- Research
- Open access
- Published:
Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values
Boundary Value Problems volume 2019, Article number: 66 (2019)
Abstract
In this paper, by using Karamata regular variation theory and the method of upper and lower solutions, we mainly study the second order expansion of solutions to the following p-Laplacian problems: \(\Delta _{p} u=b(x)f(u), u>0, x\in \varOmega, u|_{\partial \varOmega }=\infty \), where Ω is a bounded domain with smooth boundary in \(\mathbb{R}^{N} (N\geq 2)\), \(p>1\), \(b \in C^{\alpha }(\bar{\varOmega })\) which is positive in Ω and may be vanishing on the boundary. The absorption term f is normalized regularly varying at infinity with index \(\sigma >p-1\). The results extend some previous findings of D. Repovš (J. Math. Anal. Appl. 395:78-85, 2012) in a certain sense.
1 Introduction and the main results
In this paper, we mainly consider the second order expansion of solutions near the boundary to the following boundary blow-up problem:
where \(\Delta _{p}u:= \operatorname{div}(|\nabla u|^{p-2}\nabla u)\) stands for a p-Laplacian operator with \(p>1\), the last condition means that \(u(x)\rightarrow +\infty \) as \(d(x):=\operatorname{dist}(x, \partial \varOmega ) \rightarrow 0\), Ω is a bounded domain with smooth boundary in \(\mathbb{R}^{N} (N\geq 2)\), b satisfies
- (\({b}_{1}\)):
-
\(b \in C^{\alpha }(\bar{\varOmega })\) for some \(\alpha \in (0,1)\) is positive in Ω;
- (\({b}_{2}\)):
-
there exist \(k\in \varLambda \), \(c\in \mathbb{R} \), and \(\theta >0 \) such that
$$ b(x)= k^{p} \bigl(d(x) \bigr) (1+c \bigl(d(x) \bigr)^{\theta }+o \bigl( \bigl(d(x) \bigr)^{\theta } \bigr) \quad\text{near }\partial \varOmega, $$where Λ denotes the set of all positive non-decreasing functions in \(C^{1}(0,\delta _{0})\) which satisfy
$$ \textstyle\begin{cases} \lim_{t \rightarrow 0^{+}} \frac{K(t)}{k(t)} = 0,\qquad K(t)=\int _{0}^{t} k(s)\,ds; \\ \lim_{t \rightarrow 0^{+}} \frac{d}{dt} (\frac{K(t)}{k(t)} ): = C_{k} \in [0,1], \end{cases} $$
and f satisfies
- (\({f}_{1}\)):
-
\(f\in C^{1}[0,\infty )\), \(f(0)=0\), f is increasing on \((0, \infty )\);
- (\({f}_{2}\)):
-
there exist \(\sigma >p-1\) and a function \(E\in C^{1}[S_{0}, \infty )\) for \(S_{0}\) large enough such that
$$ \frac{f'(s)s}{f(s)}: =\sigma +E(s),\quad s\geq S_{0} \mbox{ with }\lim _{s\rightarrow \infty }E(s)=0, $$i.e.,
$$ f(s)=c_{0}s^{\sigma }\exp \biggl( \int _{S_{0}}^{s}\frac{E(\nu )}{ \nu }\,d\nu \biggr),\quad s \geq S_{0}, c_{0}>0; $$ - (\({f}_{3}\)):
-
there exists \(\eta \leq 0\) such that
$$ \lim_{s\rightarrow \infty }\frac{E'(s)s}{E(s)}=\eta, $$with E as in Condition (\(f_{2}\)).
A local weak solution to problem (1.1) is meant as a function \(u\in C(\varOmega )\cap W^{1,p}_{\mathrm{Loc}}(\varOmega )\) with \(u(x)\rightarrow \infty \) as \(d(x):=\operatorname{dist}(x, \partial \varOmega )\rightarrow 0\) and, for every \(D\subset \subset \varOmega \), it holds
The investigation of problem (1.1) has a long history. Since the pioneering work of Bieberbach [2], the problem of existence, asymptotic boundary behavior, and uniqueness of solutions to
has been extensively studied.
For \(b(x)\equiv 1\), Keller–Osserman [3, 4] first supplied a necessary and sufficient condition
for the existence of solutions of problem (1.2).
Loewner and Nirenberg [5] showed that if \(f(u)=u^{p_{0}}\) with \(p_{0}=\frac{N+2}{N-2}\), \(N>2\), problem (1.2) has a unique solution u satisfying
Bandle and Marcus [6] proved that if f satisfies (\(f_{1}\)) and the condition that
- (\(f_{1}'\)):
-
there exist \(q>0\) and \(S_{0} \geq 1\) such that \(f(\xi s) \leq \xi ^{1+q}f(s)\) for all \(\xi \in (0,1)\) and \(s \geq S_{0}/ \xi \),
then, for any solution u of problem (1.1),
where ψ satisfies
Moreover, if f satisfies
- (\(f_{2}'\)):
-
\(f(s)/s\) is increasing in \((0, \infty )\),
problem (1.2) has a unique solution.
It is very worthwhile to point out that Cîrstea and Rǎdulescu [7,8,9], Cîrstea and Du [10] introduced the Karamata regular variation theory to study the boundary behavior and uniqueness of solutions for boundary blow-up elliptic problems and obtained a series of rich and significant data about the boundary behavior of solutions.
Recently, by using the Karamata regular variation theory, Zhang et al. [11], Zhang [12], Huang et al. [13, 14], Mi and Liu [15] further studied the second order expansion of the solutions to problem (1.2). They showed that the second term in the boundary asymptotic expansion of solutions \(u(x)\) depends on the weight function \(b(x)\).
Now, let us return to problem (1.1).
For \(b(x)\equiv 1 \) on Ω, Gladiali and Porru [16] studied boundary asymptotic behavior of solutions for (1.1) under some conditions on f. They showed that if \(F(t)t^{1-p}\) is increasing for large t, then a solution u to problem (1.1) satisfies
with
Furthermore, they showed that if \(F(t)t^{-2p}\rightarrow \infty \) as \(t\rightarrow \infty \), then
In Mohammed [17], it was shown that problem (1.1) has a local weak solution if \(b\in C(\varOmega )\) is a positive function for which the problem \(\triangle _{p}v=-b(x)\) admits a solution in \(W_{0} ^{1,p }(\varOmega )\). In particular, b is allowed to vanish on the boundary ∂Ω or b may be unbounded on Ω. Later, Mohammed [18] continued to consider the boundary asymptotic and uniqueness of solutions for problem (1.1).
For the other works on p-Laplacian problem, see [1, 19,20,21,22,23,24,25,26,27,28,29] and the references therein.
Inspired by the above works, our objective in this paper is to establish the second order expansion of solutions to problem (1.1) under appropriate conditions on weight function \(b(x)\) and non-linearity f.
To present our main results, we introduce the following subclass for Λ.
Let \(\beta, \varsigma >0\), we define
In the sequel, β and ς are understood in the above range.
In this paper, we need the following assumptions.
- (\({f}_{4}\)):
-
If \(\eta =0 \) in (\(f_{3}\)), there exists \(q_{1} \in \mathbb{R}\) such that
$$ \lim_{s\rightarrow \infty }(\ln s)^{\beta }E(s)= q_{1}, $$where β is the parameter used in the definition of \(\varLambda _{1, \beta }\);
- (\({f}_{5}\)):
-
\(\eta \leq -\frac{(\sigma +1-p)\varsigma }{p}\) in \(\mathrm{(f_{3})}\) and \(\lim_{s\rightarrow \infty } s^{\frac{(\sigma +1-p)\varsigma }{p}} E(s)= q_{2}\in \mathbb{R} \) if \(\eta =-\frac{(\sigma +1-p)\varsigma }{p}\),
where ς is the parameter used in the definition of \(\varLambda _{2, \varsigma }\);
- (\({f}_{6}\)):
-
If \(\eta =0 \) in (\(f_{3}\)), there exists \(q_{3} \in \mathbb{R}\) such that
$$ \lim_{s\rightarrow \infty }(\ln s)^{\tau }E(s)= q_{3}, $$where \(\tau =\frac{\varpi }{\varsigma }\), \(\varpi =\min \{\theta, \varsigma \}\), ς is the parameter used in the definition of \(\varLambda _{3, \varsigma }\).
The key of our estimates is the solution to the problem
Here q stands for the Hölder conjugate of p.
Our main results are summarized as follows.
Theorem 1.1
Suppose that f satisfies (\(f_{1}\))–(\(f_{2}\)), b satisfies (\(b _{1}\))–(\(b_{2}\)), \(k\in \varLambda _{1, \beta } \), and one of the following conditions holds:
-
(i)
\(f(s) =C s^{\sigma } (\sigma >p-1) \) in a neighborhood of infinity;
-
(ii)
f satisfies (\(f_{3}\)) with \(\eta <0\) and \(D_{1k}\neq 0\);
-
(iii)
f satisfies (\(f_{3}\)) with \(\eta =0\), (\(f _{4}\)) holds and \(D_{1k}^{2}+( C_{k}q_{1})^{2}\neq 0\).
Then, for the unique solution u of problem (1.1) and all x in a neighborhood of ∂Ω,
where ϕ is uniquely determined by (1.7) and
where \(\xi _{1}=p^{-\beta } ((p-1-\sigma )C_{k} )^{\beta }\).
Theorem 1.2
Let f satisfy (\(f_{1}\))–(\(f_{2}\)), b satisfy (\(b_{1}\))–(\(b_{2}\)), \(\varsigma <\frac{p(1+\sigma )}{\sigma +1-p}\), and \(\varpi <\frac{p}{( \sigma +1-p)C_{k}}\). Suppose \(k\in \varLambda _{2, \varsigma }\) with \(C_{k}\in (0,1)\), and one of the following conditions holds:
-
(i)
\(f(s) =C s^{\sigma } (\sigma >p-1) \) in a neighborhood of infinity;
-
(ii)
f satisfies (\(f_{3}\)) and (\(f_{5}\)).
Then, for the unique solution u of problem (1.1) and all x in a neighborhood of ∂Ω,
where ϕ is uniquely determined by (1.7), \(\varpi =\min \{ \theta, \varsigma \}\), \(A_{1}\) is in Theorem 1.1 and
Theorem 1.3
Let f satisfy (\(f_{1}\))–(\(f_{2}\)), b satisfy (\(b_{1}\))–(\(b_{2}\)). Suppose that \(k\in \varLambda _{3, \varsigma } \) and one of the following conditions holds:
-
(i)
\(f(s) =C s^{\sigma } (\sigma >p-1) \) in a neighborhood of infinity;
-
(ii)
f satisfies (\(f_{3}\)) with \(\eta <0\);
-
(iii)
f satisfies (\(f_{3}\)) with \(\eta =0\) and (\(f _{6}\)) holds.
Then, for the unique solution u of problem (1.1) and all x in a neighborhood of ∂Ω,
where ϕ is uniquely determined by (1.7), \(A_{1}= ( \frac{p}{\sigma +1} )^{\frac{1}{\sigma -p+1}} \), and
where \(\xi _{2}= (2(\varsigma +1) )^{-\tau } ((p-1)\varsigma D_{3k} )^{\tau }\).
Remark 1.1
For the existence of solutions for problem (1.1), see Mohammed [17]. For the uniqueness of solutions for problem (1.1), see Mohammed [18].
Remark 1.2
In Theorem 1.1, suppose (i) or (ii) holds. When \(C_{k}\in [0,1]\), the constant \(A_{2}\) is defined by the same formula:
Remark 1.3
When \(k\in \varLambda _{1, \beta }, \varLambda _{2, \varsigma }, or \varLambda _{3, \varsigma }\), the second order expansion of u (see (1.8)–(1.10)) only involves the distance \(d(x)\).
Remark 1.4
Some basic examples of functions for the function E are:
-
(i)
when \(f(s) =C s^{\sigma }(\ln s)^{\beta } (\sigma >p-1, s\geq S_{0}) \), \(E(s) =\beta (\ln s)^{-1} \);
-
(ii)
when \(f(s) =C s^{\sigma }\exp ((\ln s)^{ \beta } ) (\sigma >p-1, \beta <1, s\geq S_{0}) \), \(E(s) =\beta (\ln s)^{\beta -1} \);
-
(iii)
when \(f(s) =C s^{\sigma }\exp (s^{\beta }) (\sigma >p-1, \beta \leq 0, s\geq S_{0}) \), \(E(s) =\beta s^{ \beta } \).
The outline of this paper is as follows. In Sect. 2, we give some preliminary results of regularly varying functions. In Sect. 3, we give some auxiliary results that will be used in the next sections. The proofs of Theorems 1.1–1.3 are in the next sections.
2 Some properties of regularly varying function
The Karamata regular variation theory was first introduced and established by Karamata in 1930 and is a basic tool in stochastic processes (see [30,31,32]). In this section, we present some bases of Karamata regular variation theory.
A positive measurable function f defined on \([a,\infty )\), for some \(a>0\), is called regularly varying at infinity with index ρ, written \(f \in RV_{\rho }\), if for each \(\xi >0\) and some \(\rho \in \mathbb{R}\),
In particular, when \(\rho =0\), f is called slowly varying at infinity.
Clearly, if \(f\in RV_{\rho }\), then \(L(s):=f(s)/{s^{\rho }}\) is slowly varying at infinity.
We also see that a positive measurable function h defined on \((0,a)\) for some \(a>0\) is regularly varying at zero with index ρ (write \(h \in RVZ_{\rho }\)) if \(t\rightarrow h(1/t)\) belongs to \(RV_{-\rho }\).
Proposition 2.1
(Uniform convergence theorem)
If \(f\in RV_{\rho }\), then (2.1) holds uniformly for \(\xi \in [c_{1}, c_{2}]\) with \(0< c_{1}< c_{2}\).
Proposition 2.2
(Representation theorem)
A function L is slowly varying at infinity if and only if it may be written in the form
for some \(a_{1}\geq a\), where the functions φ and y are measurable and for \(s \rightarrow \infty \), \(y(s)\rightarrow 0\) and \(\varphi (s)\rightarrow c_{0}\), with \(c_{0}>0\).
We call that
is normalized slowly varying at infinity and
is normalized regularly varying at infinity with index ρ (and write \(f\in \mathrm{NRV}_{\rho }\)).
Similarly, g is called normalized regularly varying at zero with index ρ, written \(g \in \mathrm{NRVZ}_{\rho }\), if \(t\rightarrow g(1/t)\) belongs to \(\mathrm{NRV}_{-\rho }\).
A function \(f\in RV_{\rho }\) belongs to \(\mathrm{NRV}_{\rho }\) if and only if
Proposition 2.3
If functions \(L, L_{1}\) are slowly varying at infinity, then
-
(i)
\(L^{\rho }\) for every \(\rho \in \mathbb{R}\), \(c_{1} L+c_{2} L_{1}\) (\(c_{1}\geq 0, c_{2} \geq 0\) with \(c_{1}+c_{2}>0\)), \(L\circ L_{1}\) (if \(L_{1}(t)\rightarrow \infty \) as \(t\rightarrow \infty \)) are also slowly varying at infinity.
-
(ii)
For every \(\rho >0\) and \(t\rightarrow \infty \),
$$ t^{\rho } L(t)\rightarrow \infty,\qquad t^{-\rho } L(t)\rightarrow 0. $$ -
(iii)
For \(\rho \in \mathbb{R}\) and \(t\rightarrow \infty \), \(\ln (L(t))/{\ln t}\rightarrow 0\) and \(\ln (t^{\rho } L(t))/{\ln t}\rightarrow \rho \).
Proposition 2.4
-
(i)
If \(g_{1}\in {R}VZ_{\rho _{1}}, g_{2}\in {R}VZ_{\rho _{2}} \) with \(\lim_{t\rightarrow 0^{+}} g_{2} (t)=0 \), then \(g_{1}\circ g_{2}\in {R}VZ_{\rho _{1} \rho _{2}}\).
-
(ii)
If \(g\in RVZ_{\rho }\), then \(g^{\alpha } \in RVZ_{\rho \alpha }\) for every \(\alpha \in \mathbb{R}\).
Proposition 2.5
(Asymptotic behavior)
If a function L is slowly varying at infinity, then for \(a\geq 0\) and \(t\rightarrow \infty \),
-
(i)
\(\int _{a}^{t} s^{\rho }L(s)\,ds\cong ( \rho +1)^{-1}t^{1+\rho }L(t)\textit{ for }\rho >-1\);
-
(ii)
\(\int _{t}^{\infty }s^{\rho }L(s)\,ds \cong (-\rho -1)^{-1}t^{1+\rho }L(t)\textit{ for }\rho < -1 \).
3 Auxiliary results
In this section, we collect some useful results.
Lemma 3.1
(Lemma 3.1 in [15])
Let \(k\in \varLambda \). Then
-
(i)
\(\lim_{t\rightarrow 0^{+}} \frac{K(t)}{k(t)}=0, \lim_{t \rightarrow 0^{+}} \frac{K(t)}{tk(t)}=C_{k}\);
-
(ii)
\(\lim_{t \rightarrow 0^{+}} \frac{K(t)k'(t)}{k ^{2}(t)}=1-C_{k} \);
-
(iii)
when \(k\in \varLambda _{1, \beta }\),
$$ \lim_{t \rightarrow 0^{+}} (-\ln t)^{\beta } \biggl( \frac{K(t)k'(t)}{k ^{2}(t)}-(1-C_{k}) \biggr)=-D_{1k}; $$ -
(iv)
when \(k\in \varLambda _{2, \varsigma }\),
$$ \lim_{t \rightarrow 0^{+}} \frac{1}{t^{\varsigma }} \biggl(\frac{K(t)k'(t)}{k ^{2}(t)}-(1-C_{k}) \biggr)= -D_{2k}; $$ -
(v)
when \(k\in \varLambda _{3, \varsigma }\),
$$ \lim_{t \rightarrow 0^{+}} \frac{1}{t^{\varsigma }} \biggl(\frac{K(t)k'(t)}{k ^{2}(t)}-1 \biggr)= -D_{3k}. $$
Lemma 3.2
If f satisfies (\(f_{1}\))–(\(f_{2}\)), then
-
(i)
f satisfies the generalized Keller–Osserman condition
$$ \int _{1}^{\infty } \bigl(qF(t) \bigr)^{-1/p}< + \infty,\qquad F(t)= \int _{0}^{t}f(s)\,ds; $$ -
(ii)
$$ \lim_{s\rightarrow \infty }f'(s) \int _{s}^{\infty }\frac{d\nu }{f( \nu )}=\frac{\sigma }{\sigma -1} $$
and
$$ \lim_{s\rightarrow \infty }\frac{f(s)\int _{s}^{\infty }\frac{d\nu }{f( \nu )}}{s}=\frac{1}{\sigma -1}; $$ -
(iii)
there exists \(S_{0} > 0\) such that \(\frac{f(s)}{s^{m}}\) is increasing in \([S_{0},\infty )\), where \(m\in (1, \sigma )\);
-
(iv)
$$ \lim_{s\rightarrow \infty } \frac{sf(s)}{F(s)}=\sigma +1; $$
-
(v)
$$ \lim_{s\rightarrow \infty }\frac{s(F(s))^{-\frac{1}{p}}}{\int _{s}^{ \infty }(F(t))^{-\frac{1}{p}}\,dt}= \frac{\sigma +1-p}{p}. $$
Proof
By \(f\in \mathrm{NRV}_{\sigma }\) with \(\sigma >p-1\), we see that \(f(s)=c_{0}s ^{\sigma }\hat{L}(s)\) in \([S_{0}, \infty )\), where L̂ is normalized slowly varying at infinity and \(c_{0}>0\). Let \(\sigma _{1} \in (p-1, \sigma )\). It follows by Proposition 2.3(ii) that
Then there exists \(S_{1}>S_{0}\) such that
and there exists \(S_{2}>S_{1}\) such that
So, (i) holds.
(ii) By (\(f_{2}\)) and Proposition 2.5(ii), we obtain that
It follows by l’Hospital’s rule that
(iii) By the choice of m and (ii), one can see that
Then there exists \(S_{0}>0\) such that \((\frac{f(s)}{s^{m}} )'=s ^{-m} (f'(s)-m\frac{f(s)}{s} )>0, \forall s\geq S_{0}\), i.e., \(f(s)/{s^{m}}\) is increasing on \([S_{0}, \infty )\).
(iv) By (\(f_{2}\)) and Proposition 2.5(i), we obtain that
(v) It follows by (iv) that \(F\in \mathrm{NRV}_{\sigma +1}\) with \(\sigma +1>p\). By Proposition 2.4(ii), we have \(F^{-\frac{1}{p}}\in \mathrm{NRV}_{-\frac{ \sigma +1}{p}}\). Hence, by Proposition 2.4(ii), we obtain
□
Lemma 3.3
Let f satisfy (\(f_{1}\))–(\(f_{3}\)), and let (\(f_{4}\)) hold, then
-
(i)
$$ \lim_{s \rightarrow \infty } (\ln s)^{\beta } \biggl( \frac{F(s)}{sf(s)}- \frac{1}{\sigma +1} \biggr)=\sigma _{1}, $$
where
$$\begin{aligned} \sigma _{1}= \textstyle\begin{cases} 0 & \textit{if }\eta < 0, \\ -\frac{q_{1}}{(\sigma +1)(\sigma +1+\eta )} & \textit{if }\eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(ii)
$$ \lim_{s \rightarrow \infty } (\ln s)^{\beta } \biggl( \frac{s(F(s))^{- \frac{1}{p}}}{\int _{s}^{\infty }(F(t))^{-\frac{1}{p}}\,dt} -\frac{ \sigma +1-p}{p} \biggr)=\sigma _{2}, $$
where
$$\begin{aligned} \sigma _{2}= \textstyle\begin{cases} 0 & \textit{if }\eta < 0, \\ \frac{q_{1}(\sigma +1)}{p(\eta +\sigma +1)} & \textit{if }\eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(iii)
$$ \lim_{s \rightarrow \infty }(\ln s)^{\beta } \biggl(\frac{(F(s))^{1- \frac{1}{p}}}{f(s)\int _{s}^{\infty } (F(t))^{-\frac{1}{p}}\,dt }+ \frac{p- \sigma -1}{p(\sigma +1)} \biggr)=\sigma _{3}, $$
where
$$\begin{aligned} \sigma _{3}= \textstyle\begin{cases} 0 & \textit{if } \eta < 0, \\ \frac{q_{1}}{(\sigma +1)(\sigma +1+\eta )} & \textit{if }\eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(iv)
$$ \lim_{s \rightarrow \infty }(\ln s)^{\beta } \biggl(\frac{f(A_{1}s)}{A _{1}^{p-1}f(s)}-A_{1}^{\sigma -p+1} \biggr)=\sigma _{4}, $$
where
$$\begin{aligned} \sigma _{4}= \textstyle\begin{cases} 0 & \textit{if } \eta < 0, \\ q_{1} A_{1}^{\sigma -p+1}\ln A_{1} & \textit{if }\eta =0. \end{cases}\displaystyle \end{aligned}$$
Proof
(i) It follows by (\(f_{2}\)) that
Integrating it from \(S_{0}\) to s and integrating by parts, we obtain that
i.e.,
where c is a constant.
Since \(f\in \mathrm{NRV}_{\sigma }\) with \(\sigma >p-1\), we obtain by Propositions 2.5 and 2.3(ii) that
Thus (ii) follows by (3.2).
(ii) By (3.1), it follows that
Besides, by a simple calculation, it leads to
i.e.,
Since \(f\in \mathrm{NRV}_{\sigma }\) with \(\sigma >p-1\), by Proposition 2.3(ii), we know \(\lim_{s \rightarrow \infty } \frac{s}{(F(s))^{ \frac{1}{p}}}=0\).
Hence, integrating (3.6) from s to ∞ and integrating by parts, we derive that
i.e.,
By l’Hospital’s rule it follows that
(iii) By a simple calculation, we have
Hence, by (i)–(ii), we get
(iv) When \(A_{1}=1\), the result is obvious. Now let \(A_{1}\neq 1\). By (\(f_{2}\)), we see that
By Proposition 2.1 and (\(f_{3}\)), we know
uniformly with respect to \(s\in [1, A_{1}]\) or \(s\in [A_{1}, 1]\).
So,
and
where
Since \(e^{r}-1\cong r \text{ as } r\rightarrow 0\), we obtain
Hence,
□
Lemma 3.4
Let f satisfy (\(f_{1}\))–(\(f_{3}\)), and let (\(f_{5}\)) hold, then
-
(i)
$$ \lim_{s \rightarrow \infty } s^{ \frac{\sigma +1-p}{p}\varsigma } \biggl( \frac{F(s)}{s f(s)}- \frac{1}{\sigma +1} \biggr)=\kappa _{1}, $$
where
$$\begin{aligned} \kappa _{1}= \textstyle\begin{cases} 0 & \textit{if } \frac{\sigma +1-p}{p}\varsigma +\eta < 0, \\ -\frac{q_{2}}{(\sigma +1)(\sigma +1+\eta )} & \textit{if } \frac{\sigma +1-p}{p}\varsigma + \eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(ii)
$$ \lim_{s \rightarrow \infty } s^{\frac{\sigma +1-p}{p}\varsigma } \biggl( \frac{s(F(s))^{-\frac{1}{p}}}{\int _{s}^{\infty }(F(t))^{- \frac{1}{p}}\,dt} - \frac{\sigma +1-p}{p} \biggr)=\kappa _{2}, $$
where
$$\begin{aligned} \kappa _{2}= \textstyle\begin{cases} 0 & \textit{if } \frac{\sigma +1-p}{p}\varsigma +\eta < 0, \\ \frac{(\sigma +1)q_{2}}{p(1+\varsigma ) (\sigma +1+\eta )} & \textit{if } \frac{ \sigma +1-p}{p}\varsigma +\eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(iii)
$$ \lim_{s \rightarrow \infty }s^{\frac{\sigma +1-p}{p}\varsigma } \biggl(\frac{(F(s))^{1- \frac{1}{p}}}{f(s)\int _{s}^{\infty } (F(t))^{-\frac{1}{p}}\,dt }+ \frac{p- \sigma -1}{p(\sigma +1)} \biggr)=\kappa _{3}, $$
where
$$\begin{aligned} \kappa _{3}= \textstyle\begin{cases} 0 & \textit{if } \frac{\sigma +1-p}{p}\varsigma +\eta < 0, \\ \frac{q_{2}(p-\varsigma (\sigma +1-p))}{p(\sigma +1)(\sigma +1+ \eta )(1+\varsigma )} & \textit{if } \frac{\sigma +1-p}{p}\varsigma +\eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(iv)
$$ \lim_{s \rightarrow \infty }s^{\frac{\sigma +1-p}{p}\varsigma } \biggl(\frac{f(A _{1}s)}{A_{1}^{p-1}f(s)}-A_{1}^{\sigma -p+1} \biggr)=\kappa _{4}, $$
where
$$\begin{aligned} \kappa _{4}= \textstyle\begin{cases} 0 & \textit{if }\frac{\sigma +1-p}{p}\varsigma +\eta < 0, \\ \frac{q_{2}}{\eta } A_{1}^{p-1} (A_{1}^{\eta }-1) & \textit{if } \frac{ \sigma +1-p}{p}\varsigma +\eta =0. \end{cases}\displaystyle \end{aligned}$$
Proof
(i) By (3.2), we obtain
Since \(f\in \mathrm{NRV}_{\sigma }\) and \(\varsigma <\frac{p(\sigma +1)}{\sigma +1-p}\), by Proposition 2.3(ii), we know \(\lim_{s \rightarrow \infty } \frac{s^{\frac{\sigma +1-p}{p}\varsigma }}{sf(s)}=0\).
Combining with (3.3), it follows that
□
(ii) It follows by (3.7) that
By l’Hospital’s rule, it follows that
(iii) By a simple calculation, we get
Hence, by (i)–(ii), we get
(iv) By (3.10), we see that
Hence, by (3.9), we reach
Lemma 3.5
Let f satisfy (\(f_{1}\))–(\(f_{3}\)), and let (\(f_{6}\)) hold, then
-
(i)
$$ \lim_{s \rightarrow \infty } (\ln s)^{\tau } \biggl( \frac{F(s)}{sf(s)}- \frac{1}{ \sigma +1} \biggr)=\gamma _{1}, $$
where
$$\begin{aligned} \gamma _{1}= \textstyle\begin{cases} 0 & \textit{if } \eta < 0, \\ -\frac{q_{3}}{(\sigma +1)(\sigma +1+\eta )} & \textit{if } \eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(ii)
$$ \lim_{s \rightarrow \infty } (\ln s)^{\tau } \biggl( \frac{s(F(s))^{- \frac{1}{p}}}{\int _{s}^{\infty }(F(t))^{-\frac{1}{p}}\,dt} -\frac{ \sigma +1-p}{p} \biggr)=\gamma _{2}, $$
where
$$\begin{aligned} \gamma _{2}= \textstyle\begin{cases} 0 & \textit{if } \eta < 0, \\\frac{q_{3}(\sigma +1)}{p(\eta +\sigma +1)} & \textit{if } \eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(iii)
$$ \lim_{s \rightarrow \infty }(\ln s)^{\tau } \biggl(\frac{(F(s))^{1- \frac{1}{p}}}{f(s)\int _{s}^{\infty } (F(t))^{-\frac{1}{p}}\,dt }+ \frac{p- \sigma -1}{p(\sigma +1)} \biggr)=\gamma _{3}, $$
where
$$\begin{aligned} \gamma _{3}= \textstyle\begin{cases} 0 & \textit{if } \eta < 0, \\ \frac{q_{3}}{(\sigma +1)(\sigma +1+\eta )} & \textit{if } \eta =0; \end{cases}\displaystyle \end{aligned}$$ -
(iv)
$$ \lim_{s \rightarrow \infty }(\ln s)^{\tau } \biggl(\frac{f(A_{1}s)}{A _{1}^{p-1}f(s)}-A_{1}^{\sigma -p+1} \biggr)=\gamma _{4}, $$
where
$$\begin{aligned} \gamma _{4}= \textstyle\begin{cases} 0 & \textit{if } \eta < 0, \\ q_{3} A_{1}^{\sigma -p+1}\ln A_{1} & \textit{if } \eta =0. \end{cases}\displaystyle \end{aligned}$$
Proof
The proof is similar to the proof of Lemma 3.3, we omit it here. □
Lemma 3.6
If f satisfies (\(f_{1}\))–(\(f_{2}\)) and ϕ is the solution to problem (1.7), then
-
(i)
\(\phi '(t)=-(q F(\phi (t)))^{ \frac{1}{p}}, \phi (t)>0, t>0, \phi (0): =\lim_{t\rightarrow 0^{+}}\phi (t)=\infty \);
-
(ii)
\(\phi ''(t)=p^{-1}q^{\frac{2}{p}}f( \phi (t))(F(\phi (t)))^{(2-p)/p}, t>0, |\phi '(t)|^{p-2}\phi ''(t)= \frac{q}{p}f(\phi (t))\);
-
(iii)
\(\phi \in \mathrm{NRVZ}_{- \frac{p}{\sigma +1-p}}\) and \(\phi ' \in \mathrm{NRVZ}_{-\frac{\sigma +1}{ \sigma +1-p}}\);
-
(iv)
when \(k\in \varLambda \), \(\lim_{t\to 0^{+}}\frac{\ln t}{\ln (\phi (K(t)))}=-\frac{(\sigma +1-p)C _{k}}{p}\);
-
(v)
when \(k\in \varLambda \) with \(C_{k} \in (0,1)\), \(\lim_{t\rightarrow 0^{+}}t (\phi (K(t)) )^{\frac{ \sigma +1-p}{p}}=\infty \) and \(\lim_{t\rightarrow 0^{+}}\frac{(- \ln t)^{\beta }}{\phi (K(t))} =0\); furthermore, if \(\varpi <\frac{p}{( \sigma +1-p)C_{k}}\), \(\lim_{t\rightarrow 0^{+}}t^{\varpi } \phi (K(t))=\infty \);
-
(vi)
when \(k\in \varLambda _{3, \varsigma }\), \(\lim_{t\rightarrow 0^{+}} \frac{1}{t^{\varsigma }\ln (\phi (K(t)))}= \frac{(\sigma +1-p)\varsigma D_{3k}}{p(\varsigma +1)}\).
Proof
By the definition of ϕ and a direct calculation, we show that (i)–(ii) hold.
(iii) By (i)–(ii) and Lemma 3.2(iv)–(v), we have that
and
i.e., \(\phi ' \in \mathrm{NRVZ}_{-\frac{p}{\sigma +1-p}}\) and \(\phi \in \mathrm{NRVZ} _{-\frac{\sigma +1}{\sigma +1-p}}\) and (iii) follows.
(iv) By l’Hospital’s rule, (iii), and Lemma 3.1(i), we see that
(v) By Lemma 3.1(i), we see \(K\in \mathrm{NRVZ}_{C_{k}^{-1}}\). It follows by Proposition 2.4 that \(\phi ^{\frac{\sigma +1-p}{p}} \circ K\in \mathrm{NRVZ} _{-\frac{1}{C_{k}}}\) and \(\phi \circ K\in \mathrm{NRVZ}_{-\frac{p}{(\sigma +1-p)C _{k}}}\). Since \(C_{k}\in (0, 1)\) and \(\varpi <\frac{p}{(\sigma +1-p)C _{k}}\), the result follows by Proposition 2.3(ii).
(vi) By l’Hospital’s rule and (iii), we obtain
□
Lemma 3.7
Under the hypotheses in Theorem 1.1, let ϕ be the solution to problem (1.7). Then
-
(i)
$$ \lim_{t \rightarrow 0^{+}}(-\ln t)^{\beta } \biggl(\frac{\phi '(K(t))k'(t)}{ \phi ''(K(t)k^{2}(t)} + \frac{(\sigma +1-p)(1-C_{k})}{\sigma +1} \biggr)= \chi _{1}, $$
where
$$\begin{aligned} \chi _{1}= \textstyle\begin{cases} \frac{(\sigma +1-p)D_{1k}}{\sigma +1} & \textit{if (i) or (ii) holds,} \\ \frac{-q_{1}\xi _{1}p(1-C_{k})}{(\sigma +1)(\sigma +1+\eta )} +\frac{( \sigma +1-p)D_{1k}}{\sigma +1} & \textit{if (iii) holds;} \end{cases}\displaystyle \end{aligned}$$ -
(ii)
$$ \lim_{t \rightarrow 0^{+}}(-\ln t)^{\beta } \biggl(\frac{f(A_{1} \phi (K(t)))}{A_{1}^{p-1}f(\phi (K(t)))}- A_{1}^{\sigma -p+1} \biggr)= \chi _{2}, $$
where
$$\begin{aligned} \chi _{2}= \textstyle\begin{cases} 0 & \textit{if (i) or (ii) holds,} \\ \xi _{1}q_{1} A_{1}^{\sigma -p+1} \ln A_{1} & \textit{if (iii) holds;} \end{cases}\displaystyle \end{aligned}$$
where \(\xi _{1}=p^{-\beta } ((p-1-\sigma )C_{k} )^{\beta }\).
Proof
(i) By the definition of ϕ, Lemma 3.3(iii), and Lemma 3.7(iv), we arrive at
(ii) By Lemma 3.3(iv) and Lemma 3.7(iv), we infer that
□
Lemma 3.8
Under the hypotheses in Theorem 1.2, let ϕ be the solution to problem (1.7). Then
-
(i)
$$ \lim_{t \rightarrow 0^{+}} t^{-\varpi } \biggl(\frac{\phi '(K(t))k'(t)}{ \phi ''(K(t))k^{2}(t)} + \frac{(\sigma +1-p)(1-C_{k})}{\sigma +1} \biggr)=\frac{ \sigma +1-p}{\sigma +1}D_{2k} \mathrm{Heaviside}(\theta - \varsigma ); $$
-
(ii)
$$ \lim_{t \rightarrow 0^{+}} t^{-\varpi } \biggl(\frac{f(A_{1}\phi (K(t)))}{A _{1}^{p-1}f(\phi (K(t)))}- A_{1}^{\sigma -p+1} \biggr)=0. $$
Proof
(i) By the definition of ϕ, Lemma 3.4(iii), and Lemma 3.7(v), we arrive at
(ii) By Lemma 3.4(iv) and Lemma 3.7(v), we infer that
□
Lemma 3.9
Under the hypotheses in Theorem 1.3. Let ϕ be the solution to problem (1.7). Then
-
(i)
$$ \lim_{t \rightarrow 0^{+}} t^{-\varpi } \biggl(\frac{\phi '(K(t))k'(t)}{ \phi ''(K(t))k^{2}(t)} + \frac{\sigma +1-p}{\sigma +1} \biggr)=\chi _{3}, $$
where
$$\begin{aligned} \chi _{3}= \textstyle\begin{cases} \frac{ \sigma +1-p}{\sigma +1}D_{3k}\mathrm{Heaviside}(\theta -\varsigma ) & \textit{if (i) or (ii) holds,} \\ -\frac{\xi _{2}q_{3}p}{(\sigma +1)(\sigma +1+\eta )} +\frac{(\sigma +1-p)D _{3k}}{\sigma +1}\mathrm{Heaviside}(\theta -\varsigma ), & \textit{if (iii) holds;} \end{cases}\displaystyle \end{aligned}$$ -
(ii)
$$ \lim_{t \rightarrow 0^{+}} t^{-\varpi } \biggl(\frac{f(A_{1}\phi (K(t)))}{A _{1}^{p-1}f(\phi (K(t)))}- A_{1}^{\sigma -p+1} \biggr)=\chi _{4}, $$
where
$$\begin{aligned} \chi _{4}= \textstyle\begin{cases} 0 & \textit{if (i) or (ii) holds,} \\ \xi _{2}q_{3}A_{1}^{\sigma -p+1}\ln A_{1} & \textit{if (iii) holds;} \end{cases}\displaystyle \end{aligned}$$
where \(\xi _{2}= (p(\varsigma +1) )^{-\tau } ((\sigma +1-p) \varsigma D_{3k} )^{\tau }\).
Proof
(i) By the definition of ϕ, Lemma 3.5(iii), and Lemma 3.7(vi), we arrive at
(ii) By Lemma 3.5(iv) and Lemma 3.7(vi), we infer that
□
4 Proof of Theorem 1.1
First, we need the following comparison principle for weak solutions to quasilinear equations (see [33] for a proof).
Lemma 4.1
(Weak comparison principle)
Let \(D \subset \mathbb{R}^{N}\) be a bounded domain, \(G: D \times \mathbb{R} \rightarrow \mathbb{R}\) be non-increasing in the second variable and continuous. Let \(u, w\in W ^{1,p}(D)\) satisfy the respective inequalities
for all non-negative \(\phi \in W_{0}^{1,p}(D)\). Then the inequality \(u \leq w\) on ∂D implies \(u \leq w\) in D.
Next fix \(\varepsilon >0\). For any \(\delta >0\), we define \(\varOmega _{\delta }=\{x\in \varOmega: 0< d(x)<\delta \}\). Since Ω is \(C^{2}\)-smooth, choose \(\delta _{1}\in (0, \delta _{0})\) such that \(d\in C^{2}(\varOmega _{\delta _{1}}) \) and
where, for all \(x \in \varOmega _{\delta _{1}}\), x̄ denotes the unique point of the boundary such that \(d(x) = | x - \bar{x} |\) and \(H(\bar{x}) \) denotes the mean curvature of the boundary at that point.
Let \(0< a_{0} <1 \) and
By the Lagrange mean value theorem, we obtain that there exist \(\lambda _{\pm }\in (0, 1)\) and
such that, for \(x\in \varOmega _{\delta _{1}}\),
Since \(f\in \mathrm{NRV}_{\sigma }\), by Proposition 2.1 we obtain
Define \(r=d(x)\) and
By Lemmas 3.1, 3.6, and 3.7, combining with the choices of \(A_{1}\), \(A_{2}\), \(\xi _{1}\) in Theorem 1.1, we see the following.
Lemma 4.2
Under the hypotheses in Theorem 1.1,
-
(i)
\(\lim_{r\rightarrow 0} I_{1}(r)= \lambda _{1}\), where
$$\begin{aligned} \lambda _{1}= \textstyle\begin{cases} \frac{(p-1)(\sigma +1-p)}{\sigma +1}D_{1k}:=\varTheta _{1} & \textit{if (i) or (ii) holds,} \\ \varTheta _{1}- (p-1)q_{1}\xi _{1} (\frac{p(1-C_{k})}{(\sigma +1) ( \sigma +1+\eta )}+A_{1}^{\sigma -p+1} \ln A_{1} ) & \textit{if (iii) holds;} \end{cases}\displaystyle \end{aligned}$$ -
(ii)
\(\lim_{r\rightarrow 0} I_{2\pm }(r)= (A_{2}\pm \varepsilon )(p-1)(p-1-\sigma ) \frac{p+(\sigma +1-p)C_{k}}{ \sigma +1}\);
-
(iii)
\(\lim_{d(x) \rightarrow 0} I_{3 \pm }(x)=0\);
-
(iv)
\(\lim_{d(x)\rightarrow 0} ( I _{1}(r)+I_{2\pm }(r)+I_{3\pm }(x) )=\pm \varepsilon (p-1)(p-1- \sigma ) \frac{p+(\sigma +1-p)C_{k}}{\sigma +1}\).
Proof of Theorem 1.1
By (\(b_{1}\)), (\(b_{2}\)), Lemma 4.2, and \(K\in C[0, \delta _{0})\) with \(K(0)=0\), we see that there are \(\delta _{1\varepsilon }, \delta _{2\varepsilon }\in (0, \min \{1, \delta _{1}/2 \} )\) (which corresponds to ε) sufficiently small such that
-
(1)
\(0\leq K(r)\leq 2\delta _{1\varepsilon }, r \in (0, 2\delta _{2\varepsilon })\);
-
(2)
\(k^{p}(d(x))(1+(c-a_{0}\varepsilon ) (d(x))^{ \theta })\leq b(x)\leq k^{p}(d(x))(1+(c+a_{0}\varepsilon ) (d(x))^{ \theta }), x\in \varOmega _{2\delta _{1\varepsilon }}\);
-
(3)
\(I_{1}(r)+I_{2+}(r)+I_{3+}(x)\leq 0, \forall (x,r)\in \varOmega _{2\delta _{1\varepsilon }}\times (0, 2 \delta _{2\varepsilon }) \);
-
(4)
\(I_{1}(r)+I_{2-}(r)+I_{3-}(x)\geq 0, \forall (x,r)\in \varOmega _{2\delta _{1\varepsilon }}\times (0, 2 \delta _{2\varepsilon })\).
Now we define
Then, for \(x\in D_{\sigma }^{-} \),
where \(\lambda _{+}\in (0, 1)\) and
Before we prove the theorem, let us make note of the following. Suppose that z is a \(C^{2}\) function on a domain Ω in \(\mathbb{R} ^{N}\), and \(v = \phi (z)\), where ϕ is uniquely determined by (1.7). Direct computation shows that
Then, combining with (4.4), it follows that, for \(x\in D_{ \sigma }^{-}\),
where \(r=d_{1}(x)\), i.e., \(\bar{u}_{\varepsilon }\) is a supersolution of equation (1.1) in \(D_{\sigma }^{-}\).
In a similar way, we can show that
is a subsolution of equation (1.1) in \(D_{\sigma }^{+} \).
Now let u be an arbitrary solution of problem (1.1), and let \(M > 0\) be sufficiently large such that
We observe that \(\bar{u}_{\varepsilon }(x)\rightarrow \infty \) as \(d_{1}(x)\rightarrow \sigma \), and \(u|_{\partial \varOmega }=+\infty >u _{\varepsilon }|_{\partial \varOmega }\). It follows from Lemma 4.1 (the weak comparison principle) that
Hence, by letting \(\sigma \rightarrow 0\), we have, for \(x\in \varOmega _{2\delta _{1\varepsilon }}\),
and
Consequently, by Lemma 3.6(vi)
Thus letting \(\varepsilon \rightarrow 0\), we obtain (1.8). The proof is finished. □
5 Proof of Theorem 1.2
In this section, we prove Theorem 1.2.
Let \(0< a_{0} <1 \) and
By the Lagrange mean value theorem, we obtain that there exist \(\lambda _{\pm }\in (0, 1)\) and
such that, for \(x\in \varOmega _{\delta _{1}}\),
Since \(f\in \mathrm{NRV}_{\sigma }\), by Proposition 2.1 we obtain
Define \(r=d(x)\) and
By Lemmas 3.1, 3.6, and 3.8, combining with the choices of \(A_{1}\), \(A_{3}\) in Theorem 1.2, we see the following.
Lemma 5.1
Under the hypotheses in Theorem 1.2,
-
(i)
\(\lim_{r\rightarrow 0} I_{1}(r)=\frac{(p-1)( \sigma +1-p)}{\sigma +1}D_{2k} \mathrm{Heaviside}(\theta -\varsigma )\);
-
(ii)
\(\lim_{r\rightarrow 0} I_{2\pm }(r)= (A_{3}\pm \varepsilon )(p-1)\chi \);
-
(iii)
\(\lim_{d(x) \rightarrow 0} I_{3 \pm }(x)=0\);
-
(iv)
\(\lim_{r \rightarrow 0} I_{4\pm }(r)=(c \mp a_{0}\varepsilon )(p-1) \frac{C_{k}(\sigma +1-p)+p}{\sigma +1}\mathrm{Heaviside}( \varsigma -\theta )\);
-
(v)
\(\lim_{d(x)\rightarrow 0} ( I _{1}(r)+I_{2\pm }(r)+I_{3\pm }(x)+I_{4\pm }(r) )=\pm \varepsilon (p-1) (\chi -a_{0}\frac{C_{k}(\sigma +1-p)+p}{\sigma +1}\mathrm{Heaviside}( \varsigma -\theta ) )\),
where
Proof of Theorem 1.2
Using a proof similar to that for Theorem 1.1, let
Then, by a direct calculation, we have, for \(x\in D_{\sigma }^{-}\),
where \(r=d_{1}(x)\), i.e., \(\bar{u}_{\varepsilon }\) is a supersolution of equation (1.1) in \(D_{\sigma }^{-}\).
In a similar way, we can show that
is a subsolution of equation (1.1) in \(D_{\sigma }^{+}\).
Using a proof similar to that for Theorem 1.1, we can obtain, for \(x\in \varOmega _{2\delta _{1\varepsilon }}\),
and
Consequently, by Lemma 3.6,
Thus letting \(\varepsilon \rightarrow 0\), we obtain (1.9). The proof is finished. □
6 Proof of Theorem 1.3
In this section, we prove Theorem 1.3.
Let \(0< a_{0} <1 \) and
By the Lagrange mean value theorem, we obtain that there exist \(\lambda _{\pm }\in (0, 1)\) and
such that, for \(x\in \varOmega _{\delta _{1}}\),
Since \(f\in \mathrm{NRV}_{p}\), by Proposition 2.1 we obtain
Define \(r=d(x)\) and
By Lemmas 3.1, 3.6, and 3.9, combining with the choices of \(A_{1}\), \(A_{4}\), \(\xi _{2}\) in Theorem 1.3, we see the following.
Lemma 6.1
Under the hypotheses in Theorem 1.3,
-
(i)
\(\lim_{r\rightarrow 0} I_{1}(r)= \lambda _{2}\), where
$$\begin{aligned} \lambda _{2}= \textstyle\begin{cases} \frac{(p-1) (\sigma +1-p)}{\sigma +1}D_{3k}\mathrm{Heaviside}(\theta -\varsigma ):=\varTheta _{2} & \textit{if (i) or (ii) holds,} \\ \varTheta _{2}-q_{3} \xi _{2}p(p-1) (\frac{1}{(\sigma +1)(\sigma +1+ \eta )} +\frac{\ln \frac{p}{p+1}}{(\sigma +1)(\sigma +1-p)} ) & \textit{if (iii) holds;} \end{cases}\displaystyle \end{aligned}$$ -
(ii)
\(\lim_{r\rightarrow 0} I_{2\pm }(r)=- (A_{4}\pm \varepsilon )\frac{p(p-1)(\sigma +1-p)}{\sigma +1}\);
-
(iii)
\(\lim_{d(x) \rightarrow 0} I_{3 \pm }(x)=0\);
-
(iv)
\(\lim_{r \rightarrow 0} I_{4\pm }(r)=\frac{p(p-1)}{ \sigma +1}(c\mp a_{0}\varepsilon )\mathrm{Heaviside}(\varsigma -\theta )\);
-
(v)
\(\lim_{d(x)\rightarrow 0} ( I _{1}(r)+I_{2\pm }(r)+I_{3\pm }(x)+I_{4\pm }(r) )=\pm \varepsilon \frac{p(p-1)}{\sigma +1} (\sigma +1-p+a_{0}\mathrm{Heaviside}(\varsigma -\theta ) )\).
Proof of Theorem 1.3
Using a proof similar to that for Theorem 1.1, let
Then, by a direct calculation, we have for \(x\in D_{\sigma }^{-}\)
where \(r=d_{1}(x)\), i.e., \(\bar{u}_{\varepsilon }\) is a supersolution of equation (1.1) in \(D_{\sigma }^{-}\).
In a similar way, we can show that
is a subsolution of equation (1.1) in \(D_{\sigma }^{+}\).
Using a proof similar to that for Theorem 1.1, we can obtain, for \(x\in \varOmega _{2\delta _{1\varepsilon }}\),
and
Consequently, by Lemma 3.6 and \(0<\varpi <1\),
Thus letting \(\varepsilon \rightarrow 0\), we obtain (1.9). The proof is finished. □
References
Repovš, D.: Asymptotics for singular solutions of quasilinear elliptic equations with an absorption term. J. Math. Anal. Appl. 395, 78–85 (2012)
Bieberbach, L.: \(\Delta u=e^{u}\) und die automorphen Funktionen. Math. Ann. 77, 173–212 (1916)
Keller, J.B.: On solutions of \(\Delta u=f(u)\). Commun. Pure Appl. Math. 10, 503–510 (1957)
Osserman, R.: On the inequality \(\Delta u\geq f(u)\). Pac. J. Math. 7, 1641–1647 (1957)
Loewner, C., Nirenberg, L.: Partial differential equations invariant under conformal or projective transformations. In: Contributions to Analysis (a Collection of Papers Dedicated to Lipman Bers), pp. 245–272. Academic Press, New York (1974)
Bandle, C., Marcus, M.: Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behavior. J. Anal. Math. 58, 9–24 (1992)
Cîrstea, F., Rǎdulescu, V.: Uniqueness of the blow-up boundary solution of logistic equations with absorbtion. C. R. Acad. Sci. Paris, Ser. I 335, 447–452 (2002)
Cîrstea, F., Rǎdulescu, V.: Nonlinear problems with boundary blow-up: a Karamata regular variation theory approach. Asymptot. Anal. 46, 275–298 (2006)
Cîrstea, F., Rǎdulescu, V.: Blow-up solutions for semilinear elliptic problems. Nonlinear Anal. 48, 541–554 (2002)
Cîrstea, F., Du, Y.: General uniqueness results and variation speed for blow-up solutions of elliptic equations. Proc. Lond. Math. Soc. 91, 459–482 (2005)
Zhang, Z., Ma, Y., Mi, L., Li, X.: Blow-up rates of large solutions for elliptic equations. J. Differ. Equ. 249, 180–199 (2010)
Zhang, Z.: The second expansion of large solutions for semilinear elliptic equations. Nonlinear Anal. 74, 3445–3457 (2011)
Huang, S., Tian, Q.: Second-order estimate for blow-up solutions of elliptic equations. Nonlinear Anal. 74, 2031–2044 (2011)
Huang, S., Tian, Q., Zhang, S., Xi, J.: A second order estimate for blow-up solutions of elliptic equations. Nonlinear Anal. 74, 2342–2350 (2011)
Mi, L., Liu, B.: Second order expansion for blowup solutions of semilinear elliptic problems. Nonlinear Anal. 75, 2591–2613 (2012)
Gladiali, F., Porru, G.: Estimates for explosive solutions to p-Laplace equations. In: Progress in Partial Differential Equations, Pont-á-Mousson, 1997, vol. 1; in: Pitman Res. Notes Math. Ser., vol. 383, Longman, Harlow, 1998, pp. 117–127
Mohammed, A.: Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations. J. Math. Anal. Appl. 298, 621–637 (2004)
Mohammed, A.: Boundary asymptotic and uniqueness of solutions to the p-Laplacian with infinite boundary values. J. Math. Anal. Appl. 325, 480–489 (2007)
Covei, D.: Large and entire large solution for a quasilinear problem. Nonlinear Anal. 70, 1738–1745 (2009)
García-Melián, J., Rossi, J.D., Sabina, J.: Large solutions to the p-Laplacian for large p. Calc. Var. Partial Differ. Equ. 31, 187–204 (2008)
García-Melián, J.: Large solutions for equations involving the p-Laplacian and singular weights. Z. Angew. Math. Phys. 129, 1–4 (2008)
Huang, P., Shieh, M., Wang, S.: Explicit necessary and sufficient conditions for the existence of nonnegative solutions of a p-Laplacian blow-up problem. Taiwan. J. Math. 13, 1077–1093 (2009)
Wei, L., Zhu, J.: The existence and blow-up rate of large solutions of one-dimensional p-Laplacian equations. Nonlinear Anal., Real World Appl. 13, 665–676 (2012)
Zhang, Z.: Large solutions to the Monge-Ampère equations with nonlinear gradient terms: existence and boundary behavior. J. Differ. Equ. 264, 263–296 (2018)
Zhang, Z.: Boundary behavior of large solutions to p-Laplacian elliptic equations. Nonlinear Anal., Real World Appl. 33, 40–57 (2017)
Zhang, X., Du, Y.: Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation. Calc. Var. Partial Differ. Equ. 57(2), 30 (2018)
Zhang, X., Feng, M.: Boundary blow-up solutions to the k-Hessian equation with a weakly superlinear nonlinearity. J. Math. Anal. Appl. 464, 456–472 (2018)
Zhang, X., Feng, M.: Boundary blow-up solutions to the k-Hessian equation with singular weights. Nonlinear Anal. 167, 51–66 (2018)
Mi, L., Qi, Y., Liu, B.: Blow-up rate of the unique solution for a class of one-dimensional p-Laplacian equations. Nonlinear Anal., Real World Appl. 13, 2734–2746 (2012)
Seneta, R.: Regular Varying Functions. Lecture Notes in Math., vol. 508. Springer, Berlin (1976)
Resnick, S.I.: Extreme Values, Regular Variation, and Point Processes. Springer, New York (1987)
Maric, V.: Regular Variation and Differential Equations. Lecture Notes in Math., vol. 1726. Springer, Berlin (2000)
Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points. Commun. Partial Differ. Equ. 8, 773–817 (1983)
Acknowledgements
The author expresses the sincere gratitude to the editors and referees for the careful reading of the original manuscript and useful comments that helped to improve the presentation of the results and accentuate important details.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Funding
This work was partially supported by NSF of China (Grant no. 11771196).
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work. They all read and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Mi, L. Asymptotic boundary estimates for solutions to the p-Laplacian with infinite boundary values. Bound Value Probl 2019, 66 (2019). https://doi.org/10.1186/s13661-019-1179-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1179-z