–Ulam stability. We prove the mild solutions for the equation using basic theorems of fractional differential equation. The existence result of the equation is obtained by Mönch’s fixed point theorem. Finally, we prove the Hyers–Ulam stability of the solution.
1 Introduction
Fractional differential equation [1], due to its applications in describing memory and hereditary properties of various materials and processes in natural sciences and engineering, has been widely investigated. However, because of disturbance, the behaviors of many real-word systems are not a settled process. Thus, it is crucial to study stochastic differential functions with impulse [2]. A variety of results on the theory of Caputo fractional functional stochastic equations and the Hyers–Ulam stability [3,4,5,6,7,8] of such function have been obtained. Cui and Yan [9] studied the existence of mild solutions for neutral fractional stochastic integral differential equations with infinite delay using Sadovekii’s fixed point theorem. Sakthivel [10] studied the existence of solution to nonlinear fractional stochastic differential equations. Riemann–Liouville fractional derivatives or integrals are strong tools for resolving some fractional differential problems in the real world. However, only a few results on such derivatives or integrals have been reported in the literature. It is possible to attribute physical meaning to the initial conditions expressed in terms of Riemann–Liouville fractional derivatives or integrals which have been verified by Heymans and Podlubny [11]. Such initial conditions are more appropriate in modeling a real-word system.
Due to the lack of results on the existence and stability of solutions to Riemann–Liouville fractional stochastic differential equations in the literature, it is of great significance to perform some investigations in this field. Weera Yukunthorn et al. [12] studied the existence and uniqueness of solutions to the impulsive multiorder Riemann–Liouville fractional differential equations:
where \(\beta \in R\), \(0=t_{0}< t_{1}<\cdots <t_{k}<\cdots <t_{m}<t_{m+1}=T\), \(f: J\times R \rightarrow R\) is a continuous function, \(\varphi _{k}\), \(\varphi _{k} ^{\ast }\in C(R, R)\) for \(k=1, 2,\ldots, m\), and \(D_{t_{k}}^{\alpha _{k}}\) is the Riemann–Liouville fractional derivative of order \(1<\alpha _{k}< 2 \) on intervals \(J_{k}\) for \(k=0, 1, 2,\ldots, m\). The notation \(\tilde{\Delta }x(t_{k})\) is defined by
and \(\Delta ^{\ast }x(t_{k})\) is defined by
where \(I_{t_{k}}^{2-\alpha _{k}}\) is the Riemann–Liouville fractional integral of order \(2-\alpha _{k}>0\) on \(J_{k}\). By using Banach’s fixed point theorem, the authors developed the existence theorem for such equations.
Motivated by this work, we design the following impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay:
where \(k=1,2,\ldots, m\) and \(D_{0^{+}}^{\beta }\) is the Riemann–Liouville fractional derivative of order \(1<\beta <2\). We have \(0=t_{0}< t_{1}<\cdots <t_{k}<\cdots <t_{m}<t_{m+1}=T\). Let \(T_{k}=(t _{k}, t_{k+1}]\), \(k=1, 2,\ldots, m\), \(T_{0}=[0, t_{1}]\). Here, \({\omega (t):t \in J}\) is a standard Wiener process, \(f: J\times B _{v}\), \(g: J\times B_{v}\) and \(\sigma :J\times B_{v}\) are given functions, where \(B_{v}\) is the phase space defined in Sect. 2. The impulsive functions \(I_{k}, J_{k}: {H}\rightarrow {H}\) (\(k=1, 2,\ldots, m\)) are appropriate functions. The notations \(\Delta I_{0^{+}} ^{2-\beta }x(t_{k})\), \(\Delta I_{0^{+}}^{1-\beta }x(t_{k})\) are defined by
where \(I_{0^{+}}^{2-\beta }\), \(I_{0^{+}}^{1-\beta }\) is the Riemann–Liouville fractional integral of order \(2-\beta \), \(1-\beta \), respectively. The histories \(x_{t}: (-\propto ,0]\rightarrow {H} \) defined by \(x_{t}(s)=x(t+s)\), \(s\leq 0\), belong to some abstract phase space \(B_{v}\). By using Mönch’s fixed point theorem via the measure of noncompactness as well as the basic theory of Hyers–Ulam stability, we investigate the existence and stability of the solution to the equation.
The rest of the paper is organized as follows. In Sect. 2, some basic definitions, notations, and preliminary facts that are used throughout the paper are presented. In Sect. 3 we prove the solution of the equation and present the main results for problem (1.1).
2 Preliminaries
In this section, we introduce some notations, definitions, lemmas, and preliminary facts that will be used to establish our main results.
We consider two separable Hilbert spaces K and H. Thus, \(L( {K}, {H})\) is a space of bounded linear operators from K into H. In this passage, we use the same notation \(\Vert \cdot \Vert \) to denote the norms in K and H and \(L({K}, {H})\), and we use \((\cdot , \cdot )\) to denote the inner product of H and K. We denote \((\varOmega , F, P)\) to be a complete filtered probability space satisfying that \(F_{0}\) contains all P-null sets of F. Let \(W=(W_{t})_{t\geq 0}\) be a Q-Winner process defined on \((\varOmega , F, P)\) with the covariance operator Q such that \(\operatorname{Tr}Q<\infty \). We suppose that there exists a complete orthonormal system \(\{e_{k}\}_{k\le 1}\) in K, a bounded sequence of nonnegative real numbers \(\lambda _{k}\) such that \(Qe_{k}=\lambda _{k}e_{k}\), where \(k=1,2,\ldots \) , and a sequence of independent Brownian motions \(\{\beta _{k}\}_{k\geq 1}\) such that
Let \(J=[0, T]\), \(J_{0}=[0, t_{1}]\), \(J_{k}=(t_{k}, t_{k+1}]\) for \(k=1, 2,\ldots, m\). Let
We introduce the space \(C_{2-\beta , k}(J_{k}, {H}):=\{x:J_{k}\rightarrow {H}: t^{2-\beta }x(t)\in C(J_{k}, {H})\}\) with the norm \(\Vert x \Vert _{C_{2- \beta , k}}=\sup_{t\in J_{k}}E \vert t^{2-\beta } \Vert x(t) \Vert \vert \) and \(\operatorname{PC}_{2-\beta }=\{x: J\rightarrow {H}: \text{for each } t\in J_{k} \text{ and } t^{2-\beta }x(t)\in C(J_{k}, {H}), k=0,1,2,\ldots, m\}\) with the norm
Before introducing the fractional-order functional differential equation with infinite delay, we define the abstract phase space \(B_{v}\). Let \(v:(\infty ,0]\rightarrow (0,\infty )\) be a continuous function that satisfies \(l=\int _{-\infty }^{0} v(t)\,dt<+\infty \). The Hilbert space \((B_{v}, \Vert \cdot \Vert _{B_{v}})\) induced by v is then given by
endowed with the norm \(\Vert \varphi \Vert _{B_{v}}:=\int _{-\infty }^{0} v(s) \sup_{s\leq \theta \leq 0}(E \vert \varphi (\theta ) \vert ^{2})^{\frac{1}{2}}\,ds\).
Define the following space:
where \(\varphi _{k}\) is the restriction of φ to \(J_{k}\), \(J_{0}=[0,t_{1}]\), \(J_{k}=(t_{k},t_{k+1}]\), \(k=1,2,\ldots,m\).
We use \(\Vert \cdot \Vert _{B'_{v}}\) to denote a seminorm in the space \(B'_{v}\) defined by
where
Now we consider some definitions about fractional differential equations.
Definition 2.1
The Riemann–Liouville fractional derivative of order \(\alpha >0\) of a continuous function \(f; (a, b) \rightarrow {H}\) is defined by
where \(n=[\alpha ]+1\), \([\alpha ]\) denotes the integer part of number α, provided that the right-hand side is pointwise defined on \((a, b)\), Γ is the gamma function.
Definition 2.2
The Riemann–Liouville fractional integral of order \(\alpha >0\) of a continuous function \(f: (a, b) \rightarrow {H} \) is defined by
provided that the right-hand side is pointwise defined on \((a, b)\).
Lemma 2.1
(see [13])
Let \(\alpha >0\). Then, for \(x\in C(a,b)\cap L(a,b)\), we have
where \(n-1<\alpha <n\).
Lemma 2.2
(see [13])
If \(\alpha \geq 0\) and \(\beta >0\), then
Before investigating the solutions to Eq. (1.1), we consider a simplified version of (1.1), given by
where \(k=1,2,\ldots, m\), \(x_{0},x_{1}, y_{k},\overline{y_{k}}\in {H}\) and \(D_{0^{+}}^{\beta }\) is the Riemann–Liouville fractional derivative of order \(1<\beta <2\).
Theorem 2.1
Let \(1<\beta <2\) and \(f: J\rightarrow {H}\) be continuous. Then \(x\in \operatorname{PC}_{2-\beta }(J, {H})\) is a solution of (2.1) if and only if x is a solution of the following fractional integral equation:
where \(k=1, 2,\ldots, m\).
Proof
For \(t\in (0,t_{1}]\), by Lemmas 2.1 and 2.2, we obtain
Similarly, for the interval \(t\in (t_{k},t_{k+1}]\), we have
Hence, (2.2) is a solution to problem (2.1). □
Next, based on the theorem, we consider the solutions of Eq. (1.1).
Definition 2.3
Suppose that function \(x: (-\propto ,T] \rightarrow {H}\). The solution of the fractional differential equation, given by
will be called a fundamental solution of problem (1.1).
Lemma 2.3
(see [14])
Assume \(x\in B_{v} ^{\prime }\). Then, for \(t\in J\), \(x_{t}\in B_{v}\). Moreover,
where \(l=\int _{-\propto }^{0}v(t)\,dt<+\propto \), \(\phi =x_{0}\).
Next, we consider some definitions and properties of the measure of noncompactness.
The Hausdorff measure of noncompactness \(\beta (\cdot )\) defined on each bounded subset Ω of the Banach space B is given by
Some basic properties of \(\beta (\cdot )\) are given in the following lemma.
Lemma 2.4
If B is a real Banach space and \(\varOmega , \varLambda \subset B\) are bounded, then the following properties are satisfied:
-
(1)
Monotone: if for all bounded subsets Ω, Λ of B, \(\varOmega \subseteq \varLambda \) implies \(\beta (\varOmega )\leq \beta ( \varLambda )\);
-
(2)
Nonsingular: \(\beta (\{x\}\cup \varOmega )=\beta (\varOmega )\) for every \(x \in H \) and every nonempty subset \(\varOmega \subset H \);
-
(3)
Regular: Ω is precompact if and only if \(\beta (\varOmega )=0 \);
-
(4)
\(\beta (\varOmega +\varLambda )\leq \beta (\varOmega )+\beta (\varLambda )\), where \(\varOmega +\varLambda = \{x +y; x \in \varOmega , y\in \varLambda \}\);
-
(5)
\(\beta (\varOmega \cup \varLambda )\leq \max \{\beta (\varOmega ), \beta ( \varLambda )\}\);
-
(6)
\(\beta (\lambda \varOmega )\leq \vert \lambda \vert \beta (\varOmega )\);
-
(7)
If \(W \subset C(J;B)\) is bounded and equicontinuous, then \(t \rightarrow \beta (W(t)) \) is continuous on J, and
$$\begin{aligned}& \beta (W)\leq \max_{t\in J} \beta \bigl(W(t) \bigr), \\& \beta \biggl( \int _{0}^{t}W(s)\,ds \biggr)\leq \int _{0}^{t}\beta \bigl(W(s) \bigr)\,ds, \quad \textit{for all } t\in J, \end{aligned}$$where
$$ \int _{0}^{t}W(s)\,ds = \biggl\{ \int _{0}^{t} u(s)\,ds: \textit{for all } u\in W, t\in J \biggr\} ; $$ -
(8)
If \(\{u_{n}\}_{1}^{\infty }\) is a sequence of Bochner integrable functions from J into B with \(\Vert u_{n}(t) \Vert \leq \widehat{m}(t) \) for almost all \(t \in J \) and every \(n \geq 1 \), where \(\widehat{m}(t) \in L(J;R^{+})\), then the function \(\psi (t)=\beta (\{u_{n}\}_{n=1} ^{\infty })\) belongs to \(L(J;R^{+}) \) and satisfies
$$ \beta \biggl( \biggl\{ \int _{0}^{t} u_{n}(s)\,ds: n\geq 1 \biggr\} \biggr) \leq 2 \int _{0}^{t} \psi (s)\,ds; $$ -
(9)
If W is bounded, then for each \(\varepsilon >0\), there is a sequence \(\{u_{n}\}_{n=1}^{\infty }\subset W\) such that
$$ \beta (W)\leq 2\beta \bigl(\{u_{n}\}_{n=1}^{\infty } \bigr)+\varepsilon . $$
The above lemmas about the Hausdorff measure of noncompactness will be used in proving our main results.
Lemma 2.5
(see [17])
Let D be a closed convex subset of the Banach space B and \(0\in D\). Assume that \(F: D\rightarrow B\) is a continuous map which satisfies Mönch’s condition, that is, \(M\subseteq D\) is countable, \(M\subseteq \operatorname{\overline{co}} ({0}\cup F(M) )\Rightarrow \overline{M}\) is compact. Then F has a fixed point in D.
Lemma 2.6
(see [18])
If \(W\subset C([0,T];L ^{0}_{2}(V,Y))\), ω is a standard Winer process, then
where
Next, we consider the Hyers–Ulam stability for the equation.
Consider the following inequality:
Definition 2.4
(see [19])
Equation (1.1) is Hyers–Ulam stable if, for any \(\varepsilon >0\), there exists a solution \(y(t)\) which satisfies the above inequality and has the same initial value as \(x(t)\), where \(x(t)\) is a solution to (1.1). Then \(y(t)\) satisfies
in which K is a constant.
3 Main result
In this section, we list the following basic assumptions of this paper and prove our main results.
3.1 Existence
- \((H_{1})\)::
-
The function \(f: J\times B_{v}\rightarrow H\) satisfies the following conditions:
-
(i)
\(f(\cdot , \phi )\) is measurable for all \(\phi \in B_{v}\) and \(f(t, \cdot )\) is continuous for a.e. \(t\in J\).
-
(ii)
There exist a constant \(\alpha _{1}\in (0, \alpha )\), \(m_{1} \in L^{\frac{1}{\alpha _{1}}}(J, R^{+})\), and a positive integrable function \(\varOmega : R^{+}\rightarrow R^{+}\) such that
$$ E \bigl\Vert f(t, \phi ) \bigr\Vert ^{2}\leq m_{1}(t) \varOmega \bigl( \Vert \phi \Vert _{B_{v}} \bigr) , $$for all \((t, \phi )\in J\times B_{v}\), where Ω satisfies
$$ \liminf_{n\rightarrow \propto }\frac{\varOmega (n)}{n}=0. $$ -
(iii)
There exist a constant \(\alpha _{2}\in (0, \alpha )\) and a function \(\eta \in L^{\frac{1}{\alpha _{2}}}(J, R^{+})\) such that, for any bounded subset \(F_{1}\subset B_{v}\),
$$ \beta \bigl(f(t, F_{1}) \bigr)\leq \eta _{1}(t) \Bigl[\sup _{\theta \in (-\propto , 0]}\beta \bigl(F_{1}(\theta ) \bigr) \Bigr] , $$for a.e. \(t\in J\), where \(F_{1}(\theta )=\{v(\theta ): v\in F_{1}\}\) and β is the Hausdorff MNC.
-
(i)
- \((H_{2})\)::
-
The function \(g: J\times B_{v}\rightarrow H \) satisfies the following conditions:
-
(i)
g is continuous, there exist a constant \(H_{1} >0\) and
$$ \bigl(E \bigl\Vert t^{2-\beta }g(t, x) \bigr\Vert ^{2} \bigr) \leq H_{1} \bigl(1+ \Vert x \Vert _{B_{v}}^{2} \bigr). $$ -
(ii)
There exist a constant \(\alpha _{3}\in (0, \alpha )\) and \(g^{\ast }\in L^{\frac{1}{\alpha _{3}}}(J, R^{+})\) such that, for any bounded subset \(F_{2}\subset B_{v}\),
$$ \beta \bigl(g(t, F_{2}) \bigr)\leq g^{\ast }(t)\sup _{\theta \in (-\propto , 0]}\beta \bigl(F_{2}(\theta ) \bigr), \quad \quad G= \sup_{t\in J}g^{\ast }(t). $$
-
(i)
- \((H_{3})\)::
-
\(I_{k}, J_{k}: H\rightarrow H\), \(k=1, 2,\ldots, m\), are continuous functions and they satisfy
$$\begin{aligned}& \bigl\Vert I_{k}(x) \bigr\Vert _{H}\leq c_{k} \Vert x \Vert _{B_{v}^{\prime }}, \quad\quad \bigl\Vert J_{k}(x) \bigr\Vert _{H} \leq f_{k} \Vert x \Vert _{B_{v}^{\prime }}, \\& \beta \bigl(t^{\beta -2}I_{k}(F_{3}) \bigr)\leq K_{k}\sup_{\theta \in (-\propto , T]}\beta \bigl(F_{3}(\theta ) \bigr), \\& \beta \bigl(t^{\beta -2}J_{k}(F_{4}) \bigr)\leq M_{k}\sup_{\theta \in (-\propto , T]}\beta \bigl(F_{4}(\theta ) \bigr), \end{aligned}$$where \(c_{k},f_{k},K_{k},M_{k}>0\). \(F_{3}, F_{4}\subset B_{v}^{\prime }\).
- \((H_{4})\)::
-
The function \(\sigma (t, x_{t})\) satisfies the following conditions:
-
(i)
There exist a constant \(\alpha _{4}\in (0, \alpha )\), \(m_{2}\in L ^{\frac{1}{\alpha _{4}}}(J, R^{+})\), and a positive integrable function \(\varPsi : R^{+}\rightarrow R^{+}\) such that
$$ E \bigl\Vert \sigma (t, \phi ) \bigr\Vert ^{2}\leq m_{2}(t)\varPsi \bigl( \Vert \phi \Vert _{B_{v}} \bigr) $$for all \((t, \phi )\in J\times B_{v}\), where Ψ satisfies
$$ \liminf_{n\rightarrow \propto }\frac{\varPsi (n)}{n}=0. $$ -
(ii)
There exists a constant \(v_{1}>0\) such that \(E \Vert \sigma (t, x)- \sigma (t, y) \Vert ^{2}\leq v_{1} E \Vert x-y \Vert ^{2}\).
-
(iii)
There exist a constant \(\alpha _{5}\in (0, \alpha )\) and a function \(\eta _{2}\in L^{\frac{1}{\alpha _{5}}}(J, R^{+})\) such that, for any bounded subset \(F_{5}\subset B_{v}\),
$$ \beta \bigl(\sigma (t, F_{5}) \bigr)\leq \eta _{2}(t) \Bigl[\sup_{\theta \in (-\propto , 0]}\beta \bigl(F_{5}(\theta ) \bigr) \Bigr] $$for a.e. \(t\in J\), where \(F_{5}(\theta )=\{v(\theta ): v\in F_{5}\}\) and β is the Hausdorff MNC.
-
(i)
- \((H_{5})\)::
-
$$\begin{aligned}& H_{1}l^{2}+\frac{(T^{\ast })^{2}}{(\varGamma ^{\ast })^{2}}\sum _{i=1}^{m} \bigl(f _{i}^{2}+c_{i}^{2} \bigr)< 1, \\& \begin{aligned} M^{\ast }&=\frac{2T^{\beta }}{\varGamma (\beta +1)} \Vert \eta \Vert _{L^{\frac{1}{ \alpha _{2}}}(J,R^{+})}+G+ \frac{T^{\ast }}{\varGamma ^{\ast }}\sum_{i=1} ^{m}(M_{i}+K_{i}) \\ &\quad{} + \frac{2T^{\beta +\frac{1}{2}}\sqrt{ \operatorname{Tr}(Q)}}{ \varGamma (\beta +1)} \Vert \eta _{2} \Vert _{L^{\frac{1}{\alpha _{4}}}(J,R^{+})}< 1, \end{aligned} \end{aligned}$$
where \(T^{\ast }=\max {\{1, T, T^{2}}\}\), \(\varGamma ^{\ast }=\min {\{ \varGamma (\beta +1), \varGamma (\beta ), \varGamma (\beta -1)}\}\).
Theorem 3.1
Suppose that conditions \((H_{1})\)–\((H_{5})\) are satisfied. Then system (1.1) has at least one solution on J.
Proof
We define the operator \(\varGamma : B_{v}^{\prime } \rightarrow B_{v}^{\prime }\) by
The operator Γ has a fixed point if and only if system (1.1) has a solution. For \(\phi \in B_{v}\), denote
Then \(\hat{\phi }(t)\in B_{v}^{\prime }\).
Let \(x(t)=y(t)+\hat{\phi }(t)\), \(-\propto < t\leq T\). It is easy to see that y satisfies \(y_{0}=0\), \(t\in (-\propto ,0]\) and
if and only if \(x(t)\) satisfies \(x(t)=\phi (t)\), \(t\in (-\propto , 0]\), and
Define the space \((B_{v}^{\prime \prime }, \Vert \cdot \Vert _{B_{v}^{\prime \prime }})\) induced by \(B_{v}^{\prime }\)
with the norm
Let \(B_{r}=\{y\in B_{v}^{\prime \prime } : \Vert y \Vert _{B_{v}^{\prime }}\leq r\}\). Then, for each r, \(B_{r}\) is a bounded, close, and convex subset. For any \(y\in B_{r}\), it follows from Lemma 2.3 that
We define the operator \(N: B_{v}^{\prime \prime }\rightarrow B_{v}^{\prime \prime }\) by
in which \(k=1, 2,\ldots, m\).
Step 1: We prove that there exists some \(r>0\) such that \(N(B_{r})\subset B_{r}\). If this is not true, then, for each positive integer r, there exist \(y_{r}\in B_{r}\) and \(t_{r}\in (-\propto , T]\) such that \(\Vert (Ny_{r})(t_{r}) \Vert _{B_{v}^{\prime \prime }}^{2}>r^{2}\). On the other hand, it follows from the assumption that
From \(I_{1}\) to \(I_{7}\), it follows from \((H_{1})\)–\((H_{5})\) that
Hence, we have
Dividing both sides by \(r^{2}\) and taking \(r\rightarrow +\propto \) from
yield
This contradicts \((H_{5})\). Thus, for some number r, \(N(B_{r})\subset B_{r}\).
Step 2: N is continuous on \(B_{r}\).
Let \(\{y^{n}\}_{n=1}^{+\propto }\subset B_{r}\) with \(y^{n}\rightarrow y\) in \(B_{r}\) as \(n\rightarrow +\propto \). Then, by using hypotheses \((H_{1})\), \((H_{2})\), and \((H_{3})\), we have
Now, for every \(t\in [0, t_{1}]\), we have
Moreover, for all \(t\in (t_{k}, t_{k+1}]\), \(k=1,2,\ldots, m\), we have
Thus, we obtain
implying that N is continuous on \(B_{r}\).
Step 3: The map \(N(B_{r})\) is equicontinuous on J.
The functions \(\{Ny: y\in B_{r}\}\) are equicontinuous at \(t=0\). For \(t_{1}, t_{2}\in J_{k}\), \(t_{1}< t_{2}\), \(k=0,1,2,\ldots, m\), and \(y\in B_{r}\), we have
where \(C_{1}(t_{1})>0\). The right-hand side of the equation is independent of \(y\in B_{r}\) and tends to zero as \(t_{1}\rightarrow t _{2}\) since \(t^{2-\beta }Ny(t)\in C(J_{k, X})\) and \(\Vert t_{2}^{2-\beta }-t_{1}^{2-\beta } \Vert \rightarrow 0\) as \(t_{1}\rightarrow t_{2}\). Therefore, \(\Vert Ny(t_{1})-Ny(t_{2}) \Vert _{B_{v}^{\prime \prime }}\rightarrow 0\) as \(t_{1}\rightarrow t_{2}\). Hence, \(N(B_{r})\) is equicontinuous on J.
Step 4: Mönch’s condition holds.
Let \(N=N_{1}+N_{2}+N_{3}+N_{4}\), where
Assume that \(W\subseteq B_{r}\) is countable and \(W\subseteq \operatorname{\overline{co}} (\{0\}\cup N(W) )\). We show that \(\beta (W)=0\), where β is the Hausdorff MNC. Without loss of generality, we may suppose that \(W=\{y^{n}\}_{n=1}^{\propto }\). Since \(N(W)\) is equicontinuous on \(J_{k}\), \(W\subseteq \operatorname{\overline{co}} (\{0\} \cup N(W) )\) is equicontinuous on \(J_{k}\) as well.
Using Lemmas 2.4 and 2.6, \((H_{1})\)(iii), \((H_{2})\)(ii), \((H_{3})\), and \((H_{4})\)(iii), we have
Thus, we have
where \(M^{\ast }\) is defined in assumption \((H_{5})\). Since W and \(N(W)\) are equicontinuous on every \(J_{k}\), it follows from Lemma 2.4 that the inequality implies \(\beta (NW)\leq M^{\ast }\beta (W)\).
Thus, from Mönch’s condition, we have
Since \(M^{\ast }<1\), we get \(\beta (W)=0\). It follows that W is relatively compact. Using Lemma 2.5, we know that N has a fixed point y in W. The proof is completed. □
3.2 Hyers–Ulam stability
We prove the Ulam stability of the solution using the following hypothesis.
- \((H_{6})\)::
-
The function \(g(t,x)\) satisfies the condition \(E \Vert g(t, x)-g(t, y) \Vert ^{2}\leq L \Vert x-y \Vert ^{2}\), where L is a constant and \(0<(1-5Ll)\varGamma ^{2}(\beta +1)-5v_{2}T^{2\beta }\cdot \operatorname{Tr}(Q)\).
Theorem 3.2
Suppose that conditions \((H_{1})\), \((H_{3})\)–\((H _{6})\) are satisfied. Then system (1.1) has at least one solution on J, and this solution is Hyers–Ulam stable.
Proof
It is easy to see that the solution satisfies condition \((H_{2})\) when the solution satisfies condition \((H_{6})\). Using Theorem 3.1, we can prove the existence of this solution. Now we consider the Ulam stability of this solution.
Consider the inequality
Suppose that there exists a function \(f_{1}(t, y_{t})\) such that \(\Vert f(t, x_{t})-f_{1}(t, y_{t}) \Vert <\varepsilon \).
Consider the following equation:
in which \(k=1, 2,\ldots, m\). Using the fundamental solution to Eq. (3.1), we get
It is obvious that the solution is Ulam stable in the interval \((-\propto , 0]\). Now, we consider the interval \(t\in (0, t_{1}]\) and suppose \(\varepsilon <1\). We have
Thus,
Here, \(K_{0}=\frac{T^{4}}{(1-3Ll)\varGamma ^{2}(\beta +1)-3v_{2}T^{2 \beta }l\cdot \operatorname{Tr}(Q)}\).
Secondly, we consider the interval \(t\in (t_{1}, t_{2}]\). We have
The conclusion \(\vert y(t)-x(t) \vert < K_{0}\varepsilon \) for \(t\in (0, t_{1}]\) implies that
since \(I_{k}\), \(J_{k}\) are continuous functions.
Therefore,
Thus,
Hence, in the interval \(t\in (t_{1}, t_{2}]\), we have
In this way, we can prove for \(t\in (t_{i}, t_{i+1}]\), \(i=1,\ldots,m\).
Thus, there exists \(K=\max \{K_{0}, K_{1},\ldots, K_{m}\}\) that satisfies Definition 2.4. □
References
Wang, J., Fec̆kan, M., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8, 345–362 (2011)
Shu, X., Shi, Y.: A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 273, 465–476 (2016)
Zada, A., Ali, W., Farina, S.: Hyers–Ulam stability of nonlinear differential equations with fractional integrable impulses. Math. Methods Appl. Sci. 40(15), 5502–5514 (2017)
Zada, A., Ali, W., Park, C.: Ulam’s type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall–Bellman–Bihari’s type. Appl. Math. Comput. 350, 60–65 (2019)
Zada, A., Ali, S.: Stability analysis of multi-point boundary value problem for sequential fractional differential equations with non-instantaneous impulses. Int. J. Nonlinear Sci. Numer. Simul. 19(7), 763–774 (2018)
Zada, A., Shaleena, S., Li, T.: Stability analysis of higher order nonlinear differential equations in β-normed spaces. Math. Methods Appl. Sci. 42, 1151–1166 (2019)
Khan, H., Chen, W., Sun, H.: Analysis of positive solution and Hyers–Ulam stability for a class of singular fractional differential equations with p-Laplacian in Banach space. Math. Methods Appl. Sci. 41, 3430–3440 (2018)
Shah, S.O., Zada, A., Hamza, A.E.: Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales. Qual. Theory Dyn. Syst. (2019). https://doi.org/10.1007/s12346-019-00315-x
Cui, J., Yan, L.: Existence result for fractional neutral stochastic integro-differential equations with infinite delay. J. Phys. A, Math. Theor. 44 (2011). https://doi.org/10.1088/1751-8113/44/33/335201
Sakthivel, R., Revathi, P., Ren, Y.: Existence of solution for nonlinear fractional stochastic differential equations. Nonlinear Anal. 81, 70–86 (2013)
Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45, 765–771 (2006)
Yukunthorn, W., Ntouyas, S.K., Tariboon, J.: Impulsive multiorders Riemann–Liouville fractional differential equation. Discrete Dyn. Nat. Soc. (2015). https://doi.org/10.1155/2015/603893
Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
Yan, B.: Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 259, 94–114 (2001)
Deinz, H.: On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. TMA 7, 1351–1371 (1983)
Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach space. Nonlinear Anal. TMA 4, 985–999 (1980)
Bellman, R.: The stability of solutions of linear differential equations. Duke Math. J. 10(4), 643–647 (1943)
Deng, S., Shu, X., Mao, J.: Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point. J. Math. Anal. Appl. 467, 398–420 (2018)
Li, S., Shu, L., Shu, X., Xu, F.: Existence and Hyers–Ulam stability of random impulsive stochastic functional differential equations with finite delays. Stochastics (2019). https://doi.org/10.1080/17442508.2018.1551400
Acknowledgements
The authors thank the anonymous referee and the associate editor for giving some valuable suggestions for the improvement of this work.
Availability of data and materials
Not applicable.
Funding
This work is supported by the Innovation Platforms Open Foundation of Hunan Educational Committee [grant number 541109100002].
Author information
Authors and Affiliations
Contributions
All the authors contributed equally and significantly in writing this paper. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Guo, Y., Shu, XB., Li, Y. et al. The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order \(1<\beta<2\). Bound Value Probl 2019, 59 (2019). https://doi.org/10.1186/s13661-019-1172-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1172-6