# Blow-up of solution for quasilinear viscoelastic wave equation with boundary nonlinear damping and source terms

## Abstract

In this paper, we consider the blow-up result of solution for a quasilinear viscoelastic wave equation with strong damping and boundary nonlinear damping. We prove a finite time blow-up result of solution with positive initial energy as well as nonpositive initial energy under suitable conditions on the initial data and positive function g.

## 1 Introduction

In this paper we investigate a blow-up result for the following quasilinear viscoelastic wave equation:

\begin{aligned}& \vert u_{t} \vert ^{\rho }u_{tt} - \Delta u + \int ^{t}_{0} g(t-s) \Delta u(s) \,ds -\Delta u_{t}= 0, \quad \text{in }\varOmega \times (0,\infty ), \end{aligned}
(1.1)
\begin{aligned}& u(x,t)= 0, \quad \text{on }\varGamma _{0} \times [0, \infty ), \end{aligned}
(1.2)
\begin{aligned}& \frac{\partial u}{\partial \nu } +\frac{\partial u_{t}}{\partial \nu }- \int _{0}^{t} g(t-s) \frac{\partial u}{\partial \nu }(s ) \,ds+ f(u _{t})= \vert u \vert ^{p-2}u, \quad \text{on } \varGamma _{1} \times [0, \infty ), \end{aligned}
(1.3)
\begin{aligned}& u(x, 0) = u_{0} (x) , \quad\quad u_{t}(x, 0) = u_{1} (x), \quad \text{in }\varOmega , \end{aligned}
(1.4)

where $$\varOmega \subset {\mathbb{R}}^{n}$$ is a bounded domain with sufficiently smooth boundary $$\partial \varOmega =\varGamma _{0} \cup \varGamma _{1}$$, $$\varGamma _{0} \cap \varGamma _{1} =\emptyset$$, where $$\varGamma _{0}$$ and $$\varGamma _{1}$$ are measurable over ∂Ω, ν is the unit outward normal to ∂Ω, and g is a positive function.

For the case of $$\rho =0$$, problem (1.1)–(1.4) arises in the theory of viscoelasticity and describes the spread of strain waves in a viscoelastic configuration [1,2,3]. Messaoudi  studied the following initial-boundary value problem:

\begin{aligned} \textstyle\begin{cases} u_{tt} -\Delta u +\int _{0}^{t} g(t-s) \Delta u(s) \,ds+a \vert u_{t} \vert ^{m-2} u_{t} =b \vert u \vert ^{p-2} u, \quad \text{in }\varOmega \times (0, \infty ), \\ u(x,t)=0, \quad \text{on } \partial \varOmega \times [0, \infty ), \end{cases}\displaystyle \end{aligned}

where $$m\geq 1$$, $$p>2$$, $$a,b >0$$ are constants and $$g: \mathbb{R}^{+} \to \mathbb{R}^{+}$$ is a nonincreasing function. Under suitable conditions on g, he proved that any weak solution with negative initial energy blows up in finite time if $$p>m$$. He  also extended the blow-up result to certain solutions with positive initial energy. Song and Zhong  considered the viscoelastic wave equation with strong damping:

\begin{aligned} \textstyle\begin{cases} u_{tt} -\Delta u +\int _{0}^{t} g(t-s) \Delta u(s) \,d s -\Delta u_{t} = \vert u \vert ^{p-2} u , \quad \text{in }\varOmega \times [0,T], \\ u(x,t)=0, \quad x\in \partial \varOmega . \end{cases}\displaystyle \end{aligned}

Recently, Park et al.  showed the blow-up result of solution for the following viscoelastic wave equation with nonlinear damping:

\begin{aligned} \textstyle\begin{cases} u_{tt} -\Delta u +\int _{0}^{t} g(t-s)\Delta u(s) \,ds +h(u_{t}) = \vert u \vert ^{p-2}u, \quad \text{in }\varOmega \times (0, \infty ), \\ u(x,t)=0, \quad \text{on }\partial \varOmega \times (0, \infty ). \end{cases}\displaystyle \end{aligned}

They obtained the blow-up of solution with positive initial energy as well as nonpositive initial energy under a weaker assumption on the damping term. Liu and Yu  studied the following viscoelastic wave equation with boundary damping and source terms:

\begin{aligned} \textstyle\begin{cases} u_{tt} -\Delta u +\int _{0}^{t} g(t-s) \Delta u(s) \,ds =0, \quad \text{in }\varOmega \times (0, \infty ), \\ u(x,t)=0, \quad \text{on }\varGamma _{0} \times [0, \infty ), \\ \frac{\partial u}{\partial \nu } -\int _{0}^{t} g(t-s) \frac{\partial u}{\partial \nu } (s) \,ds + \vert u_{t} \vert ^{m-2} u_{t} = \vert u \vert ^{p-2} u , \quad \text{on }\varGamma _{1} \times [0, \infty ). \end{cases}\displaystyle \end{aligned}

They proved the blow-up result of solutions with nonpositive initial energy as well as positive initial energy for both the linear and nonlinear damping cases. In the absence of the viscoelastic term ($$g=0$$), the related problem has been extensively investigated, and results concerning the global existence of solution and nonexistence have been studied (see [9,10,11,12,13,14]).

For the case of $$\rho >0$$, Cavalcanti et al.  considered the following problem:

\begin{aligned} \textstyle\begin{cases} \vert u_{t} \vert ^{\rho }u_{tt} -\Delta u -\Delta u_{tt}+\int _{0}^{t} g(t-s) \Delta u(s) \,ds -\gamma \Delta u_{t} =0, \quad \text{in }\varOmega \times (0, \infty ), \\ u(x,t) =0, \quad \text{on }\partial \varOmega \times (0, \infty ). \end{cases}\displaystyle \end{aligned}

They showed a global existence result for $$\gamma \geq 0$$ and an exponential decay result for $$\gamma >0$$. In the case of $$\gamma =0$$, Liu  proved the nonlinear viscoelastic problem:

\begin{aligned} \textstyle\begin{cases} \vert u_{t} \vert ^{\rho }u_{tt} -\Delta u -\Delta u_{tt}+\int _{0}^{t} g(t-s) \Delta u(s) \,ds = b \vert u \vert ^{p-2} u, \quad \text{in }\varOmega \times (0, \infty ), \\ u(x,t) =0, \quad \text{on }\partial \varOmega \times (0, \infty ). \end{cases}\displaystyle \end{aligned}

He discussed the general decay result for the global solution and the finite time blow-up of solution. In the absence of the dispersion term $$-\Delta u_{tt}$$, Song  investigated the nonexistence of global solutions with positive initial energy for the viscoelastic wave equation with nonlinear damping:

\begin{aligned} \textstyle\begin{cases} \vert u_{t} \vert ^{\rho } u_{tt} -\Delta u +\int _{0}^{t} g(t-s) \Delta u(s) \,ds + \vert u_{t} \vert ^{m-2} u_{t} = \vert u \vert ^{p-2} u, \quad \text{in }\varOmega \times [0,T], \\ u(x,t) =0, \quad x \in \partial \varOmega . \end{cases}\displaystyle \end{aligned}

Recently, Hao and Wei  established the blow-up result of solution with negative initial energy and some positive initial energy for the quasilinear viscoelastic wave equation with strong damping:

\begin{aligned} \textstyle\begin{cases} \vert u_{t} \vert ^{\rho }u_{tt} -\Delta u +\int _{0}^{t} g(t-s) \Delta u(s) \,ds -\Delta u_{t} = \vert u \vert ^{p-2} u , \quad \text{in }\varOmega \times (0, \infty ), \\ u(x,t)=0, \quad \text{on }\partial \varOmega \times (0, \infty ) . \end{cases}\displaystyle \end{aligned}

To our knowledge, there are few blow-up results of solution for quasilinear viscoelastic wave equation with boundary nonlinear damping and source terms. Motivated by the previous work, we study the blow-up of solution with nonpositive initial energy as well as positive initial energy for the quasilinear viscoelastic wave equation with strong damping and boundary weak damping.

This paper is organized as follows. In Sect. 2, we recall the notation, hypotheses, and some necessary preliminaries. In Sect. 3, we prove the blow-up of solution for (1.1)–(1.4).

## 2 Preliminaries

In this section we give notations, hypotheses, and some lemmas needed in our main result.

We impose the assumptions for problem (1.1)–(1.4):

$$(H_{1})$$ :

Hypotheses on g

The kernel $$g : [0, \infty ) \to [0, \infty )$$ is a nonincreasing and differentiable function satisfying

$$1- \int ^{\infty }_{0} g(s)\,ds : = l >0 .$$
(2.1)
$$(H_{2})$$ :

Hypotheses on f

Let $$f : {\mathbb{R}} \to {\mathbb{R}}$$ be a nondecreasing $$C^{1}$$ function with $$f(0)=0$$. Assume that there exists a strictly increasing and odd function $$\xi : [-1, 1] \to {\mathbb{R}}$$ such that

\begin{aligned}& \bigl\vert \xi (s) \bigr\vert \leq \bigl\vert f(s) \bigr\vert \leq \bigl\vert \xi ^{-1} (s) \bigr\vert \quad \text{for } \vert s \vert \leq 1 , \end{aligned}
(2.2)
\begin{aligned}& a_{1} \vert s \vert ^{m-1} \leq \bigl\vert f(s) \bigr\vert \leq a_{2} \vert s \vert ^{m-1} \quad \text{for } \vert s \vert >1 , \end{aligned}
(2.3)

where $$a_{1}$$, $$a_{2}$$ are positive constants and $$\xi ^{-1}$$ represents the inverse function of ξ.

$$(H_{3})$$ :

Hypotheses on p, m, and ρ

\begin{aligned}& 2< m , 2< p \quad \text{if } n=1,2, \quad\quad 2 < m, p \leq \frac{2(n-1)}{n-2} \quad \text{if } n \geq 3, \end{aligned}
(2.4)
\begin{aligned}& 0< \rho \quad \text{if } n=1,2, \quad\quad 0< \rho \leq \frac{2}{n-2} \quad \text{if } n\geq 3 . \end{aligned}
(2.5)

As usual, $$(\cdot , \cdot )$$ and $$\Vert \cdot \Vert _{p}$$ denote the inner product in the space $$L^{2}(\varOmega )$$ and the norm of the space $$L^{p}(\varOmega )$$, respectively. For brevity, we denote $$\Vert \cdot \Vert _{2}$$ by $$\Vert \cdot \Vert$$. We introduce the notations:

$$(u, v)_{\varGamma _{1}}= \int _{\varGamma _{1}} u(x) v(x) \,d\varGamma , \quad\quad \Vert \cdot \Vert _{q, \varGamma _{1}} = \Vert \cdot \Vert _{L^{q} (\varGamma _{1})}, \quad 1\leq q\leq \infty ,$$

the Hilbert space

$$V =\bigl\{ u\in H^{1} (\varOmega ): u\vert _{\varGamma _{0}} =0\bigr\}$$

($$u\vert _{\varGamma _{0}}$$ is the trace sense), endowed the equivalent norm $$\Vert \nabla u\Vert$$. We recall the trace Sobolev embedding

$$V\hookrightarrow L^{q} (\varGamma _{1}) \quad \text{for } 2\leq q < r=\frac{2(n-1)}{(n-2)}$$

and the embedding inequality

\begin{aligned} \Vert v \Vert _{q,\varGamma _{1}} \leq B \Vert \nabla v \Vert \quad \text{for } v \in V, \end{aligned}
(2.6)

where $$B >0$$ is the optimal constant. We define the energy associated with problem (1.1)–(1.4) by

\begin{aligned}[b] E(t) ={}& \frac{1}{\rho +2} \bigl\Vert u_{t}(t) \bigr\Vert _{\rho +2}^{\rho +2} + \frac{1}{2} \biggl( 1 - \int ^{t}_{0} g(s) \,ds \biggr) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ &{}+ \frac{1}{2} (g \circ \nabla u) (t) - \frac{1}{p} \bigl\Vert u(t) \bigr\Vert ^{p}_{p, \varGamma _{1}} , \end{aligned}
(2.7)

where $$(g \circ \nabla u)(t) = \int ^{t}_{0} g(t-s) \Vert \nabla u(t) - \nabla u(s) \Vert ^{2} \,ds$$. It is easy to find that

$$E ' (t) = - \bigl(f\bigl( u_{t} (t) \bigr), u_{t} (t)\bigr)_{\varGamma _{1}} + \frac{1}{2} \bigl(g' \circ \nabla u\bigr) (t) - \frac{g(t)}{2} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} - \Vert \nabla u _{t} \Vert ^{2} \leq 0 .$$
(2.8)

Therefore, E is a nonincreasing function.

Next, we define the functionals:

\begin{aligned}& I(t) = \biggl( 1 - \int ^{t}_{0} g(s) \,ds \biggr) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} + (g \circ \nabla u) (t) - \bigl\Vert u(t) \bigr\Vert ^{p}_{p, \varGamma _{1}} , \\& H(t) = \frac{1}{2} \biggl[ \biggl( 1 - \int ^{t}_{0} g(s) \,ds \biggr) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} + (g \circ \nabla u) (t) \biggr]- \frac{1}{p} \bigl\Vert u(t) \bigr\Vert ^{p} _{p, \varGamma _{1}} . \end{aligned}

Similar as in , for $$t\geq 0$$, we define

$$h(t)={\inf_{u\in V, u\neq 0 }\sup_{\lambda \geq 0}H(\lambda u)} .$$

Then, we have

$$0< h_{0} \leq h(t) \leq \sup_{\lambda \geq 0}H(\lambda u) \quad \text{for } t\geq 0,$$

where

\begin{aligned}& h_{0} = \frac{p-2}{2p} \biggl( \frac{l}{B^{2}} \biggr)^{p/(p-2)}, \\& \sup_{\lambda \geq 0}H(\lambda u) = \frac{p-2}{2p} \biggl( \frac{( 1 - \int ^{t}_{0} g(s) \,ds ) \Vert \nabla u(t) \Vert ^{2} + (g \circ \nabla u)(t)}{ \Vert u(t) \Vert _{p, \varGamma _{1}}^{2} } \biggr)^{p/(p-2)} . \end{aligned}

### Lemma 2.1

(Lemma 4.1 of )

Suppose that $$(H_{1})$$$$(H_{3})$$ hold. For any fixed number $$\delta <1$$, assume that $$(u_{0}, u_{1}) \in V\times L^{2}(\varOmega )$$ and satisfy

\begin{aligned} I(0)< 0, \quad\quad E(0) < \delta h_{0} . \end{aligned}
(2.9)

Assume further that g satisfies

\begin{aligned} \int ^{\infty }_{0} g(s) \,ds < \frac{ p-2 }{ p-2+\frac{1}{[(1- \hat{\delta })^{2} (p-2) +2(1-\hat{\delta })] } }, \end{aligned}
(2.10)

where $$\hat{\delta }=\max \{ 0, \delta \}$$. Then we have $$I(t)<0$$ for all $$t\in [0, T)$$, and

\begin{aligned} \begin{aligned}[b] h_{0} &< \frac{p-2}{2p} \biggl[ \biggl( 1 - \int ^{t}_{0} g(s) \,ds \biggr) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} + (g \circ \nabla u) (t) \biggr] \\&< \frac{p-2}{2p} \bigl\Vert u(t) \bigr\Vert ^{p} _{p, \varGamma _{1}} , \quad t \in [0, T).\end{aligned} \end{aligned}
(2.11)

Throughout this paper, we define

\begin{aligned} K(t) = \hat{ \delta } h_{0} - E(t) , \end{aligned}
(2.12)

which, from (2.8), is an increasing function. Using (2.7), (2.9), and (2.11), we see that

\begin{aligned}& 0 < K(0) \leq K(t) \leq \hat{ \delta } h_{0} +\frac{1}{p} \bigl\Vert u(t) \bigr\Vert ^{p} _{p, \varGamma _{1}} \leq p_{0} \bigl\Vert u(t) \bigr\Vert ^{p}_{p, \varGamma _{1}} , \quad t\in [0, T), \end{aligned}
(2.13)

where $$p_{0}=\frac{ (p-2)\hat{ \delta } }{2p} + \frac{1}{p}$$.

Moreover, similar as in , we can show the following lemma which is needed later.

### Lemma 2.2

Let the conditions of Lemma 2.1 hold. Then the solution u of problem (1.1)(1.4) satisfies

\begin{aligned}& \bigl\Vert u(t) \bigr\Vert ^{s}_{p, \varGamma _{1}} \leq C_{0} \bigl\Vert u(t) \bigr\Vert ^{p}_{p,\varGamma _{1}} , \quad t\in [0,T), \textit{ for any } 2\leq s \leq p, \end{aligned}
(2.14)

where $$C_{0}$$ is a positive constant.

### Proof

If $$\Vert u(t)\Vert _{p,\varGamma _{1}} \geq 1$$, then $$\Vert u(t)\Vert _{p,\varGamma _{1}} ^{s} \leq \Vert u(t)\Vert _{p, \varGamma _{1}}^{p}$$.

If $$\Vert u(t)\Vert _{p,\varGamma _{1}} \leq 1$$, then

$$\bigl\Vert u(t) \bigr\Vert _{p,\varGamma _{1}}^{s} \leq \bigl\Vert u(t) \bigr\Vert _{p, \varGamma _{1}}^{2} \leq B ^{2} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} ,$$

where we used (2.6). Then there exists a positive constant $$C_{1}=\max \{1, {B^{2}}\}$$ such that

\begin{aligned} \bigl\Vert u(t) \bigr\Vert ^{s}_{p, \varGamma _{1}} \leq C_{1} \bigl( \bigl\Vert u(t) \bigr\Vert ^{p}_{p, \varGamma _{1}} + \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \bigr) \quad \text{for any } 2 \leq s \leq p. \end{aligned}
(2.15)

By (2.1), (2.7), (2.12), and (2.13), we get

\begin{aligned} \frac{l}{2} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} &\leq \frac{1}{2} \biggl( 1- \int _{0} ^{t} g(s) \,ds \biggr) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ &\leq \hat{\delta } h_{0} -K(t)- \frac{1}{\rho +2} \bigl\Vert u_{t}(t) \bigr\Vert _{ \rho +2}^{\rho +2} - \frac{1}{2} (g \circ \nabla u) (t) + \frac{1}{p} \bigl\Vert u(t) \bigr\Vert ^{p} _{p, \varGamma _{1}} \\ &\leq \hat{\delta } h_{0} +\frac{1}{p} \bigl\Vert u(t) \bigr\Vert _{p,\varGamma _{1}}^{p}. \end{aligned}
(2.16)

Using (2.13), (2.15), and (2.16), we have the desired result (2.14). □

We state the well-posedness which can be established by the arguments of [5, 19,20,21].

### Theorem 2.1

Assume $$(H_{1})$$$$(H_{3})$$ hold. Then, for every $$(u_{0} , u_{1}) \in V\times L^{2}(\varOmega )$$, there exists a unique local solution in the class

$$u \in C\bigl([0, T);V \bigr), \quad\quad u_{t} \in C\bigl([0, T); L^{2} (\varOmega ) \bigr) \cap L^{m} \bigl( \varGamma _{1}\times [0, T) \bigr) \quad \textit{for some } T >0.$$

## 3 A blow-up result

To show the blow-up result for solutions with nonpositive initial energy as well as positive initial energy, we use the similar method of . Our main result reads as follows.

### Theorem 3.1

Let $$(H_{1})$$$$(H_{3})$$ hold and $$p> {m, }$$ and the conditions of Lemma 2.1 hold. Moreover, we assume

\begin{aligned} \xi ^{-1}(1) < \biggl( \frac{ \theta \hat{\delta } h_{0} p \eta }{(p-1) \vert \varGamma _{1} \vert } \biggr)^{ \frac{p-1}{p} } , \end{aligned}
(3.1)

where $$0 < \theta < \min \{2 c_{1} , 2c_{2} \}$$, $$0<\eta < \theta ^{\frac{1}{p-1}}$$, and $$c_{1}$$ and $$c_{2}$$ will be specified later. Then the solution of problem (1.1)(1.4) blows up in finite time.

### Proof

To show this theorem, we use the idea given in [4, 5]. We assume that there exists some positive constant M such that, for $$t>0$$, the solution $$u(t)$$ of (1.1)–(1.4) satisfies

$$\bigl\Vert u_{t}(t) \bigr\Vert _{\rho +2}^{\rho +2} + \bigl\Vert \nabla u(t) \bigr\Vert ^{2} + \bigl\Vert u(t) \bigr\Vert _{p, \varGamma _{1}}^{p} \leq M.$$
(3.2)

Let us consider the following function:

\begin{aligned} L(t) = K^{1-\sigma } (t) + \frac{\varepsilon }{\rho +1} \int _{\varOmega } \bigl\vert u_{t}(t) \bigr\vert ^{\rho }u_{t}(t) u(t) \,dx +\frac{\varepsilon }{2} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} , \quad \varepsilon >0, \end{aligned}
(3.3)

where

\begin{aligned} 0 < \sigma < \min \biggl\{ 1,\frac{1}{\rho +2}, \frac{p-m}{p(m-1)} \biggr\} . \end{aligned}
(3.4)

From (1.1)–(1.3), we obtain

\begin{aligned} L'(t) &= (1- \sigma ) K^{-\sigma } (t) K' (t) + \frac{\varepsilon }{ \rho +1} \bigl\Vert u_{t} (t) \bigr\Vert _{\rho +2}^{\rho +2} - \varepsilon \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ &\quad{} + \varepsilon \int ^{t}_{0} g(t-s) \bigl(\nabla u(s) , \nabla u(t) \bigr) \,ds - \varepsilon \bigl(f\bigl(u_{t} (t)\bigr), u(t) \bigr)_{\varGamma _{1}} + \varepsilon \bigl\Vert u(t) \bigr\Vert ^{p} _{p, \varGamma _{1}} . \end{aligned}
(3.5)

Using Young’s inequality, we get

\begin{aligned} &\int ^{t}_{0} g(t-s) \bigl(\nabla u(s) , \nabla u(t) \bigr) \,ds \\ &\quad = \int ^{t}_{0} g(t-s) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \,ds + \int ^{t}_{0} g(t-s) \bigl(\nabla u(s) - \nabla u(t) , \nabla u(t)\bigr) \,ds \\ &\quad \geq \biggl(1- \frac{1}{4\tau } \biggr) \int ^{t}_{0} g(s) \,ds \bigl\Vert \nabla u(t) \bigr\Vert ^{2} - \tau (g\circ \nabla u) (t) \end{aligned}
(3.6)

for some number $$\tau >0$$. By (3.5) and (3.6), we have

\begin{aligned} L'(t) &\geq (1- \sigma ) K^{-\sigma } (t) K' (t) + \frac{\varepsilon }{\rho +1} \bigl\Vert u_{t} (t) \bigr\Vert _{\rho +2}^{\rho +2} - \varepsilon \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ &\quad{} + \varepsilon \biggl( 1- \frac{1}{4 \tau } \biggr) \int ^{t}_{0} g(s) \,ds \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ &\quad {}- \varepsilon \tau (g\circ \nabla u) (t) - \varepsilon \bigl(f \bigl(u_{t} (t)\bigr), u(t)\bigr)_{ \varGamma _{1}} + \varepsilon \bigl\Vert u(t) \bigr\Vert ^{p}_{p,\varGamma _{1}} . \end{aligned}
(3.7)

Applying (2.7) and (2.12) to the last term $$\Vert u(t)\Vert ^{p} _{p,\varGamma _{1}}$$ in the right-hand side of (3.7), we find that

\begin{aligned} L'(t) \geq &(1- \sigma ) K^{-\sigma } (t) K' (t) + \frac{\varepsilon }{\rho +1} \bigl\Vert u_{t} (t) \bigr\Vert _{\rho +2}^{\rho +2} - \varepsilon \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ & {} + \varepsilon \biggl( 1- \frac{1}{4\tau } \biggr) \int ^{t}_{0} g(s) \,ds \bigl\Vert \nabla u(t) \bigr\Vert ^{2} - \varepsilon \tau (g\circ \nabla u) (t) - \varepsilon \bigl(f\bigl(u_{t} (t)\bigr), u(t)\bigr)_{\varGamma _{1}} \\ & {} + \varepsilon \biggl(p K(t) + \frac{p}{\rho +2} \bigl\Vert u_{t}(t) \bigr\Vert _{\rho +2} ^{\rho +2} + \frac{p}{2} \biggl( 1 - \int ^{t}_{0} g(s) \,ds \biggr) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ & {} + \frac{p}{2} (g \circ \nabla u) (t) -p \hat{\delta } h_{0} \biggr) \\ =& (1- \sigma ) K^{-\sigma } (t) K' (t) + \varepsilon \biggl( \frac{1}{ \rho +1} + \frac{p}{\rho +2} \biggr) \bigl\Vert u_{t} (t) \bigr\Vert _{\rho +2}^{\rho +2} \\ & {}+ \varepsilon \biggl( \frac{p}{2} - \tau \biggr) (g \circ \nabla u) (t) + \varepsilon p K(t) - \varepsilon \bigl(f\bigl(u_{t} (t)\bigr), u(t) \bigr)_{\varGamma _{1}} \\ & {}+ \varepsilon \biggl\{ \biggl( \frac{p}{2} -1 \biggr) - \biggl( \frac{p}{2} -1 + \frac{1}{4\tau } \biggr) \int ^{t}_{0} g(s) \,ds \biggr\} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} -\varepsilon p \hat{\delta }h_{0} . \end{aligned}

From (2.11), we see that

\begin{aligned} L'(t) \geq& (1- \sigma ) K^{-\sigma } (t) K' (t) + \varepsilon \biggl( \frac{1}{\rho +1} + \frac{p}{\rho +2} \biggr) \bigl\Vert u_{t} (t) \bigr\Vert _{ \rho +2}^{\rho +2} \\ & {} + \varepsilon \biggl[ (1- \tau )+(1-\hat{\delta }) \biggl( \frac{p}{2}-1 \biggr) \biggr] (g \circ \nabla u) (t) + \varepsilon p K(t) - \varepsilon \bigl(f\bigl(u_{t} (t)\bigr), u(t)\bigr)_{\varGamma _{1}} \\ & {} + \varepsilon \biggl[ (1-\hat{\delta }) \biggl( \frac{p}{2} -1 \biggr) - \biggl\{ (1-\hat{\delta }) \biggl( \frac{p}{2} -1 \biggr) + \frac{1}{4\tau } \biggr\} \int ^{t}_{0} g(s) \,ds \biggr] \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \end{aligned}
(3.8)

for some τ with $$0<\tau <1+ (1-\hat{\delta }) (\frac{p}{2}-1 )$$. Using (2.10), (3.8) can be rewritten by

\begin{aligned} \begin{aligned}[b] L'(t) &\geq (1- \sigma ) K^{-\sigma } (t) K' (t) + \varepsilon \biggl(\frac{ 1}{\rho +1} + \frac{p}{\rho +2} \biggr) \bigl\Vert u_{t} (t) \bigr\Vert _{ \rho +2}^{\rho +2} \\ &\quad {} + \varepsilon c_{1} (g \circ \nabla u) (t) + \varepsilon c_{2} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} + \varepsilon p K(t) - \varepsilon \bigl(f\bigl(u_{t} (t)\bigr), u(t) \bigr)_{ \varGamma _{1}} , \end{aligned} \end{aligned}
(3.9)

where

$$c_{1} =(1-\tau )+ (1-\hat{\delta }) \biggl(\frac{p}{2}-1\biggr) >0,$$

and

$$c_{2} = (1-\hat{\delta }) \biggl( \frac{p}{2} -1 \biggr) - \biggl\{ (1- \hat{\delta }) \biggl( \frac{p}{2} -1 \biggr) + \frac{1}{4\tau } \biggr\} \int ^{t}_{0} g(s) \,ds >0 .$$

Let us put $$\varGamma _{11} = \{ x\in \varGamma _{1} : \vert u_{t} (x,t)\vert \leq 1 \}$$ and $$\varGamma _{12} = \{ x\in \varGamma _{1} : \vert u_{t} (x,t)\vert > 1 \}$$. Then we obtain the inequalities which are given in :

\begin{aligned} \int _{\varGamma _{11}} f\bigl(u_{t} (x, t)\bigr) u(x,t) \,dx \leq \frac{\eta ^{p-1} }{p} \bigl\Vert u(t) \bigr\Vert ^{p}_{p, \varGamma _{1}} + \frac{(p-1) \vert \varGamma _{1} \vert }{p \eta } \bigl(\xi ^{-1}(1) \bigr)^{\frac{p}{p-1}} , \quad \eta >0 , \end{aligned}

and

\begin{aligned} \int _{\varGamma _{12}} f\bigl(u_{t} (x, t)\bigr) u(x,t) \,dx \leq \frac{\mu ^{m}}{m} \bigl\Vert u(t) \bigr\Vert ^{m} _{p, \varGamma _{1}} +\frac{(m-1) }{m \mu ^{\frac{m}{m-1}}} K'(t) , \quad \mu >0 . \end{aligned}

Inserting these into (3.9), we obtain

\begin{aligned} L'(t) \geq & \biggl\{ (1- \sigma ) K^{-\sigma } (t) - \frac{ \varepsilon (m-1) }{m \mu ^{\frac{m}{m-1}}} \biggr\} K' (t) \\ & {}+ \varepsilon \biggl( \frac{1}{ \rho +1} + \frac{p}{\rho +2} \biggr) \bigl\Vert u_{t} (t) \bigr\Vert _{\rho +2}^{\rho +2} + \varepsilon c_{1} (g \circ \nabla u) (t) \\ & {}+ \varepsilon c_{2} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} +\varepsilon p K(t) - \frac{ \varepsilon \eta ^{p-1}}{p} \bigl\Vert u(t) \bigr\Vert ^{p}_{p, \varGamma _{1}} \\ & {}-\frac{\varepsilon (p-1) \vert \varGamma _{1} \vert }{p \eta } \bigl(\xi ^{-1}(1) \bigr)^{\frac{p}{p-1}} - \frac{\varepsilon \mu ^{m}}{m} \bigl\Vert u(t) \bigr\Vert ^{m}_{p, \varGamma _{1}} . \end{aligned}
(3.10)

Adding and subtracting $$\varepsilon \theta K(t)$$ in the right-hand side of (3.10) and applying (2.7) and (2.12), we get

\begin{aligned} L'(t) \geq & \biggl\{ (1- \sigma ) K^{-\sigma } (t) - \frac{ \varepsilon (m-1) }{m \mu ^{\frac{m}{m-1}}} \biggr\} K' (t) + \varepsilon \biggl( \frac{1}{ \rho +1}+ \frac{p}{\rho +2} - \frac{\theta }{\rho +2} \biggr) \bigl\Vert u_{t} (t) \bigr\Vert _{ \rho +2}^{\rho +2} \\ & {}+ \varepsilon \biggl( c_{1} - \frac{\theta }{2} \biggr) (g \circ \nabla u) (t) + \varepsilon \biggl\{ c_{2} - \frac{ \theta }{2} \biggl( 1 - \int ^{t}_{0} g(s) \,ds \biggr) \biggr\} \bigl\Vert \nabla u(t) \bigr\Vert ^{2} +\varepsilon ( p - \theta ) K(t) \\ & {}+ \varepsilon \biggl( \frac{ \theta }{p} - \frac{\eta ^{p-1}}{p} \biggr) \bigl\Vert u(t) \bigr\Vert ^{p}_{p, \varGamma _{1}} - \frac{\varepsilon \mu ^{m}}{m} \bigl\Vert u(t) \bigr\Vert ^{m} _{p, \varGamma _{1}} +\varepsilon \theta \hat{\delta } h_{0} \\ & {}- \frac{ \varepsilon (p-1) \vert \varGamma _{1} \vert }{p \eta } \bigl(\xi ^{-1}(1) \bigr)^{ \frac{p}{p-1}} . \end{aligned}
(3.11)

Now, we choose $$\mu = ( k K^{-\sigma }(t) )^{- \frac{m-1}{m}}$$, $$k>0$$ will be specified later. Using (2.13), (2.14), and (3.4), the seventh term in the right-hand side of (3.11) is estimated as

\begin{aligned} - \frac{\varepsilon \mu ^{m}}{m} \bigl\Vert u(t) \bigr\Vert ^{m}_{p, \varGamma _{1}} =& - \frac{ \varepsilon k^{1-m}}{m} K^{\sigma (m-1)}(t) \bigl\Vert u(t) \bigr\Vert ^{m}_{p, \varGamma _{1}} \\ \geq &- \frac{\varepsilon k^{1-m}}{m} p_{0}^{\sigma (m-1)} \bigl\Vert u(t) \bigr\Vert _{p, \varGamma _{1}}^{\sigma p(m-1) +m} \geq - {\varepsilon C_{2} k^{1-m}} \bigl\Vert u(t) \bigr\Vert _{p, \varGamma _{1}}^{p} , \end{aligned}
(3.12)

where $$C_{2}= \frac{C_{0}p_{0}^{\sigma (m-1)}}{m}$$. From (3.11) and (3.12), we obtain

\begin{aligned} L'(t) \geq & \biggl\{ (1- \sigma ) - \frac{ \varepsilon k (m-1) }{m} \biggr\} K^{-\sigma } (t) K' (t) + \varepsilon \biggl( \frac{1}{\rho +1}+ \frac{p}{\rho +2} - \frac{\theta }{\rho +2} \biggr) \bigl\Vert u_{t} (t) \bigr\Vert _{ \rho +2}^{\rho +2} \\ &{} + \varepsilon \biggl( c_{1} - \frac{\theta }{2} \biggr) (g \circ \nabla u) (t)+ \varepsilon \biggl( c_{2} - \frac{ \theta }{2} \biggr) \bigl\Vert \nabla u(t) \bigr\Vert ^{2} \\ & {}+ \varepsilon \biggl( \frac{ \theta }{p} - \frac{ \eta ^{p-1}}{p} -C_{2} k^{1-m} \biggr) \bigl\Vert u(t) \bigr\Vert ^{p}_{p,\varGamma _{1}} \\ &{} + \varepsilon ( p - \theta ) K(t) +\varepsilon \theta \hat{\delta } h_{0} - \frac{ \varepsilon (p-1) \vert \varGamma _{1} \vert }{p \eta } \bigl(\xi ^{-1}(1) \bigr)^{\frac{p}{p-1}}. \end{aligned}
(3.13)

We take θ such that

$$0 < \theta < \min \{ 2c_{1}, 2c_{2} \},$$
(3.14)

then we can choose $$\eta >0$$ sufficiently small so that $${ \theta } - {\eta ^{p-1}} >0$$. And then, we select $$k>0$$ large enough such that

$$\frac{ \theta }{p} - \frac{\eta ^{p-1}}{p} - C_{2} k^{1-m} >0 ,$$

and then take $$\varepsilon >0$$ with

$$(1- \sigma ) - \frac{ \varepsilon k (m-1) }{m} >0 , \quad\quad K^{1-\sigma }(0)+ \frac{ \varepsilon }{\rho +1} \int _{\varOmega } \vert u_{1} \vert ^{\rho }u _{1} u_{0} \,dx+\frac{ \varepsilon }{2} \Vert \nabla u_{0} \Vert ^{2} >0.$$

Condition (3.1) gives that

\begin{aligned} \theta \hat{\delta } h_{0} - \frac{ (p-1) \vert \varGamma _{1} \vert }{p \eta } \bigl( \xi ^{-1}(1) \bigr)^{\frac{p}{p-1}} >0 . \end{aligned}
(3.15)

Using (3.13)–(3.15) and $$2c_{1} < p$$, we have

\begin{aligned} L'(t) \geq C \bigl( \bigl\Vert u_{t} (t) \bigr\Vert _{\rho +2}^{\rho +2} + \bigl\Vert \nabla u(t) \bigr\Vert ^{2}+ \bigl\Vert u(t) \bigr\Vert ^{p}_{p,\varGamma _{1}} + K(t) \bigr), \end{aligned}
(3.16)

here and in the sequel C denotes a generic positive constant. By arguments similar to those in , we get

\begin{aligned} \bigl(L(t)\bigr)^{\frac{1}{1-\sigma }} \leq C \bigl( K(t) + \bigl\Vert u_{t} (t) \bigr\Vert _{ \rho +2}^{\rho +2} + \bigl\Vert \nabla u(t) \bigr\Vert ^{2}+ \bigl\Vert u(t) \bigr\Vert ^{p}_{p,\varGamma _{1}} \bigr) . \end{aligned}
(3.17)

Indeed, using Young’s inequality and

\begin{aligned} \biggl\vert \int _{\varOmega } \bigl\vert u_{t}(t) \bigr\vert ^{\rho }u_{t} (t)u(t) \,dx \biggr\vert \leq \bigl\Vert u _{t}(t) \bigr\Vert _{\rho +2}^{\rho +1} \bigl\Vert u(t) \bigr\Vert _{\rho +2} , \end{aligned}

we obtain

\begin{aligned} \biggl( \biggl\vert \int _{\varOmega } \bigl\vert u_{t}(t) \bigr\vert ^{\rho }u_{t} (t)u(t) \,dx \biggr\vert \biggr)^{\frac{1}{1-\sigma }} \leq C \bigl( \bigl\Vert u_{t}(t) \bigr\Vert _{\rho +2}^{\frac{ \rho +1}{1-\sigma }\gamma }+ \bigl\Vert u(t) \bigr\Vert _{\rho +2}^{\frac{1}{1-\sigma } \beta } \bigr), \end{aligned}
(3.18)

where $$\frac{1}{\gamma }+\frac{1}{\beta }=1$$. By using (3.4) and taking $$\gamma =\frac{(1-\sigma )(\rho +2)}{\rho +1}>1$$, we get $$\frac{ \beta }{1-\sigma } = \frac{\rho +2}{(1-\sigma )(\rho +2)-(\rho +1)}$$. Since K is an increasing function, from (2.13) and (3.2), we have

\begin{aligned} \bigl\Vert u(t) \bigr\Vert _{\rho +2}^{\frac{\beta }{1-\sigma }} \leq B_{1}^{\frac{ \beta }{1-\sigma }} \bigl\Vert \nabla u(t) \bigr\Vert ^{\frac{\beta }{1-\sigma }} \leq \frac{(B _{1}^{2}M)^{\frac{\beta }{2(1-\sigma )}}}{K(0)}K(t) \leq \frac{p_{0}(B _{1}^{2}M)^{\frac{\beta }{2(1-\sigma )}}}{K(0)} \bigl\Vert u(t) \bigr\Vert ^{p}_{p,\varGamma _{1}}, \end{aligned}
(3.19)

where $$B_{1}$$ is the embedding constant. Similarly, from (2.13) and (3.2), we obtain

\begin{aligned} \bigl\Vert \nabla u(t) \bigr\Vert ^{\frac{2}{1-\sigma }} \leq M^{\frac{1}{1-\sigma }} \leq \frac{p_{0} M^{\frac{1}{1-\sigma }}}{K(0)} \bigl\Vert u(t) \bigr\Vert ^{p}_{p,\varGamma _{1}}. \end{aligned}
(3.20)

From (3.3), (3.18)–(3.20), we find that (3.17) holds. Combining (3.16) and (3.17), we conclude that

\begin{aligned} L'(t) \geq C \bigl(L(t)\bigr)^{\frac{1}{1-\sigma }} \quad \text{for } t \geq 0 . \end{aligned}

Consequently, $$L(t)$$ blows up in time $$T^{*} \leq \frac{1-\sigma }{c \sigma (L(0))^{\frac{\sigma }{1-\sigma }}}$$. Furthermore, we have

$$\lim_{t\to T^{*-}} \bigl( \bigl\Vert u_{t}(t) \bigr\Vert _{\rho +2}^{\rho +2} + \bigl\Vert \nabla u(t) \bigr\Vert ^{2} + \bigl\Vert u(t) \bigr\Vert _{p,\varGamma _{1}}^{p} \bigr)=\infty .$$

This leads to a contradiction with (3.2). Thus the solution of (1.1)–(1.4) blows up in finite time. □

## 4 Conclusions

In this paper, we study the blow-up of solutions for the quasilinear viscoelastic wave equation with strong damping and boundary nonlinear damping. In recent years, there has been published much work concerning the wave equation with nonlinear boundary damping. But as far as we know, there was no blow-up result of solutions to the viscoelastic wave equation with nonlinear boundary damping and source terms. Therefore, we prove a finite time blow-up result of solution with positive initial energy as well as nonpositive initial energy. Moreover, we generalize the earlier result under a weaker assumption on the damping term.

## References

1. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Prates Filho, J.S., Soriano, J.A.: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ. Integral Equ. 14(1), 85–116 (2001)

2. Lu, L.Q., Li, S.J., Chai, S.G.: On a viscoelastic equation with nonlinear boundary damping and source terms: global existence and decay of the solution. Nonlinear Anal., Real World Appl. 12(1), 295–303 (2011)

3. Renardy, M., Hrusa, W.J., Nohel, J.A.: Mathematical Problems in Viscoelasticity. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 35. Wiley, New York (1987)

4. Messaoudi, S.A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260, 58–66 (2003)

5. Messaoudi, S.A.: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902–915 (2006)

6. Song, H., Zhong, C.: Blow-up of solutions of a nonlinear viscoelastic wave equation. Nonlinear Anal., Real World Appl. 11, 3877–3883 (2010)

7. Park, S.H., Lee, M.J., Kang, J.R.: Blow-up results for viscoelastic wave equations with weak damping. Appl. Math. Lett. 80, 20–26 (2018)

8. Liu, W.J., Yu, J.: On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and source terms. Nonlinear Anal. 74, 2175–2190 (2011)

9. Ball, J.: Remarks on blow up and nonexistence theorems for nonlinear evolutions equations. Q. J. Math. Oxf. 28, 473–486 (1977)

10. Levine, H.A.: Instability and nonexistence of global solutions of nonlinear wave equation of the form $$Pu_{tt}=Au+F(u)$$. Trans. Am. Math. Soc. 192, 1–21 (1974)

11. Levine, H.A.: Some additional remarks on the nonexistence of global solutions to nonlinear wave equation. SIAM J. Math. Anal. 5, 138–146 (1974)

12. Messaoudi, S.A.: Blow up in a nonlinearly damped wave equation. Math. Nachr. 231, 1–7 (2001)

13. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Lasiecka, I.: Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction. J. Differ. Equ. 236, 407–459 (2007)

14. Vitillaro, E.: Global existence for the wave equation with nonlinear boundary damping and source terms. J. Differ. Equ. 186, 259–298 (2002)

15. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Ferreira, J.: Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 24, 1043–1053 (2001)

16. Liu, W.J.: General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal. 73, 1890–1904 (2010)

17. Song, H.: Global nonexistence of positive initial energy solutions for a viscoelastic wave equation. Nonlinear Anal. 125, 260–269 (2015)

18. Hao, J., Wei, H.: Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong damping and source term. Bound. Value Probl. 2017, 65 (2017)

19. Georgiev, V., Todorova, G.: Existence of solutions of the wave equation with nonlinear damping and source terms. J. Differ. Equ. 109, 295–308 (1994)

20. Park, J.Y., Ha, T.G.: Existence and asymptotic stability for the semilinear wave equation with boundary damping and source term. J. Math. Phys. 49, Article ID 053511 (2008)

21. Ha, T.G.: Asymptotic stability of the semilinear wave equation with boundary damping and source term. C. R. Math. Acad. Sci. Paris 352, 213–218 (2014)

### Acknowledgements

The authors are thankful to the honorable reviewers and editors for their valuable comments and suggestions, which improved the paper.

### Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

## Funding

The first author’s research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2017R1E1A1A03070738). The second author’s research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03028291). The third author’s work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (2017R1A2B4004163).

## Author information

Authors

### Contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Jum-Ran Kang.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

Not applicable.

### Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions 