- Research
- Open access
- Published:
Positive solutions of semilinear problems in an exterior domain of \(\mathbb{R}^{2}\)
Boundary Value Problems volume 2019, Article number: 65 (2019)
Abstract
The aim of this paper is to establish the existence and global asymptotic behavior of a positive continuous solution for the following semilinear problem:
where \(\sigma <1\), D is an unbounded domain in \(\mathbb{R}^{2}\) with a compact nonempty boundary ∂D consisting of finitely many Jordan curves. As main tools, we use Kato class, Karamata regular variation theory and the Schauder fixed point theorem.
1 Introduction
There are many papers which have been dedicated to resolving questions of existence, uniqueness and asymptotic behavior for solutions of semilinear/quasilinear elliptic equations of the form
where Ω is either a bounded or unbounded domain of \(\mathbb{R}^{n}\) (\(n\geq 2\)) (see, for instance, [1, 3, 5, 16, 20,21,22, 24, 25, 27,28,29, 32, 33, 37, 48, 49, 51, 52] and the references therein).
In [32, Theorem 3.2], Kusano and Swanson studied equation (1.1) for \(\varOmega =\varOmega_{T}:=\{x\in \mathbb{R}^{2}: \vert x \vert >T>1\}\). Using the sub-super solution method, they have proved that equation (1.1) has a positive solution \(u(x)\) such that \(\frac{u(x)}{\ln \vert x \vert }\) is bounded and bounded away from zero in \(\varOmega_{T}\) if
where \(\phi (t,u)\) and \(\varPhi (t,u)\) are nonincreasing functions of u for each fixed \(t>0\) with \(\int^{\infty }t\varPhi (t,c\ln t)\,dt<\infty \), for some positive constant c.
Ufuktepe and Zhao [48, Theorem 1.1] considered (1.1) in the case \(\varOmega =D\) is an unbounded domain in \(\mathbb{R}^{2}\) with a compact nonempty boundary ∂D consisting of finitely many Jordan curves, \(\varphi (x,t)\) is a Borel measurable function in \(\mathbb{R}^{2}\times {}[ 0,\infty )\) continuous in the second variable for each fixed \(x\in \mathbb{R}^{2}\) and satisfying
where \(F(x,t)\) is a positive, convex and continuously differentiable function in \(\mathbb{R}^{2}\times {}[ 0,\infty )\) with \(F(x,0)=\frac{\partial }{\partial t}F(x,0)=0\), and \(\frac{\partial }{ \partial t}F(x,\ln \vert x \vert +1)\) belonging to the Kato class \(K_{2}^{\infty }(D)\) (see [48]).
Then by using Brownian path integration and potential theory, they have proved that for a small \(\lambda >0\), Eq. (1.1) has a positive solution \(u\in C(\overline{D})\) satisfying \(u_{|_{\partial D}}=0\) and \(\lim_{ \vert x \vert \rightarrow \infty }\frac{u(x)}{ \ln \vert x \vert }=\lambda \).
In [37, Theorem 1.1], Mâagli and Mâatoug improved the result obtained in [48] by introducing a Kato class \(K(D)\) (see Definition 1.1), which properly contains \(K_{2}^{\infty }(D)\), and adopting weaker hypotheses on φ.
The class \(K(D)\) has been proved to be very useful in the study of various existence and multiplicity results for large classes of elliptic boundary value problems (see, e.g., [39, 41, 51]).
In [51, Theorem 3.5], Zeddini proved that for \(\varOmega =\{x\in \mathbb{R}^{2}: \vert x \vert >1\}\) and for each \(\lambda >0\), Eq. (1.1) has a positive solution \(u\in C(\overline{ \varOmega })\) satisfying \(u_{|_{\partial {\varOmega }}}=0\) and \(\lim_{ \vert x \vert \rightarrow \infty }\frac{u(x)}{ \ln \vert x \vert }=\lambda \), provided that φ is continuous and nonincreasing with respect to the second variable with \(\varphi (\cdot ,c)\in K(\varOmega )\) for every \(c>0\). Several estimates of a such solution have been also obtained.
In [26, Theorems 1.1 and 1.2], by combining variational methods with the geometrical feature, Filippucci et al. established existence and non-existence results for quasilinear elliptic problems with nonlinear boundary conditions and lack of compactness.
In [11, Theorem 1.2], by using sub-supersolution method, Chhetri et al. studied the existence of positive solutions of \(-\Delta_{p}u=K(x)\frac{f(u)}{u ^{\delta }}\) in an exterior domain Ω of \(\mathbb{R}^{n}\), \(u=0\) on ∂Ω \(\lim_{ \vert x \vert \rightarrow \infty }u(x)=0\), where \(\Delta_{p}u:= \operatorname{div}( \vert \nabla u \vert ^{p-2}\nabla u)\) is the p-Laplacian with \(1< p< n\) and \(0\leq \delta <1\). The weight function \(K:\varOmega \rightarrow (0,\infty )\) and the nonlinearity \(f:[0,\infty )\rightarrow (0,\infty )\) satisfy the following hypotheses:
-
There exists \(K^{\ast }>0\) such that \(0< K(x)<\frac{K^{ \ast }}{ \vert x \vert ^{\alpha }}\) for \(x\in \overline{ \varOmega }\), where \(\alpha >n+\delta \frac{n-p}{p-1}\).
-
f is continuous and \(\lim_{s\rightarrow \infty }\frac{f(s)}{s^{p-1+\delta }}=0\).
Sharp estimates have also been obtained. The uniqueness has also been proved under an additional assumption on f.
Recently, Carl et al. [7] considered Eq. (1.1) for \(\varOmega =\{x\in \mathbb{R}^{2}: \vert x \vert >1\}\) with \(\varphi (x,u)=a(x)(\lambda u-g(u))\), where \(\lambda >0\), \(a:\varOmega \rightarrow \mathbb{R}\) is measurable with \(\vert \operatorname{supp}(a) \vert >0\) satisfying
and the growth for the continuous nonlinearity \(g:\mathbb{R\rightarrow R}\) at zero and at infinity is superlinear, which includes even exponential growth. By proving a Hopf-type lemma and employing the sub-supersolution method in the space \(D_{0}^{1,2}(\varOmega )\), which is the completion of \(C_{c}^{\infty }(\varOmega )\) with respect to the \(\Vert \nabla . \Vert _{2,\varOmega }\)-norm, they have proved the existence of extremal constant-sign solutions u in \(D_{0}^{1,2}(\varOmega )\) for Eq. (1.1) subject to the boundary condition \(u=0\) on ∂Ω. The obtained solutions are not decaying to zero at infinity, and instead are bounded away from zero.
In this paper, we will address the question of existence and global behavior of positive continuous solutions to the following nonlinear singular sublinear problem:
where \(\sigma <1\), D is an unbounded domain in \(\mathbb{R}^{2}\) with a compact nonempty boundary ∂D consisting of finitely many Jordan curves and the weight function \(a(x)\) (which could be singular) is required to satisfy some adequate conditions related to the Karamata class (see Definition 1.3). In particular, we improve the sharp estimates obtained in [51]. We emphasize that the use of Karamata regular variation theory has been suggested by Cîrstea and Rădulescu, [13,14,15,16,17] in the study of various qualitative and asymptotic properties of solutions of nonlinear differential equations. Since then, this setting became a powerful tool in describing the asymptotic behavior of solutions of large classes of nonlinear equations (see [3, 8,9,10, 18, 23, 27,28,29, 35, 36, 38, 43,44,45, 50, 53]).
Before stating our main result, we need to fix some notation.
Notation
-
(i)
D is an unbounded domain in \(\mathbb{R}^{2}\) with a compact nonempty boundary ∂D consisting of finitely many Jordan curves. That is, \(\overline{D}^{c}=\bigcup^{k}_{j=1}D _{j}\), where \((D_{j})\) is a family of bounded domains satisfying:
-
For \(i\neq j\), \(\overline{D_{i}}\cap \overline{D_{j}}= \emptyset \).
-
For any \(j\in \{1,\dots ,k\}\), there exists a continuous function \(f_{j}:[0,1]\rightarrow \mathbb{R}^{2}\) with \(f_{j}(0)=f_{j}(1)\) and \(f_{j}(t)\neq f_{j}(s)\) for any \(0< t< s<1\) such that \(\partial D_{j}=\{f_{j}(t), t\in [ 0,1)\}\).
-
-
(ii)
For \(x\in D\), \(\delta_{D}(x)\) will denote the Euclidean distance from x to ∂D, \(\rho_{D}(x)=\frac{\delta_{D}(x)}{\delta _{D}(x)+1}\) and \(\lambda_{D}(x)=\delta_{D}(x) ( \delta_{D}(x)+1 ) \).
-
(iii)
For \(x,y\in D\), \(G_{D}(x,y)\) will be the Green’s function of the Laplace operator \(u\rightarrow -\Delta u\) in D with zero boundary Dirichlet condition.
-
(iv)
Let \(a\in \mathbb{R}^{2}\backslash \overline{D}\) and \(r>0\) such that \(\overline{B(a,r)}\subset \mathbb{R}^{2}\backslash \overline{D}\). Then we have for \(x,y\in D\),
$$ G_{D}(x,y)=G_{\frac{D-a}{r}} \biggl(\frac{x-a}{r}, \frac{y-a}{r} \biggr)\quad \text{and}\quad \delta_{D}(x)=r \delta_{\frac{D-a}{r}} \biggl(\frac{x-a}{r} \biggr). $$So without loss of generality, we may assume throughout this paper that \(\overline{B(0,1)}\subset \mathbb{R}^{2}\backslash \overline{D}\).
-
(v)
For any two nonnegative functions f and g on a set S,
$$ f ( x ) \approx g ( x ) ,\quad x\in S\quad \Longleftrightarrow\quad \exists c>0, \forall x\in S,\qquad \frac{1}{c}f(x)\leq g(x) \leq cf(x). $$ -
(vi)
For \(x\in D\), let \(x^{\ast }=\frac{x}{ \vert x \vert ^{2}}\) be the Kelvin inversion from \(D\cup \{\infty \}\) onto \(D^{\ast }=\{x^{\ast }\in B(0,1): x\in D\cup \{\infty \}\}\).
-
From [12], \(D^{\ast }\) is a regular bounded domain containing 0 and
$$ G_{D}(x,y)=G_{D^{\ast }} \bigl(x^{\ast },y^{\ast } \bigr)\approx \ln \biggl(1+\frac{ \delta_{D^{\ast }}(x^{\ast })\delta_{D^{\ast }}(y^{\ast })}{ \vert x ^{\ast }-y^{\ast } \vert ^{2}} \biggr),\quad \text{for }x,y\in D. $$(1.3) -
From [37, Lemma 2.1 and Proposition 2.3], we have
$$ \textstyle\begin{cases} \delta_{D}(x)+1\approx \vert x \vert , & x\in D, \\ \rho_{D}(x)\approx \delta_{D^{\ast }}(x^{\ast }), & x\in D, \\ G_{D}(x,y)\approx \ln (1+\frac{\lambda_{D}(x)\lambda_{D}(y)}{ \vert x-y \vert ^{2}}), & x,y\in D. \end{cases} $$(1.4)
-
-
(vii)
ω is a sufficiently large positive real number.
-
(viii)
\(\mathcal{B}(D)\) be the set of Borel measurable functions in D and \(\mathcal{B}^{+}(D)\) be the set of nonnegative ones.
-
(ix)
\(C(\overline{D})\) is the set of all continuous functions in D̅.
-
(x)
\(C_{0}(\overline{D}):=\{v\in C(\overline{D}), \lim_{x \rightarrow \xi \in \partial D}v(x)=0\mbox{ and }\lim_{ \vert x \vert \rightarrow \infty }v(x)=0\}\). Note that \(C_{0}(\overline{D})\) is a Banach space with the uniform norm \(\Vert v \Vert _{ \infty }:=\sup_{x\in D} \vert v(x) \vert \).
-
(xi)
We define the potential kernel V on \(\mathcal{B}^{+} ( D ) \) by
$$ Vf(x)= \int_{D}G_{D}(x,y)f(y)\,dy. $$
We recall that for any function \(f\in \mathcal{B}^{+} ( D ) \) such that \(f\in L_{\mathrm{loc}}^{1}(D)\) and \(Vf\in L_{\mathrm{loc}}^{1}(D)\), we have
From [12, Lemma 2.9] or [42, Theorem 6.6], we know that for any function \(f\in \mathcal{B}^{+} ( D ) \) such that \(Vf(x_{0})<\infty \) for some \(x_{0}\in D\), we have \(Vf\in L_{\mathrm{loc}}^{1}(D)\).
The letter C will be a generic positive constant which may vary from line to line.
Definition 1.1
A Borel measurable function q belongs to the class \(K(D)\) if q satisfies the following conditions:
and
Remark 1.2
([37, Proposition 3.6])
Let \(\lambda ,\mu \in \) \(\mathbb{R}\). Then
Definition 1.3
([30])
-
(i)
A function \(\mathcal{M}\) defined on \((0,\eta )\), for some \(\eta >0\), belongs to the Karamata class \(\mathcal{K}_{0} \) if
$$ \mathcal{M} ( t ) :=c\exp \biggl( \int_{t}^{\eta }\frac{v(s)}{s}\,ds \biggr), $$where \(c>0\) and \(v\in C([0,\eta ]))\) with \(v(0)=0\).
-
(ii)
A function \(\mathcal{M}\) defined on \([1,\infty )\) belongs to the Karamata class \(\mathcal{K}_{\infty }\) if
$$ \mathcal{M} ( t ) :=c\exp \biggl( \int_{t}^{\eta }\frac{v(s)}{s}\,ds \biggr), $$where \(c>0\) and \(v\in C([1,\infty ))\) with \(\lim_{t\rightarrow \infty }v(t)=0\).
Remark 1.4
-
(i)
The classes \(\mathcal{K}_{\infty }\) and \(\mathcal{K}_{0}\) are characterized respectively by
$$ \mathcal{K}_{\infty }= \biggl\{ \mathcal{M}:[1,\infty )\longrightarrow ( 0, \infty ) , \mathcal{M}\in C^{1} \bigl([1,\infty)\bigr)\text{ and }\lim _{t\rightarrow \infty }\frac{t\mathcal{M}^{\prime }(t)}{ \mathcal{M}(t)}=0 \biggr\} , $$and, for some \(\eta >0\),
$$ \mathcal{K}_{0}= \biggl\{ \mathcal{M}:(0,\eta )\longrightarrow ( 0, \infty ) , \mathcal{M}\in C^{1} \bigl((0,\eta ) \bigr)\text{ and }\lim _{t \rightarrow 0^{+}} \frac{t\mathcal{M}^{\prime }(t)}{\mathcal{M}(t)}=0 \biggr\} . $$ -
(ii)
Observe that the map \(t\rightarrow \mathcal{M}(t)\) belongs to \(\mathcal{K}_{\infty }\) if and only if the map \(t\rightarrow \mathcal{M}(\frac{1}{t})\), defined on \((0,1]\), belongs to \(\mathcal{K}_{0}\).
Nontrivial examples of functions belonging to the class \(\mathcal{K} _{0}\) (see [4, 40, 46, 47]) include
-
\(\prod^{m}_{j=1}(\ln_{j}( \frac{\omega }{t}))^{\xi_{j}}\), for any integer \(m\geq 1\), \(\ln_{j}t= \ln \circ \ln \circ \cdots \circ \ln t\) (j times), \(\xi_{j}\in \mathbb{R}\). Such functions are frequently used as weight functions (see, for example, [31] and [34]);
-
\(\exp ( (-\ln t)^{\alpha } ) \) with \(\alpha \in (0,1)\), \(t\in (0,1)\).
The class \(\mathcal{K}_{\infty }\) contains, for example, functions of the form \(\prod^{m}_{j=1}(\ln_{j}(\omega t))^{\xi_{j}}\), where \(\xi_{j}\in \mathbb{R}\).
Throughout this paper, we assume that the following conditions hold:
-
(H)
a is a positive continuous function in D such that
$$ a(x)\approx \bigl(\rho_{D}(x) \bigr)^{-\lambda } \mathcal{L}_{0} \bigl(\rho_{D}(x) \bigr) \vert x \vert ^{-\mu }\mathcal{L}_{\infty } \bigl( \vert x \vert \bigr),\quad \text{for }x\in D, $$(1.6)where \(\sigma <1\) and \(\lambda \leq 2\leq \mu \).
Here,
-
\(\mathcal{L}_{0}\in \mathcal{K}_{0}\) defined on \((0,\eta )\) (\(\eta >1\)) is such that
$$ \int_{0}^{\eta }s^{1-\lambda }\mathcal{L}_{0}(s) \,ds< \infty . $$ -
\(\mathcal{L}_{\infty }(t):=\prod_{k=1}^{m} ( \ln_{k}(\omega t) ) ^{-\mu_{k}}\), with \(\mu_{k}\in \mathbb{R}\) satisfying
$$\begin{aligned}& \textstyle\begin{cases} \text{either }\mu_{1}>1+\sigma , \\ \text{or }\mu_{1}=1+\sigma \text{ and there exists }p\geq 2\text{ such that } \\ \mu_{2}=\cdots =\mu_{p-1}=1\text{ and }\mu_{p}>1. \end{cases}\displaystyle \end{aligned}$$
We introduce the function θ defined on D by
where \(\widetilde{\mathcal{L}}_{0}\) is defined on \((0,\eta )\) by
and \(\widetilde{\mathcal{L}}_{\infty }(t)=1\), if \(\mu >2\) and for \(\mu =2\), \(\widetilde{\mathcal{L}}_{\infty }\) is defined on \([1,\infty )\) as follows:
-
(i)
If \(\mu_{1}=1+\sigma \), \(\mu_{2}=\cdots =\mu_{p-1}=1\) and \(\mu_{p}>1\),
$$ \widetilde{\mathcal{L}}_{\infty }(t):= \bigl(\ln (\omega t) \bigr)^{1-\sigma } \bigl(\ln_{p}( \omega t) \bigr)^{1-\mu_{p}} \prod^{m}_{k=p+1} \bigl( \ln_{k}( \omega t) \bigr) ^{-\mu_{k}}. $$ -
(ii)
If \(1+\sigma <\mu_{1}<2\),
$$ \widetilde{\mathcal{L}}_{\infty }(t):= \bigl(\ln (\omega t) \bigr)^{2-\mu_{1}}\prod^{m}_{k=2} \bigl( \ln_{k}(\omega t) \bigr) ^{-\mu_{k}}. $$ -
(iii)
If \(\mu_{1}=2\) and \(\mu_{i}=1\), for \(2\leq i\leq m\),
$$ \widetilde{\mathcal{L}}_{\infty }(t):=\ln_{m+1}(\omega t). $$ -
(iv)
If \(\mu_{1}=2\), \(\mu_{2}=\cdots =\mu_{l-1}=1\) and \(\mu_{l}<1\),
$$ \widetilde{\mathcal{L}}_{\infty }(t):= \bigl(\ln_{l}(\omega t) \bigr)^{1-\mu_{l}}\prod^{m}_{k=l+1} \bigl( \ln_{k}(\omega t) \bigr) ^{-\mu_{k}}. $$ -
(v)
If (\(\mu_{1}=2\), \(\mu_{2}=\cdots =\mu_{l-1}=1\) and \(\mu_{l}>1\)) or \(\mu_{1}>2\),
$$ \widetilde{\mathcal{L}}_{\infty }(t):=1. $$
Using Karamata’s theory and the Schauder fixed point theorem, we prove our main result.
Theorem 1.5
Let \(\sigma <1\) and assume that function a satisfies assumption (H). Then problem (1.2) has at least one positive continuous solution u on D such that
for \(x\in D\) and where c is a positive constant.
Remark 1.6
Since \(u\approx \theta \), it is important to note that in the above cases (i)–(iv), \(\lim_{ \vert x \vert \rightarrow \infty }u(x)=\infty \).
2 Preliminaries and key tools
2.1 Kato class \(K(D)\)
In this subsection, we recall and prove some properties related to the Kato class \(K(D)\).
Proposition 2.1
Let \(q\in K(D)\), \(x_{0}\in \overline{D}\), and let h be a positive superharmonic function in D. Then we have
-
(i)
$$\begin{aligned}& \lim_{r\rightarrow 0} \biggl( \sup_{\xi \in D} \frac{1}{h(\xi )} \int _{B(x_{0},r)\cap D}G_{D}(\xi ,y)h(y) \bigl\vert q(y) \bigr\vert \,dy \biggr) =0, \end{aligned}$$(2.1)$$\begin{aligned}& \lim_{M\rightarrow +\infty } \biggl( \sup_{x\in D} \frac{1}{h(\xi )} \int_{( \vert y \vert \geq M)\cap D}G_{D}(\xi ,y)h(y) \bigl\vert q(y) \bigr\vert \,dy \biggr) =0. \end{aligned}$$(2.2)
-
(ii)
The potential Vq is bounded and the function \(x\mapsto \rho_{D}(x)q(x)\) is in \(L^{1}(D)\).
Proof
See [37, Proposition 3.4 and Corollary 3.5]. □
Lemma 2.2
Let \(M>0\) and \(\alpha >0\). Then there exists a constant \(C>0\) such that for all \(x,y\in D\) with \(\vert x-y \vert \geq \alpha \), and \(\vert y \vert \leq M\),
Proof
Let \(x,y\in D\) with \(\vert x-y \vert \geq \alpha \), and \(\vert y \vert \leq M\). Since \(\vert x \vert \geq 1\), by using (1.4) and the fact that \(\ln (1+t)\leq t\), for \(t\geq 0\), we obtain
□
Proposition 2.3
Let \(q\in K(D)\). Then the function
belongs to \(C_{0}(\overline{D})\).
Proof
Let \(\varepsilon >0\), \(x_{0}\in \overline{D}\) and \(q\in K(D)\). Using Proposition 2.1 with \(h(x)=\ln (\omega \vert x \vert )\), there exists \(r>0\) such that
and
If \(x_{0}\in D\) and \(x\in B(x_{0},\frac{r}{2})\cap D\), then we have
where \(D_{0}=D\cap B(0,M)\cap B^{c}(x_{0},r)\).
By Lemma 2.2, there exists \(C>0\) such that for all \(x\in B(x_{0},\frac{r}{2})\cap D\) and \(y\in D_{0}\),
Moreover, \((x,y)\mapsto \frac{1}{\ln (\omega \vert x \vert )}G_{D}(x,y)\) is continuous on \(( B(x_{0},\frac{r}{2})\cap D ) \times D_{0}\). Then by Proposition 2.1(ii) and Lebesgue’s dominated convergence theorem, we have
That is, there exists \(\delta >0\) with \(\delta <\frac{r}{2}\) such that if \(x\in B(x_{0},\delta )\cap D\) then
and
This implies that
If \(x_{0}\in \partial D\) and \(x\in B(x_{0},\frac{r}{2})\cap D\), then we have
Now, since \(\lim_{x\rightarrow x_{0}}\frac{\ln (\omega \vert y \vert )}{\ln (\omega \vert x \vert )}G _{D}(x,y)=0\), for all \(y\in D_{0}\), we deduce by similar arguments as above that
It remains to prove that \(\lim_{ \vert x \vert \rightarrow \infty }\vartheta (x)=0\). Indeed, let \(M>0\) and \(x\in D\) be such that \(\vert x \vert \geq M+1\). Then we have
Since \(\lim_{ \vert x \vert \rightarrow \infty }\frac{ \ln (\omega \vert y \vert )}{\ln (\omega \vert x \vert )}G _{D}(x,y)=0\) uniformly for \(|y|\leq M\), then from (2.2), Lemma 2.2, Proposition 2.1(ii) and Lebesgue’s dominated convergence theorem, we deduce that \(\lim_{ \vert x \vert \rightarrow \infty }\vartheta (x)=0\).
Hence \(\vartheta \in C_{0}(\overline{D})\). □
2.2 Karamata class
In this section, we collect some properties of the Karamata functions, which will be used later.
Lemma 2.4
(See [47])
-
(i)
If \(\mathcal{M}_{1},\mathcal{M}_{2}\in \mathcal{K}_{0}\) (resp. \(\mathcal{K}_{\infty }\)) and \(\tau \in \mathbb{R}\), then
$$ \mathcal{M}_{1}^{\tau }, \mathcal{M}_{1} \mathcal{M}_{2}\textit{ and }\mathcal{M}_{1}+ \mathcal{M}_{2}\textit{ belong to }\mathcal{K}_{0}\ ( \textit{resp. }\mathcal{K}_{\infty }). $$ -
(ii)
Let \(\mathcal{M}\in \mathcal{K}_{0}\) and \(\varepsilon >0\). Then
$$ \lim_{t\rightarrow 0^{+}}t^{\varepsilon }\mathcal{M}(t)=0\quad \textit{and} \quad \lim_{t\rightarrow 0^{+}}t^{-\varepsilon }\mathcal{M}(t)= \infty . $$ -
(iii)
Let \(\mathcal{M}\in \mathcal{K}_{\infty }\) and \(\varepsilon >0\). Then
$$ \lim_{t\rightarrow \infty }t^{-\varepsilon }\mathcal{M}(t)=0\quad \textit{and} \quad \lim_{t\rightarrow \infty }t^{\varepsilon } \mathcal{M}(t)=\infty . $$
Lemma 2.5
Let \(\gamma \in \mathbb{R}\), \(\mathcal{M}\in \mathcal{K}_{0}\) and \(\mathcal{L}\in \mathcal{K}_{\infty }\). Then
-
(i)
\(\int_{0}^{\eta }s^{\gamma }\mathcal{M}(s)\,ds\) converges for \(\gamma >-1\), and
$$ \int_{0}^{t}s^{\gamma }\mathcal{M}(s)\,ds \mathop{\sim}_{t\rightarrow 0^{+}}\frac{t^{\gamma +1}\mathcal{M}(t)}{\gamma +1}. $$ -
(ii)
\(\int_{0}^{\eta }s^{\gamma }\mathcal{M}(s)\,ds\) diverges for \(\gamma <-1\), and
$$ \int_{t}^{\eta }s^{\gamma }\mathcal{M}(s)\,ds \mathop{\sim}_{t\rightarrow 0^{+}}-\frac{t^{\gamma +1}\mathcal{M}(t)}{\gamma +1}. $$ -
(iii)
\(\int_{1}^{\infty }s^{\gamma }\mathcal{L}(s)\,ds\) converges for \(\gamma <-1\), and
$$ \int_{t}^{\infty }s^{\gamma }\mathcal{L}(s)\,ds \mathop{\sim}_{t\rightarrow \infty }-\frac{t^{\gamma +1}\mathcal{L}(t)}{\gamma +1}. $$ -
(iv)
\(\int_{1}^{\infty }s^{\gamma }\mathcal{L}(s)\,ds\) diverges for \(\gamma >-1\), and
$$ \int_{1}^{t}s^{\gamma }\mathcal{L}(s)\,ds \mathop{\sim}_{t\rightarrow \infty }\frac{t^{\gamma +1}\mathcal{L}(t)}{\gamma +1}. $$
Lemma 2.6
(See [47])
Let \(\mathcal{M}\in \mathcal{K}_{0}\). Then \(\lim_{t\rightarrow 0^{+}} \frac{\mathcal{M}(t)}{\int_{t}^{\eta }\frac{\mathcal{M}(s)}{s}\,ds}=0\).
-
In particular \(t\rightarrow \int_{t}^{\eta }\frac{\mathcal{M}(s)}{s}\,ds \in \mathcal{K}_{0}\).
-
If further \(\int_{0}^{\eta }\frac{\mathcal{M}(s)}{s}\,ds\) converges, then \(\lim_{t\rightarrow 0^{+}}\frac{\mathcal{M}(t)}{\int_{0} ^{t}\frac{\mathcal{M}(s)}{s}\,ds}=0\).
-
In particular, \(t\rightarrow \int_{0}^{t}\frac{\mathcal{M}(s)}{s}\,ds \in \mathcal{K}_{0}\).
We have the following similar properties related to the class \(\mathcal{K}_{\infty }\).
Lemma 2.7
(See [9])
Let \(\mathcal{L\in K}_{\infty }\). Then \(\lim_{t\rightarrow \infty }\frac{\mathcal{L}(t)}{\int_{1}^{t}\frac{\mathcal{L}(s)}{s}\,ds}=0\).
-
In particular, \(t\rightarrow \int_{1}^{t+1}\frac{\mathcal{L}(s)}{s}\,ds \in \mathcal{K}_{\infty }\).
-
If, furthermore, \(\int_{1}^{\infty }\frac{\mathcal{L}(s)}{s}\,ds\) converges, then \(\lim_{t\rightarrow \infty }\frac{ \mathcal{L}(t)}{\int_{t}^{\infty }\frac{\mathcal{L}(s)}{s}\,ds}=0\).
-
In particular, \(t\rightarrow \int_{t}^{\infty } \frac{\mathcal{L}(s)}{s}\,ds\in \mathcal{K}_{\infty }\).
An important step in the proof of Theorem 1.5 uses the following
Proposition 2.8
([2])
Let Ω be a bounded regular domain in \(\mathbb{R}^{2}\) containing 0.
Let \(\gamma ,\nu \leq 2\) and \(L_{3}\), \(L_{4}\in \mathcal{K}_{0}\) be such that
Put
Then for \(x\in \varOmega \backslash \{0\}\),
where for \(t\in (0,\eta )\)
and
Proposition 2.9
Let φ be a positive continuous function in D such that
where \(\alpha \leq 2\leq \beta \), \(\mathcal{M}_{0}\in \mathcal{K}_{0}\) defined on \((0,\eta )\) (\(\eta >1\)) is such that
and \(\mathcal{N}_{\infty }(t):=\prod^{m}_{k=1} ( \ln_{k}(\omega t) ) ^{-\beta_{k}}\), with \(\beta_{k}\in \mathbb{R}\) satisfying either \(\beta_{1}>1\), or (\(\beta_{1}=1\) and there exists \(p\geq 2\) such that \(\beta_{2}=\cdots =\beta_{p-1}=1\) and \(\beta_{p}>1\)). Then
where \(\widetilde{\mathcal{M}}_{0}\) is defined on \((0,1)\) by
and \(\widetilde{\mathcal{N}}_{\infty }(t)=1\), if \(\beta >2\) and for \(\beta =2\), \(\widetilde{\mathcal{N}}_{\infty }\) is defined on \([1, \infty )\) as follows:
-
(i)
If \(\beta_{1}=1\), \(\beta_{2}=\cdots =\beta_{p-1}=1\) and \(\beta_{p}>1\),
$$ \widetilde{\mathcal{N}}_{\infty }(t):= \bigl(\ln (\omega t) \bigr) \bigl( \ln_{p}(\omega t) \bigr)^{1-\beta_{p}}\prod ^{m}_{k=p+1} \bigl( \ln_{k}( \omega t) \bigr) ^{-\beta_{k}}. $$ -
(ii)
If \(1<\beta_{1}<2\),
$$ \widetilde{\mathcal{N}}_{\infty }(t):= \bigl(\ln (\omega t) \bigr)^{2-\beta_{1}}\prod_{k=2}^{m} \bigl( \ln_{k}(\omega t) \bigr) ^{-\beta_{k}}. $$ -
(iii)
If \(\beta_{1}=2\) and \(\beta_{i}=1\), for \(2\leq i\leq m\),
$$ \widetilde{\mathcal{N}}_{\infty }(t):=\ln_{m+1}(\omega t). $$ -
(iv)
If \(\beta_{1}=2\), \(\beta_{2}=\cdots =\beta_{l-1}=1\) and \(\beta_{l}<1\),
$$ \widetilde{\mathcal{N}}_{\infty }(t):= \bigl(\ln_{l}(\omega t) \bigr)^{1-\beta _{l}}\prod^{m}_{k=l+1} \bigl( \ln_{k}(\omega t) \bigr) ^{-\mu_{k}}. $$ -
(v)
If (\(\beta_{1}=2\), \(\beta_{2}=\cdots =\beta_{l-1}=1\) and \(\beta_{l}>1\)) or \(\beta_{1}>2\),
$$ \widetilde{\mathcal{N}}_{\infty }(t):=1. $$
Proof
From (2.5), we have
Using (1.3), (1.4) and the fact that \(\mathcal{M} _{0}(\rho_{D}(y))\approx \mathcal{M}_{0}(\delta_{D^{\ast }}(y^{\ast }))\), we obtain
By letting \(\xi =y^{\ast }\), we obtain
From Remark 1.4(ii), the function \(t\rightarrow \mathcal{N} _{\infty }(\frac{1}{t})\) belongs to \(\mathcal{K}_{0}\). Using this fact, and applying Proposition 2.8 with \(\gamma =4-\beta \leq 2\), \(\nu =\alpha \leq 2\), \(L_{3}(t)=\mathcal{N}_{\infty }(\frac{1}{t})\) and \(L_{4}=\mathcal{M}_{0}\), we deduce that
where for \(r\in (0,\eta )\)
and
For \(\beta =2\), by direct computation, we obtain the following:
-
(i)
If \(\beta_{1}=1\), \(\beta_{2}=\cdots =\beta_{p-1}=1\) and \(\beta_{p}>1\),
$$ \widetilde{L}_{3}(r)\approx \ln \biggl(\frac{\omega }{r} \biggr) \biggl(\ln_{p} \biggl(\frac{ \omega }{r} \biggr) \biggr)^{1-\beta_{p}} \prod^{m}_{k=p+1} \biggl( \ln_{k} \biggl(\frac{\omega }{r} \biggr) \biggr) ^{-\beta_{k}}. $$ -
(ii)
If \(1<\beta_{1}<2\),
$$ \widetilde{L}_{3}(r)\approx \biggl(\ln \biggl(\frac{\omega }{r} \biggr) \biggr)^{2-\beta_{1}}\prod_{k=2}^{m} \biggl( \ln_{k} \biggl(\frac{\omega }{r} \biggr) \biggr) ^{-\beta_{k}}. $$ -
(iii)
If \(\beta_{1}=2\) and \(\beta_{i}=1\), for \(2\leq i\leq m\),
$$ \widetilde{L}_{3}(r)\approx \ln_{m+1} \biggl( \frac{\omega }{r} \biggr). $$ -
(iv)
If \(\beta_{1}=2\), \(\beta_{2}=\cdots =\beta_{l-1}=1\) and \(\beta_{l}<1\),
$$ \widetilde{L}_{3}(r)\approx \biggl(\ln_{l} \biggl( \frac{\omega }{r} \biggr) \biggr)^{1-\beta_{l}}\prod _{k=l+1}^{m} \biggl( \ln_{k} \biggl( \frac{\omega }{r} \biggr) \biggr) ^{-\mu_{k}}. $$ -
(v)
If (\(\beta_{1}=2\), \(\beta_{2}=\cdots =\beta_{l-1}=1\) and \(\beta_{l}>1\)) or \(\beta_{1}>2\),
$$ \widetilde{L}_{3}(r)=1. $$
We let \(\widetilde{\mathcal{N}}_{\infty }(t):=\widetilde{L}_{3}( \frac{1}{t})\), for \(t\in {}[ 1,\infty )\). The required result follows from (2.6) and the fact that \(\vert x^{\ast } \vert =\frac{1}{ \vert x \vert }\), for \(x\in D\).
The proof is completed. □
Proposition 2.10
Under condition (H), we have
where \(p(x):=a(x)\theta^{\sigma }(x)\), \(\sigma <1\) and θ is defined in (1.7).
Proof
Let a be a function satisfying condition (H). Using (1.6) and (1.7), we obtain
where \(\alpha =\lambda -\min (1,\frac{2-\lambda }{1-\sigma })\sigma \), \(\beta =\mu \geq 2\) and for \(t\in (0,\eta )\)
and for \(s\geq 1\), \(\mathcal{N}_{\infty }(s)=\mathcal{L}_{\infty }(s)\), if \(\mu >2\) while for \(\mu =2\), \(\mathcal{N}_{\infty }\) is defined as follows:
-
If \(\mu_{1}=1+\sigma \), \(\mu_{2}=\cdots =\mu_{p-1}=1\) and \(\mu_{p}>1\),
$$ \mathcal{N}_{\infty }(s)= \bigl(\ln (\omega s) \bigr)^{-1} \bigl( \ln_{p}(\omega s) \bigr)^{\frac{ \sigma -\mu_{p}}{1-\sigma }}\prod ^{p-1}_{k=2} \bigl( \ln_{k}(\omega s) \bigr) ^{-1}\prod^{m}_{k=p+1} \bigl( \ln_{k}(\omega s) \bigr) ^{-\frac{\mu_{k}}{1-\sigma }}. $$ -
If \(1+\sigma <\mu_{1}<2\)
$$ \mathcal{N}_{\infty }(s)= \bigl(\ln (\omega s) \bigr)^{\frac{2\sigma -\mu_{1}}{1- \sigma }}\prod ^{m}_{k=2} \bigl( \ln_{k}(\omega s) \bigr) ^{-\frac{\mu_{k}}{1-\sigma }}. $$ -
If \(\mu_{1}=2\) and \(\mu_{i}=1\), for all \(2\leq i\leq m\),
$$ \mathcal{N}_{\infty }(s)= \bigl(\ln_{m+1}(\omega s) \bigr)^{\frac{\sigma }{1- \sigma }}\prod^{m}_{k=1} \bigl( \ln_{k}(\omega s) \bigr) ^{-\mu_{k}}. $$ -
If \(\mu_{1}=2\), \(\mu_{2}=\cdots =\mu_{l-1}=1\) and \(\mu_{l}<1\),
$$ \mathcal{N}_{\infty }(s)= \bigl( \ln (\omega s) \bigr) ^{-2} \bigl( \ln_{l}( \omega s) \bigr)^{\frac{\sigma -\mu_{l}}{1-\sigma }}\prod _{k=2}^{l-1} \bigl( \ln_{k}(\omega s) \bigr) ^{-1}\prod_{k=l+1}^{m} \biggl( \ln_{k} \biggl(\frac{\omega s}{t} \biggr) \biggr) ^{-\frac{ \mu_{k}}{1-\sigma }}. $$ -
If (\(\mu_{1}=2\), \(\mu_{2}=\cdots =\mu_{l-1}=1\) and \(\mu_{l}>1\)) or \(\mu_{1}>2\),
$$ \mathcal{N}_{\infty }(s)=\prod^{m}_{k=1} \bigl( \ln_{k}( \omega s) \bigr) ^{-\mu_{k}}, $$
Since \(\lambda \leq 2\), then it follows that \(\alpha \leq 2\).
By applying Proposition 2.9, we obtain
Since \(\min (1,2-\nu )=\min (1,\frac{2-\lambda }{1-\sigma })\), we deduce for \(x\in D\),
This completes the proof. □
3 Proof of Theorem 1.5
In order to prove Theorem 1.5, we need first to establish some preliminary results related to the following problem \(( P _{\gamma } ) \) with \(\gamma >0\):
The next lemma will be used in what follows.
Lemma 3.1
(See [2])
Let Ω be a bounded regular domain in \(\mathbb{R}^{2}\) with \(0\in \varOmega \). Let \(\lambda_{1},\lambda_{2}\in \mathbb{R}\), \(\mathcal{M}_{1},\mathcal{M}_{2}\in \mathcal{K}_{0}\) and set
The following properties are equivalent:
-
(i)
$$\lim_{\alpha \rightarrow 0}\sup_{\zeta \in \varOmega } \int _{B(\zeta ,\alpha )\cap \varOmega }\frac{\delta_{\varOmega }( \xi )}{\delta_{\varOmega }(\zeta )}G_{\varOmega }(\zeta ,\xi ) \bigl\vert \psi (\xi ) \bigr\vert \,d\xi =0, $$
where \(G_{\varOmega }(\zeta ,\xi )\) the Green’s function of the Laplacian in Ω.
-
(ii)
$$\int_{0}^{\eta }s^{1-\lambda_{1}}\ln \biggl( \frac{\omega }{s} \biggr)\mathcal{M} _{1}(s)\,ds< \infty \quad \textit{and} \quad \int_{0}^{\eta }s^{1-\lambda_{2}}\mathcal{M}_{2}(s) \,ds< \infty $$
with \(\lambda_{1}\leq 2\) and \(\lambda_{2}\leq 2\).
Proposition 3.2
Assume that hypothesis (H) is fulfilled. Then the function \(q(y):= ( \ln (\omega \vert y \vert ) ) ^{\sigma -1}a(y)\) belongs to the class \(K(D)\).
Proof
Let \(\alpha >0\). Since \(\vert x^{\ast }-y^{\ast } \vert =\frac{ \vert x-y \vert }{ \vert x \vert \vert y \vert }\), \(\vert x \vert >1\) and \(\vert y \vert >1\), it follows that if \(y\in B(x,\alpha )\) then \(y^{\ast }\in B(x^{\ast }, \alpha )\). Therefore by (1.6), (1.3) and (1.4), we have
where \(\mathcal{M}_{1}(s):= ( \ln (\frac{\omega }{s}) ) ^{( \sigma -1)}\mathcal{L}_{\infty }(\frac{1}{s})\) and \(\mathcal{M}_{2}(s):= \mathcal{L}_{0}(s)\).
By hypothesis (H), Remark 1.4(ii) and Lemma 2.4, we have \(\mathcal{M}_{1},\mathcal{M}_{2}\in \mathcal{K}_{0}\) and condition (ii) in Lemma 3.1 is satisfied.
Hence
Next, we claim that
Indeed, by the above argument, for \(\varepsilon >0\), there exists \(\alpha >0\) such that
Fix this α and let \(M>0\). Using (1.3), we obtain
Now by using hypothesis (H), Lemmas 2.4 and 2.5, we have
Therefore \(\lim_{M\rightarrow +\infty }\int_{0}^{ \frac{1}{M}}s^{\mu -3} ( \ln (\frac{\omega }{s}) ) ^{\sigma -1}\mathcal{L}_{\infty }(\frac{1}{s})\,ds=0\), which gives the required result. □
Proposition 3.3
Let \(\sigma <0\), and assume that hypothesis (H) is satisfied. Then for each \(\gamma >0\), problem \(( P_{\gamma } ) \) has at least one positive solution \(u_{\gamma }\in C(\overline{D})\) such that for \(x\in \overline{D}\),
Proof
Let \(\sigma <0\) and \(\gamma >0\). By Propositions 3.2 and 2.3, we have
Let \(\beta :=\gamma +\gamma^{\sigma } \Vert h \Vert _{\infty }\) and consider the convex set Λ given by
Define the operator T on Λ by
We aim at proving that TΛ is equicontinuous at each point of D̅.
Indeed, let \(x_{0}\in D\). Since \(\sigma <0\), we have for each \(v\in \varLambda \) and all \(x\in D\),
where \(q(y)=(\ln (\omega \vert y \vert ))^{\sigma -1}a(y) \in K(D)\).
Now, by following the proof of Proposition 2.3, we have for all \(\varepsilon >0\), there exists \(\delta >0\) such that if \(x\in B(x_{0},\delta )\cap D\), then
This implies that for all \(\varepsilon >0\), there exists \(\delta >0 \) such that
On the other hand, for all \(v\in \varLambda \) and \(x\in \overline{D}\), we have
where the function h is given by (3.2). Since \(h\in C_{0} ( \overline{D} ) \), we deduce that
So, the family TΛ is equicontinuous in \(C ( \overline{D} \cup \{\infty \} ) \). In particular, for all \(v\in \varLambda \), \(Tv\in C ( \overline{D}\cup \{\infty \} ) \) and therefore \(T\varLambda \subset \varLambda \).
Moreover, since the family \(\{Tv(x),v\in \varLambda \}\) is uniformly bounded in \(\overline{D}\cup \{\infty \}\), then it follows from Arzelà–Ascoli theorem (see [19, p. 62] and [6, Theorem 2.3]) that \(T ( \varLambda ) \) is relatively compact in \(C ( \overline{D}\cup \{\infty \} ) \).
Next, we prove the continuity of T in Λ. Let \(( v_{k} ) _{k}\subset \varLambda \) and \(v\in \varLambda \) be such that \(\Vert v_{k}-v \Vert _{\infty }\rightarrow 0\) as \(k\rightarrow \infty \). Then we have
Now, since
we deduce by (3.2) and the dominated convergence theorem that
Since \(T ( \varLambda ) \) is relatively compact in \(C ( \overline{D}\cup \{\infty \} ) \), we obtain
So, T is a compact mapping of Λ to itself. Therefore, by the Schauder fixed point theorem, there exists \(v_{\gamma }\in \varLambda \) such that for each \(x\in \overline{D}\)
Since \(v_{\gamma }^{\sigma }\leq \gamma^{\sigma }\), we deduce from (3.3) and (3.2) that
Put \(u_{\gamma }(x)=\ln (\omega \vert x \vert )v_{\gamma }(x)\), for \(x\in \overline{D}\). Then \(u_{\gamma }\in C ( \overline{D} ) \) and we have
as well as
Now, since the function \(y\mapsto a(y)u_{\gamma }^{\sigma }(y)\in L _{\mathrm{loc}}^{1}(D)\) and from (3.5) the function \(x\mapsto \int _{D}G_{D}(x,y)a(y)u_{\gamma }^{\sigma }(y)\,dy\in L_{\mathrm{loc}}^{1}(D)\), we deduce by (1.5) that \(u_{\gamma }\) satisfies
By (3.4), we have
This completes the proof. □
The next result based on the complete maximum principle is established in [51, Lemma 3.1].
Lemma 3.4
Let g∈ \(\mathcal{B}^{+}(D)\) and v be a nonnegative superharmonic function on D. Then for any w∈ \(\mathcal{B}(D)\) such that \(V ( g \vert w \vert ) <\infty \) and \(w+V ( gw ) =v\), we have
Corollary 3.5
Let \(\sigma <0\), and assume that hypothesis (H) is satisfied. For \(0<\gamma_{1}\leq \gamma_{2}\), we denote by \(u_{\gamma_{i}}\in C( \overline{D})\) the solution of problem \(( P_{\gamma } ) \) satisfying (3.1). Then we have
Proof
Let g be the function defined on D by
Since \(\sigma <0\), then \(g\in \mathcal{B}^{+} ( D ) \), and we have
On the other hand, by using (3.1), (3.2) and (3.6), we obtain, for \(x\in \overline{D}\),
Hence the required result follows from (3.8) and Lemma 2.4 with \(v(x)=\ln (\omega \vert x \vert )\). □
Proposition 3.6
Let \(\sigma <0\). Under hypothesis (H), problem (1.2) has at least one positive solution \(u\in C(\overline{D})\) such that for \(x\in \overline{D}\),
Proof
Let \(( \gamma_{k} ) _{k}\) be a positive sequence decreasing to zero. Let \(u_{k }\in C(\overline{D})\) be the solution of problem \(( P_{\gamma_{k}} ) \) satisfying (3.1). By Corollary 3.5, the sequence \(( u_{k} ) _{k}\) decreases to a function u, and since \(\sigma <0\) the sequence \(( u_{k}-\gamma_{k}\ln (\omega \vert x \vert ) ) _{k}\) increases to u. Therefore, by using (3.1), (3.6) and the fact that \(\sigma <0\), we obtain for each \(x\in \overline{D} \backslash \{0\}\),
where \(\beta_{k}:=\gamma_{k}+\gamma_{k}^{\sigma } \Vert h \Vert _{\infty }\) and h is given by (3.2).
By the monotone convergence theorem, we obtain
Since for each \(x\in \overline{D}\), \(u(x)=\inf_{k} u_{k}(x)=\sup_{k} ( u_{k}(x)-\gamma_{k}\ln (\omega \vert x \vert ) ) \), u is an upper and lower semi-continuous function on D̅ and so \(u\in C(\overline{D})\).
Since the function \(y\mapsto a(y)u^{\sigma }(y)\) is in \(L_{\mathrm{loc}}^{1}(D)\) and from (3.9) the function \(x\mapsto \int_{D}G_{D}(x,y)a(y)u ^{\sigma }(y)\,dy\) is also in \(L_{\mathrm{loc}}^{1}(D)\), we deduce by (1.5) that
Finally, using the fact that for all \(x\in D\), \(0< u(x)\leq u_{k}(x) \) and that \(u_{k}\) is a solution of problem \(( P_{\gamma_{k}} ) \), we deduce that
Hence u is a solution of problem (1.2). □
Proof of Theorem 1.5
Assume that function a satisfies hypothesis (H). By Proposition 2.10, there exists \(m\geq 1\) such that for each D,
where θ is the function defined in (1.7) and \(p(y):=a(y)\theta^{\sigma }(y)\).
We split the proof into the following two cases:
Case 1: \(\sigma <0\).
By Proposition 3.6, problem (1.2) has a positive continuous solution u satisfying (3.9). We claim that u satisfies (1.8).
By (3.10), we have
Let \(c=m^{-\frac{\sigma }{1-\sigma }}\). Then by elementary calculus we have
where \(f(x):=ca(x) [ \theta^{\sigma }(x)-m^{\sigma } ( Vp ) ^{\sigma }(x) ] \), for \(x\in \overline{D}\).
Clearly, we have \(f\in \mathcal{B}^{+} ( D ) \) and by using (3.9) and (3.12), we obtain
Let g be the function defined on D by
Then \(g\in \mathcal{B}^{+} ( D ) \) and since \(\sigma <0\), we have
Therefore the relation (3.13) becomes
Now since \(f\in \mathcal{B}^{+} ( D ) \) by using (3.14), (3.9), (3.12) and (3.10), we obtain
Hence by Lemma 3.4, we obtain
Similarly, we prove that
Thus, by (3.10), u satisfies (1.7).
Case 2: \(0\leq \sigma <1\).
Let \(\rho (x)=\frac{1}{\ln (\omega \vert x \vert )}\theta (x)\), for \(x\in D\). By (3.10), we have
Put \(c=m^{\frac{1}{1-\sigma }}\) and consider the closed convex set given by
Clearly \(\rho \in A\).
Define the operator S on A by
By using (3.15), we obtain for all \(v\in A\),
Since for all \(v\in A\), we have
we deduce as in the proof of Proposition 3.3 that
So, \(S ( A ) \subset A\).
Let \(( v_{k} ) _{k}\subset C_{0}(\overline{D})\) defined by
Since the operator S is nondecreasing and \(S ( A ) \subset A\), we deduce that
Therefore, by the monotone convergence theorem, the sequence \(( v_{k} ) _{k}\) converges to a function v such that for each \(x\in \overline{D}\),
and
Since v is bounded, we prove by similar arguments as in the proof of Proposition 3.3 that \(v\in C_{0}(\overline{D})\).
Put \(u(x)=\ln (\omega \vert x \vert )v(x)\). Then \(u\in C( \overline{D})\) satisfies the equation
Finally, since the function \(y\mapsto a(y)u^{\sigma }(y)\) is in \(L_{\mathrm{loc}}^{1}(D)\) and from (3.16) the function \(x\mapsto V(au ^{\sigma })(x)\) is also in \(L_{\mathrm{loc}}^{1}(D)\), we deduce by (1.5) that u is a solution of problem (1.2). The proof of Theorem 1.5 is completed. □
Example 3.7
Let \(\sigma <1\) and \(a\in C ( D ) \) be such that
where \(\beta \in \mathbb{R}\) and \(\gamma >1\). Then, by Theorem 1.5, problem (1.2) has at least one positive solution \(u\in C ( \overline{D} ) \) satisfying the following estimates:
-
(i)
If \(\beta =1\), then for \(x\in D\),
$$ u(x)\thickapprox \bigl(\ln_{3} \bigl(\omega \vert x \vert \bigr) \bigr)^{\frac{1}{1- \sigma }} \biggl( \ln \biggl(\frac{\omega }{\rho_{D}(x)} \biggr) \biggr) ^{\frac{1- \gamma }{1-\sigma }}. $$ -
(ii)
If \(\beta <1\), then for \(x\in D\),
$$ u(x)\thickapprox \bigl(\ln_{2} \bigl(\omega \vert x \vert \bigr) \bigr)^{\frac{1- \beta }{1-\sigma }} \biggl(\ln \biggl(\frac{\omega }{\rho_{D}(x)} \biggr) \biggr)^{\frac{1- \gamma }{1-\sigma }}. $$ -
(iii)
If \(\beta >1\), then for \(x\in D\),
$$ u(x)\thickapprox \biggl(\ln \biggl(\frac{\omega }{\rho_{D}(x)} \biggr) \biggr)^{\frac{1-\gamma }{1-\sigma }}. $$
References
Alsaedi, R., Mâagli, H., Zeddini, N.: Exact behavior of the unique positive solutions to some singular elliptic problem in exterior domains. Nonlinear Anal. 119, 186–198 (2015)
Bachar, I., Mâagli, H.: Singular solutions of a nonlinear equation in a punctured domain of \(\mathbb{R}^{2}\). Discrete Contin. Dyn. Syst., Ser. S 12, 171–188 (2019)
Ben Othman, S., Mâagli, H., Masmoudi, S., Zribi, M.: Exact asymptotic behavior near the boundary to the solution for singular nonlinear Dirichlet problems. Nonlinear Anal. 71, 4137–4150 (2009)
Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. Encyclopedia Math. Appl., vol. 27. Cambridge University Press, Cambridge (1987)
Brezis, H., Kamin, S.: Sublinear elliptic equation in \(\mathbb{R}^{2}\). Manuscr. Math. 74, 87–106 (1992)
Brown, R.F.: A Topological Introduction to Nonlinear Analysis, 3rd edn. Springer, Cham (2014)
Carl, S., Costa, D., Tehrani, H.: Extremal solutions of logistic-type equations in exterior domain in \({\mathbb{R}}^{2}\). Nonlinear Anal. 176, 272–287 (2018)
Chaieb, M., Dhifli, A., Zermani, S.: Existence and asymptotic behavior of positive solutions of a semilinear elliptic system in a bounded domain. Opusc. Math. 36(3), 315–336 (2016)
Chemmam, R., Dhifli, A., Mâagli, H.: Asymptotic behavior of ground state solutions for sublinear and singular nonlinear Dirichlet problem. Electron. J. Differ. Equ. 2011, 88 (2011)
Chemmam, R., Mâagli, H., Masmoudi, S., Zribi, M.: Combined effects in nonlinear singular elliptic problems in a bounded domain. Adv. Nonlinear Anal. 1, 301–318 (2012)
Chhetri, M., Drabek, P., Shivaji, R.: Analysis of positive solutions for classes of quasilinear singular problems on exterior domains. Adv. Nonlinear Anal. 6(4), 447–459 (2017)
Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger’s Equation. Springer, Berlin (1995)
Cîrstea, F., Rădulescu, V.D.: Existence and uniqueness of blow-up solutions for a class of logistic equations. Commun. Contemp. Math. 4, 559–585 (2002)
Cîrstea, F., Rădulescu, V.D.: Uniqueness of the blow-up boundary solution of logistic equations with absorption. C. R. Math. Acad. Sci. Paris 335(5), 447–452 (2002)
Cîrstea, F., Rădulescu, V.D.: Asymptotics for the blow-up boundary solution of logistic equations with absorption. C. R. Acad. Sci. Paris, Ser. I 336, 231–236 (2003)
Cîrstea, F., Rădulescu, V.D.: Extremal singular solutions for degenerate logistic-type equations in anisotropic media. C. R. Acad. Sci. Paris, Ser. I 339, 119–124 (2004)
Cîrstea, F., Rădulescu, V.D.: Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach. Asymptot. Anal. 46, 275–298 (2006)
Cîrstea, F., Rădulescu, V.D.: Boundary blow-up in nonlinear elliptic equations of Bieberbach–Rademacher type. Trans. Am. Math. Soc. 359, 3275–3286 (2007)
Corduneanu, C.: Integral Equations and Stability of Feedback Systems. Academic Press, New York (1973)
Crandall, M.G., Rabinowitz, P.H., Tartar, L.: On a Dirichlet problem with a singular nonlinearity. Commun. Partial Differ. Equ. 2, 193–222 (1977)
Dalmasso, R.: Solutions d’équations elliptiques semi-linéaires singulières. Ann. Mat. Pura Appl. 153, 191–201 (1988)
Drabek, P., Ho, K., Sarkar, A.: The Fredholm alternative for the p-Laplacian in exterior domains. Nonlinear Anal. 174, 17–53 (2018)
Dridi, S., Khamessi, B.: Asymptotic behavior of positive solutions of a semilinear Dirichlet problems in the annulus. Opusc. Math. 35, 21–36 (2015)
Dumont, S., Dupaigne, L., Goubet, O., Rădulescu, V.D.: Back to the Keller–Osserman condition for boundary blow-up solutions. Adv. Nonlinear Stud. 7(2), 271–298 (2007)
Edelson, A.: Entire solutions of singular elliptic equations. J. Math. Anal. Appl. 139, 523–532 (1989)
Filippucci, R., Pucci, P., Rădulescu, V.D.: Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions. Commun. Partial Differ. Equ. 33(4–6), 706–717 (2008)
Ghergu, M., Rădulescu, V.D.: Singular Elliptic Problems. Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and Applications, vol. 37. Oxford University Press, London (2008)
Ghergu, M., Rădulescu, V.D.: PDEs Mathematical Models in Biology, Chemistry and Population Genetics. Springer Monographs in Mathematics. Springer, Heidelberg (2012)
Gontara, S., Mâagli, H., Masmoudi, S., Turki, S.: Asymptotic behavior of positive solutions of a singular nonlinear Dirichlet problems. J. Math. Anal. Appl. 369, 719–729 (2010)
Karamata, J.: Sur un mode de croissance régulière. Théorèmes fondamentaux. Bull. Soc. Math. Fr. 61, 55–62 (1933)
Karntz, S., Stević, S.: On the iterated logarithmic Bloch space on the unit ball. Nonlinear Anal. TMA 71, 1772–1795 (2009)
Kusano, T., Swanson, C.A.: Asymptotic properties of semilinear elliptic equations. Funkc. Ekvacioj 26, 115–129 (1983)
Lazer, A.C., McKenna, P.J.: On a singular elliptic boundary value problem. Proc. Am. Math. Soc. 111, 721–730 (1991)
Li, S., Stević, S.: On an integral-type operator from iterated logarithmic Bloch spaces into Bloch-type spaces. Appl. Math. Comput. 215, 3106–3115 (2009)
Mâagli, H.: Asymptotic behavior of positive solutions of a semilinear Dirichlet problem. Nonlinear Anal. 74, 2941–2947 (2011)
Mâagli, H., Ben Othman, S., Dridi, S.: Existence and asymptotic behavior of ground state solutions of semilinear elliptic system. Adv. Nonlinear Anal. 6(3), 301–315 (2017)
Mâagli, H., Mâatoug, L.: Positive solutions of nonlinear elliptic equations in unbounded domains in \(\mathbb{R}^{2}\). Potential Anal. 19, 261–279 (2003)
Mâagli, H., Turki, S., Zine El Abidine, Z.: Asymptotic behavior of positive solutions of semilinear Dirichlet problem outside the unit ball. Electron. J. Differ. Equ. 2013, 95 (2013)
Mâatoug, L.: Positive solutions of a nonlinear elliptic equation in \(\{x\in \mathbb{R}^{2}, \vert x \vert >1\}\). Potential Anal. 16, 193–203 (2002)
Maric, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726. Springer, Berlin (2000)
Masmoudi, S.: On the existence of positive solutions for some nonlinear elliptic problems in unbounded domain in \(\mathbb{R}^{2}\). Nonlinear Anal. 62, 397–415 (2005)
Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. Academic Press, San Diego (1978)
Rădulescu, V.D.: Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods. Contemporary Mathematics and Its Applications., vol. 6. Hindawi, New York (2008)
Repovš, D.: Singular solutions of perturbed logistic-type equations. Appl. Math. Comput. 218(8), 4414–4422 (2011)
Repovš, D.: Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term. J. Math. Anal. Appl. 395(1), 78–85 (2012)
Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, New York (1987)
Seneta, R.: Regularly Varying Functions. Lectures Notes in Math., vol. 508. Springer, Berlin (1976)
Ufuktepe, U., Zhao, Z.: Positive solution of nonlinear elliptic equations in the Euclidian plane. Proc. Am. Math. Soc. 126, 3681–3692 (1998)
Véron, L.: Singular solutions of some nonlinear elliptic equations. Nonlinear Anal. 5, 225–242 (1981)
Wan, H.: Global asymptotic behavior of large solutions for a class of semilinear elliptic problems. Wuhan Univ. J. Nat. Sci. 22(1), 29–37 (2017)
Zeddini, N.: Positive solutions of singular elliptic equations outside the unit disk. Electron. J. Differ. Equ. 2001, 53 (2001)
Zhang, Q.S., Zhao, Z.: Singular solutions of semilinear elliptic and parabolic equations. Math. Ann. 310, 777–794 (1998)
Zhang, Z.: The asymptotic behavior of the unique solution for the singular Lane–Emden–Fowler equation. J. Math. Anal. Appl. 312, 33–43 (2005)
Acknowledgements
The authors would like to thank the anonymous referees for their careful reading of the paper.
Availability of data and materials
Not applicable.
Funding
The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding this research group No. (RG-1435-043).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Bachar, I., Mâagli, H. & Mesloub, S. Positive solutions of semilinear problems in an exterior domain of \(\mathbb{R}^{2}\). Bound Value Probl 2019, 65 (2019). https://doi.org/10.1186/s13661-019-1178-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1178-0