- Research
- Open access
- Published:
Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in \(\mathbb{R}^{3}\)
Boundary Value Problems volume 2019, Article number: 75 (2019)
Abstract
In this paper, we study the following Kirchhoff–Schrödinger–Poisson systems:
where a, b are positive constants, \(V\in \mathcal{C}(\mathbb{R} ^{3},\mathbb{R}^{+})\). By using constraint variational method and the quantitative deformation lemma, we obtain a least-energy sign-changing (or nodal) solution \(u_{b}\) to this problem, and study the energy property of \(u_{b}\). Moreover, we investigate the asymptotic behavior of \(u_{b}\) as the parameter \({b\searrow 0}\).
1 Introduction
In this paper, we discuss the existence and asymptotic behavior of sign-changing solutions for the Kirchhoff–Schrödinger–Poisson systems
where \(a,b>0\), \(V\in \mathcal{C}(\mathbb{R}^{3},\mathbb{R}^{+})\) such that \(H\subset H^{1}(\mathbb{R}^{3})\) and the embedding
is compact, denoting by \(H^{1}_{r}(\mathbb{R}^{3})\) the set of radially symmetric functions in the Sobolev space \(H^{1}(\mathbb{R}^{3})\), we define
with the norm
As for f, we assume that \(f\in C^{1}(\mathbb{R},\mathbb{R})\) and satisfy the following assumptions:
- \((f_{1})\) :
-
\(f(s)=0(|s|)\) as \(s \rightarrow 0\);
- \((f_{2})\) :
-
\(\lim_{s\rightarrow \infty }\frac{f(s)}{s^{6}}=0\);
- \((f_{3})\) :
-
\(\lim_{s\rightarrow \infty }\frac{F(s)}{s^{4}}=+ \infty \), where \(F(s)=\int ^{s}_{0}f(t)\,dt\);
- \((f_{4})\) :
-
\(\frac{f(s)}{|s|^{3}}\) is an increasing function of \(s\in \mathbb{R}\backslash \{{0}\}\).
It is noticed that, to avoid involving too much details for checking the compactness, assumptions on V were first introduced in [60].
The nonlocal operator \((a+b\int _{\mathbb{R}^{3}}|\nabla u|^{2}\,dx) \Delta \) comes from the Kirchhof–Dirichlet problem
where \(\varOmega \subset \mathbb{R}^{N}\) is a bounded domain or \(\varOmega =\mathbb{R}^{N}\), \(a>0\), \(b>0\) and u satisfies some boundary conditions. Problem (1.2) is related to the following stationary analog of the equation of Kirchhoff type:
which was introduced by Kirchhoff [22] as a generalization of the well-known D’Alembert wave equation
for free vibration of elastic strings.
Kirchhoff’s model takes into account the changes in length of the string produced by transverse vibrations, so the nonlocal term appears. For more mathematical and physical background of Kirchhoff-type problems, we refer the reader to [8, 40, 50].
After the pioneer work of Lions [28], a lots of interesting results to problem (1.2) or similar problems were obtained in last decades; see for example [14,15,16,17,18,19, 24, 26, 32, 34, 36, 37, 41, 43, 45, 51, 52, 57, 59, 64, 65]. For the sake of space, many interesting results we do not cite here.
Especially, many authors pay their attention to find sign-changing solutions to problem (1.2) or similar problems and indeed some interesting results were obtained. For example, Zhang et al. [65] used the method of invariant sets of descent flow to obtain the existence of sign-changing solution of problem (1.2). It is noticed that, combining constraint variational methods and the quantitative deformation lemma, Shuai [45] studied the existence and asymptotic behavior of least-energy sign-changing solution to problem (1.2). Soon afterwards, under some more weak assumptions on f (especially, a Nehari type monotonicity condition been removed), Tang and Cheng [51] improved and generalized some results obtained in [45]. For more results on sign-changing solutions for Kirchhoff-type equations, we refer the reader to [14, 15, 17, 32, 34, 36, 43, 52] and the references therein.
When \(a=1\), \(b=0\), system (1.1) reduces to the Schrödinger–Poisson system
System (1.5) comes from the time-dependent Schrödinger–Poisson equation, which describes quantum (nonrelativistic) particles interacting with the electromagnetic field generated by the motion. For more details of the mathematical and physical background of the system (1.5), we refer the reader to [6, 7] and the references therein. In the past several decades, there has been increasing attention toward systems (1.5) or similar problems, and the existence of positive solutions, multiple solutions, bound state solutions, multi-bump solutions, semiclassical state solutions has been investigated; see for example [3,4,5,6, 9, 25, 29, 33, 35, 42, 44, 48, 49, 54, 55, 58, 67].
For sign-changing solutions, Alves and Souto [1] proved that system (1.5) possesses a least-energy sign-changing solution in which \(\mathbb{R}^{3}\) be replaced by bounded domains with smooth boundary. Soon afterwards, Alves, Souto and Soares [2] improved and generalized results obtained in [1] to on whole space \(\mathbb{R}^{3}\). Via a constraint variational method combining the Brouwer degree theory, Wang and Zhou [60] investigated the existence of least-energy sign-changing solutions for the system (1.5) when \(f(u)=|u|^{p-1}u\), \(p\in (3,5)\). By using the constraint variation methods and the quantitative deformation lemma, Shuai and Wang [46] studied the existence and the asymptotic behavior of least-energy sign-changing solution for system (1.5). Latter, under some more weak assumptions on f, Chen and Tang [11] improve and generalize some results obtained in [46]. For the other work on a sign-changing solution of system (1.5) or similar problems, we refer the reader to [5, 20, 21, 27, 30, 56, 68] and the references therein. It is noticed that there are some interesting results, for example [10, 13, 53, 61], considered sign-changing solutions for other nonlocal problems.
For \(u\in H\), let \(\phi _{u}\) be unique solution of \(-\triangle \phi =u ^{2}\) in \(D^{1,2}(\mathbb{R}^{3})\), then
Using the expression of (1.6), we see that the system (1.1) is merely a single equation on u:
So, the energy functional associated with system (1.1) is defined by
Moreover, under our conditions, \(I_{b}\in C^{1}(H,\mathbb{R})\), and we have
for any \(u, \psi \in H\).
The weak solutions of system (1.1) are critical points of \(I_{b}\). Moreover, we call u a sign-changing solution to (1.1) if u is a solution of (1.1) with \(u^{\pm } \neq 0\), where
For system (1.1) contains both nonlocal operator and nonlocal nonlinear term, the study of system (1.1) become technically complicated. In recent years, there were some scholars paying attention to system (1.1) or similar problems; see [12, 23, 31, 38, 63, 66] and the references therein. However, to the best of our knowledge, few papers considered sign-changing solutions to system (1.1) or similar problems. Via gluing the function methods, Deng and Yang [12] studied the sign-changing solutions for system (1.1) with \(f(u)=|u|^{p-2}u\), \(p\in (4,6)\). But they did not study the energy property and asymptotic behavior of this solution.
Inspired by the work mentioned above, in this paper, we seek the least-energy sign-changing solutions to system (1.1). As in [1, 11, 17, 45, 46, 59], we first try to seek a minimizer of the energy functional \(I_{b}\) over the following constraint:
and then will prove that the minimizer is a sign-changing solution of system (1.1).
The following are the main results of this paper.
Theorem 1.1
If the assumptions \((f_{1})\)–\((f_{4})\) hold, then the problem (1.1) has a least-energy sign-changing solution \(u_{b}\), which has precisely two nodal domains.
Theorem 1.2
Under the assumptions of Theorem 1.1,
where \(c_{b}:=\inf_{u\in \mathcal{N}_{b}}I_{b}(u)\), \(\mathcal{N}_{b}:=\{u\in H \backslash \{{0}\}: \langle I_{b}'(u),u \rangle =0\}\) and \(u_{b}\) is the least-energy sign-changing solution in H obtained in Theorem 1.1. In particular, \(c_{b}\) is achieved either by a positive or a negative function.
Theorem 1.3
If the assumptions of Theorem 1.1 hold, then, for any sequence \(\{b_{n}\}\) with \(b_{n}\rightarrow 0\) as \(n\rightarrow \infty \), there exists a subsequence, still denoted by \(\{b_{n}\}\), such that \(u_{b_{n}}\rightarrow u_{0}\) strongly in H as \(n\rightarrow \infty \), where \(u_{0}\) is a least-energy sign-changing solution in H of the problem
which changes sign only once.
2 Some technical lemmas
In this section, we prove some technical lemmas related to the existence of sign-changing solutions of system (1.1).
Lemma 2.1
Assume that \((f_{1})\)–\((f_{4})\) hold, if \(u\in H\) with \(u^{\pm } \neq 0\), then:
-
(i)
There exists a unique pair \((s_{u},t_{u})\) of positive numbers such that \(s_{u}u^{+}+t_{u}u^{-}\in \mathcal{M}_{b}\).
-
(ii)
The vector \((s_{u},t_{u})\) is the unique maximum point of the function φ: \(\mathbb{R}_{+}\times \mathbb{R}_{+}\rightarrow \mathbb{R}\) defined as \(\varphi (s,t)=I_{b}(su^{+}+tu^{-})\).
Proof
(i) Having fixed \(u\in H\) with \(u^{\pm }\neq 0\), let
We will show that there exists \(r\in (0,R)\) such that
and
where \(R>0\) is a constant.
By assumption \((f_{1})\) and \((f_{2})\), for any \(\varepsilon >0\), there exists a positive constant \(C_{\varepsilon }\) such that
Then we have
where \(C_{1}\), \(C_{2}\), \(C_{3}\) are positive constants.
On the other hand, since \(u^{+}\neq 0\), there exists a constant \(\delta >0\) such that \(\operatorname{meas}\{x\in \mathbb{R}^{3},u^{+}>\delta \}>0\). In addition, by \((f_{3})\) and \((f_{4})\), we deduce that, for any \(L>0\), there exists \(T>0\) such that \(\frac{f(\omega )}{\omega ^{3}}>L\) for all \(\omega >T\). Therefore, for \(s>\frac{T}{\delta }\), we have
Choose L sufficiently large so that
Suppose \(t\leq s\), we have
Similarly, we derive that
and
if \(s\leq t\).
Hence, in view of (2.6), (2.8), (2.9), (2.10) and Miranda’s theorem [39], there exists some point \((s_{u},t_{u})\) such that \(g(s_{u},t_{u})=h(s_{u},t_{u})=0\). That is, \(s_{u}u^{+}+t_{u}u^{-}\in \mathcal{M}_{b}\).
We now prove that the pair \((s_{u},t_{u})\) is unique and consider two situations.
Case 1. \(u\in \mathcal{M}_{b}\).
If \(u\in \mathcal{M}_{b}\), we have
That is,
We prove that \((s_{u},t_{u})=(1,1)\) is the only pair of numbers so that \(s_{u}u^{+}+t_{u}u^{-}\in \mathcal{M}_{b}\).
Suppose that \((\tilde{s}_{u},\tilde{t}_{u})\) is another pair of numbers so that \(\tilde{s}_{u}u^{+}+\tilde{t}_{u}u^{-}\in \mathcal{M} _{b}\). According to the definition of \(\mathcal{M}_{b}\), it is easy to obtain
and
Without loss of generality, we can suppose that \(0<\tilde{s}_{u} \leq \tilde{t}_{u}\). Thus, from (2.13), we get
So,
Combining (2.15) with (2.11), we get
If \(\tilde{s_{u}}<1\), the left side of the above inequality is positive, which is absurd because the right side is negative by condition \((f_{4})\).
Therefore, we obtain \(1\leq \tilde{s_{u}}\leq \tilde{t_{u}}\).
Similarly, by (2.12), (2.14) and \(0<\tilde{s}_{u} \leq \tilde{t}_{u}\), one has
Thanks to \((f_{4})\), we must have \(\tilde{t_{u}}\leq 1\).
So, \(\tilde{s_{u}}=\tilde{t_{u}}=1\).
Case 2. \(u\notin \mathcal{M}_{b}\).
If \(u\notin \mathcal{M}_{b}\), then there exists a pair of positive numbers \((s_{u},t_{u})\) such that \(s_{u}u^{+}+t_{u}u^{-} \in \mathcal{M}_{b}\). Assume that there exists another pair of positive numbers \((s_{u}',t_{u}')\) such that \(s_{u}'u^{+}+t_{u}'u^{-}\in \mathcal{M}_{b}\). Define \(v:=s_{u}u^{+}+t_{u}u^{-}\) and \(v':=s_{u}'u ^{+}+t_{u}'u^{-}\), we get
Thanks to \(v\in \mathcal{M}_{b}\), we find that \(s_{u}=s_{u}'\) and \(t_{u}=t_{u}'\).
(ii) From (i), we know that \((s_{u},t_{u})\) is the unique critical point of φ in \(\mathbb{R}_{+}\times \mathbb{R}_{+}\). By the hypothesis \((f_{3})\), we conclude that \(\varphi (s,t)\rightarrow -\infty \) uniformly as \(|(s,t)|\rightarrow \infty \), so it is sufficient to show that a maximum point cannot be achieved on the boundary of \((\mathbb{R}_{+},\mathbb{R}_{+})\). If we may suppose that \((0,\bar{t})\) is a maximum point of φ, it is easy to deduce that
for s small enough.
That is, \(\varphi (s,\bar{t})\) is an increasing function with respect to s if s is small enough.
From the above discussion, we know that the pair \((0,\bar{t})\) is not a maximum point of φ in \(\mathbb{R}_{+}\times \mathbb{R}_{+}\). □
Next, we consider the minimization problem
Lemma 2.2
Assume that \((f_{1})\)–\((f_{4})\) hold, then \(m_{b}>0\) is achieved.
Proof
Firstly, we prove \(m_{b}>0\).
For every \(u\in \mathcal{M}_{b}\), we have \(\langle I_{b}'(u),u\rangle =0\). So, according to (2.5) and the Sobolev embedding, we have
Selecting \(\varepsilon =\frac{1}{2C_{1}}\), it is easy to see that there exists a constant \(\alpha >0\) such that \(\|u\|^{2}\geq \alpha \).
On the other hand, we obtain, by the condition \((f_{5})\),
and \(H(t)\) is increasing when \(t>0\) and decreasing when \(t<0\).
Then we have
That is, \(m_{b}\geq \frac{1}{4}\alpha >0\).
In the following, we prove that \(m_{b}\) is achieved.
Let \(\{u_{n}\}\subset \mathcal{M}_{b}\) be so that \(I_{b}(u _{n})\rightarrow m_{b}\). Then \(\{u_{n}\}\) is bounded in H. And there exists \(u_{b}\in H\) such that \(u_{n}^{\pm }\) converges to \(u_{b}^{ \pm }\) weakly in H. Since \(u_{n}\in \mathcal{M}_{b}\), we can get \(\langle I_{b}'(u_{n}),u_{n}^{\pm }\rangle =0\), i.e.,
Analogous to the discussion in (2.19), there exists \(\beta >0\) such that \(\|u_{n}^{\pm }\|^{2}\geq \beta \) for all \(n\in \mathbb{N}\).
Thanks to \((f_{1})\) and \((f_{2})\), for any \(\delta >0\), there is a positive constants \(C_{\delta }\) such that
So, by \(u_{n}\in \mathcal{M}_{b}\), we have
In view of the boundedness of \(\{u_{n}\}\), there exists \(C_{1}>0\) that satisfies
Choosing \(\delta =\frac{\beta }{2C_{1}}\), from the above equality, we can obtain
So, according to the compactness embedding \(H\hookrightarrow L^{q}( \mathbb{R}^{3})\) for \(2< q<2^{*}\), we have
That is, \(u_{b}^{\pm }\neq 0\).
By Lemma 2.1, there exists \((s_{u_{b}},t_{u_{b}})\in (0, \infty )\times (0,\infty )\) such that
We assert that
In fact, by \((f_{1})\), \((f_{2})\) and the compactness lemma of Strauss [47] we see that
Since the embedding \(H\hookrightarrow D^{1,2}\) is continuous and we have weak semicontinuity of the norm, we have
By (1.6) and the Hardy–Littlewood–Sobolev inequality, we have
Therefore, thanks to \(\{u_{n}\}\subset \mathcal{M}_{b}\), (2.23), (2.24) and (2.25), we obtain
That is,
Suppose that \(s_{u_{b}}\geq t_{u_{b}}>0\), thanks to \(s_{u_{b}}u_{b} ^{+}+t_{u_{b}}u_{b}^{-}\in \mathcal{M}_{b}\), we have
Combining (2.26) and (2.27), we have
If \(s_{u_{b}}>1\), the left-hand side of this inequality is negative. But from \((f_{4})\), the right-hand side of this inequality is positive. So, we have \(s_{u_{b}}\leq 1\).
From the above discussions and (2.20), we get
It follows from the above fact that \(s_{u_{b}}=t_{u_{b}}=1\). Then \(\bar{u_{b}}=u_{b}\) and \(I_{b}(u_{b})=m_{b}\). The proof if finished. □
3 Proof of main results
Proof of Theorem 1.1
We just prove that the minimizer \(u_{b}\) for (2.18) is indeed a sign-changing solution of system (1.1), i.e., \(I_{b}'(u_{b})=0\).
Since \(u_{b}\in \mathcal{M}_{b}\), we have \(I_{b}'(u_{b})u_{b}^{+}=0=I _{b}'(u_{b})u_{b}^{-}\). By (ii) of Lemma 2.1, for \((s,t)\in (\mathbb{R}_{+}\times \mathbb{R}_{+})\) and \((s,t)\neq (1,1)\), we obtain
If \(I_{b}'(u_{b})\neq 0\), then exist \(\delta >0\) and \(\lambda >0\) such that \(\|I_{b}'(v)\|\geq \lambda \) for all \(\|v-u_{b}\|\leq 3\delta \).
Choose \(\sigma \in (0,\min \{1/2,\delta /\sqrt{2}\|u\|\})\). Let \(\varOmega =(1-\sigma , 1+\sigma )\times (1-\sigma ,1+\sigma )\) and \(\eta (s,t):=su_{b}^{+}+tu_{b}^{-}\), \((s,t)\in \varOmega \). From (ii) of Lemma 2.1, one has
For \(\varepsilon :=\min \{(m_{b}-\bar{m}_{b})/2, \lambda \delta /8\}\) and \(S_{\delta }:=B(u_{b},\delta )\). By Lemma 2.3 of [62], there exists a deformation ξ such that:
-
(a)
\(\xi (1,u)=u\) if \(u\notin I_{b}^{-1}([m_{b}-2\varepsilon ,m _{b}+2\varepsilon ])\cap S_{2\delta }\);
-
(b)
\(\xi (1,I_{b}^{m_{b}+\varepsilon }\cap s)\subset I_{b}^{m _{b}-\varepsilon }\);
-
(c)
\(I_{b}(\xi (1,u))\leq I_{b}(u)\) for all \(u\in H\).
Firstly, we need to prove that
By Lemma 2.1, we know \(I_{b}(\eta (s,t))\leq m_{b}< m_{b}+ \varepsilon \), which shows that
At the same time, we have
that is, \(\eta (s,t)\in \mathcal{S}_{\delta }\), \(\forall (s,t)\in \bar{ \varOmega }\).
Therefore, according to \((b)\), we have \(I_{b}(\xi (1,\eta (s,t)))< m- \varepsilon \). Hence, (3.3) holds.
In the following, we show that \(\xi (1,\eta (D))\cap \mathcal{M}_{b} \neq \emptyset \), which contradicts the definition of \(m_{b}\).
Let us set \(\psi (s,t):=\xi (1,\eta (s,t))\) and
By direct calculation, we have
Let
By condition \((f_{5})\), for \(s\neq 0\), we have
Then
Therefore, we have
Since \(\varPsi _{0}(s,t)\) is a \(C^{1}\) function and \((1,1)\) is the unique isolated zero point of \(\varPsi _{0}\), by using degree theory, we deduce that deg\((\varPsi _{0},D,0)=1\). So, combining (3.2) with (a), we know that \(g=h\) on ∂D. Consequently, we get deg\((\varPsi _{1},D,0)=1\). Hence, \(\varPsi _{1}(s_{0},t_{0})=0\) for some \((s_{0},t_{0})\in D\), such that
which is a contradiction according to (3.3).
From the above discussion, we conclude that \(u_{b}\) is a sign-changing solution for problem (1.1).
Finally, we prove that \(u_{b}\) has exactly two nodal domains. By contradiction, we suppose that \(u_{b}\) has at least three nodal domains \(\varOmega _{1}\), \(\varOmega _{2}\), \(\varOmega _{3}\). Without loss generality, we can suppose that \(u_{b}>0\) a.e. in \(\varOmega _{1}\) and \(u_{b}<0\) a.e. in \(\varOmega _{2}\). Define
where
and \(u_{b_{i}}\neq 0\) and \(\langle I'(u_{b}),u_{b_{i}}\rangle =0\) for \(i=1,2,3\).
Let \(v:=u_{b_{1}}+u_{b_{2}}\), then \(v^{+}=u_{b_{1}}\) and \(v^{-}=u_{b _{2}}\), i.e., \(v^{\pm }\neq 0\). Then there exists a unique pair \((s_{v},t_{v})\) of positive numbers such that
Hence, we have
Thanks to \(\langle I_{b}'(u_{b}),u_{b_{i}} \rangle =0\), we obtain \(\langle I_{b}'(v),v^{\pm } \rangle <0\).
Similar to the proof of Lemma 2.2, we have
So, by (2.20), we have
Consequently, from the above inequality, we obtain
which is impossible. Thus, \(u_{b}\) has exactly two nodal domains. □
Proof of Theorem 1.2
Similar to the proof of Lemma 2.2, for each \(b>0\), there exists \(v_{b}\in \mathcal{N}_{b}\) so that \(I_{b}(v_{b})=c_{b}>0\). By standard arguments, it is easy to see that the critical points of \(I_{b}\) on \(\mathcal{N}_{b}\) are critical points of \(I_{b}\) in H, that is, \(I_{b}'(v_{b})=0\). Therefore, \(v_{0}\) is a ground-state solution of (1.1).
According to Theorem 1.1, problem (1.1) has a sign-changing solution \(u_{b}\) which changes sign only once. Let \(u_{b}=u^{+}_{b}+u^{-}_{b}\), as in the proof of Lemma 2.1, there exist unique \(s_{u_{b}^{+}}>0\) and \(t_{u_{b}^{-}}>0\) such that
Thanks to \(\langle I_{b}'(u_{b}^{+}),u_{b}^{+}\rangle <0\), \(\langle I _{b}'(u_{b}^{-}),u_{b}^{-}\rangle <0\), and similar to proof in Lemma 2.2, we obtain \(s_{u_{b}^{+}}\in (0,1)\) and \(t_{u_{b} ^{-}}\in (0,1)\).
Thus, by (ii) of Lemma 2.1, one has
It follows that \(c_{b}>0\), which cannot be achieved by a sign-changing function. □
Lastly, we shall analyze the asymptotic behavior of \(u_{b}\) as \(b\rightarrow 0\). In the following, we regard \(b>0\) as a parameter in problem (1.1).
Proof of Theorem 1.3
For any \(b>0\), let \(u_{b}\in H\) be the least-energy sign-changing solution of (1.1) obtained in Theorem 1.1. We shall proceed through three steps to complete the proof.
Step 1. If \(b_{n}\rightarrow 0\) as \(n\rightarrow \infty \), then \(\{u_{b_{n}}\}\) is bounded in H.
Choose a nonzero function \(\eta \in C_{c}^{\infty }(\mathbb{R}^{3})\) with \(\eta ^{\pm }\neq 0\). In view of \((f_{3})\), for any \(b\in [0,1]\), there is a pair \((\lambda _{1},\lambda _{2})\in (\mathbb{R}_{+}\times \mathbb{R}_{+})\) independent of b, such that
and
Hence, according to Lemma 2.1 and similar to the proof in Lemma 2.2, for any \(b\in [0,1]\), there exists a unique pair \((s_{\eta }(b),t_{\eta }(b))\in (0,1]\times (0,1]\) so that
Thus, for any \(b\in [0,1]\), we have
where \(C^{\ast }\) does not depend on b. So, letting \(n\rightarrow \infty \), it follows that
which implies that \(\{u_{b_{n}}\}\) is bounded in H.
Step 2. Problem (1.10) possesses one sign-changing solution \(u_{0}\).
Since \(\{u_{b_{n}}\}\) is bounded in H according to Claim 1, going if necessary to a subsequence, there exists \(u_{0}\in H\) such that
We assert that \(u_{0}\) is a weak solution of (1.10). In fact, because \(u_{b_{n}}\) is the sign-changing solution of (1.1) with \(b=b_{n}\), then, by (3.12), we have
So, \(u_{0}\neq 0\) and \(u_{0}\) changes sign only once.
Step 3. Problem (1.10) possesses a least-energy sign-changing solution \(v_{0}\). Furthermore, there exists a unique pair \((s_{b_{n}}, t_{b_{n}})\in [0,\infty )\times [0,\infty )\) such that \(s_{b_{n}}v^{+}_{0}+t_{b_{n}}v^{-}_{0}\in \mathcal{M}_{b_{n}}\) and \((s_{b_{n}}, t_{b_{n}})\rightarrow (1,1)\) as \(n\rightarrow \infty \).
With a similar argument to the proof of Theorem 1.1, we see that (1.10) possesses a least-energy sign-changing solution \(v_{0}\) (for the existence of \(v_{0}\), we also refer to [46]), where \(I^{\lambda }_{0}(v_{0})=c^{\lambda }_{0}\) and \((I^{\lambda } _{0})'(v_{0})=0\).
Hence, by Lemma 2.1, it is easy to see that there uniquely exists the pair \((s_{b_{n}}, t_{b_{n}})\in (0,\infty )\times (0, \infty )\) such that \(s_{b_{n}}v^{+}_{0}+t_{b_{n}}v^{-}_{0}\in \mathcal{M}_{b_{n}}\). Then we have
According to \((f_{3})\), \((f_{4})\) and \(b_{n}\rightarrow 0\) as \(n\rightarrow \infty \), \(\{s_{b_{n}}\}\) and \(\{t_{b_{n}}\}\) are bounded. Up to a subsequence, suppose that \(s_{b_{n}}\rightarrow s_{0}\) and \(t_{b_{n}}\rightarrow t_{0}\), then it follows from (3.13) and (3.14) that
and
Thanks to \(v_{0}\) being a sign-changing solution of problem (1.10), we get
and
Then, by (3.15)–(3.18), it is easy to see that \((s_{0}, t_{0}) = (1, 1)\).
Now, we prove that \(u_{0}\) is a least-energy sign-changing solution of (1.10) in H which changes sign only once. According to Lemma 2.1, we derive that
The proof is thus complete. □
References
Alves, C.O., Souto, M.A.S.: Existence of least nodal solution for a Schrödinger–Poisson system in bounded domains. Z. Angew. Math. Phys. 65, 1153–1166 (2014)
Alves, C.O., Souto, M.A.S., Soares, S.H.M.: A sign-changing solution for the Schrödinger–Poisson equation in \(\mathbb{R}^{3}\). Rocky Mt. J. Math. 47, 1–25 (2017)
Ambrosetti, A.: On Schrödinger–Poisson system. Milan J. Math. 76, 257–274 (2008)
Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 779–791 (2010)
Batista, A.M., Furtado, M.F.: Positive and nodal solutions for a nonlinear Schrödinger–Poisson system with sign-changing potentials. Nonlinear Anal., Real World Appl. 39, 142–156 (2018)
Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)
Benci, V., Fortunato, D.: Solitary waves of nonlinear Klein–Gordon equation coupled with Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)
Carrier, G.F.: On the non-linear vibration problem of the elastic string. Q. Appl. Math. 3, 157–165 (1945)
Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger–Poisson systems. J. Differ. Equ. 248, 521–543 (2010)
Chang, X., Wang, Z.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256(8), 2965–2992 (2014)
Chen, S., Tang, X.H.: Ground state sign-changing solutions for a class of Schrödinger–Poisson type problems in \(\mathbb{R}^{3}\). Z. Angew. Math. Phys. 67, Article ID 102 (2016)
Deng, J., Yang, J.F.: Nodal solutions for Schrödinger–Poisson type equations in \(\mathbb{R}^{3}\). Electron. J. Differ. Equ. 2016, Article ID 277 (2016)
Deng, Y., Shuai, W.: Sign-changing solutions for non-local elliptic equations involving the fractional Laplacian. Adv. Differ. Equ. 23, 109–134 (2018)
Deng, Y.B., Peng, S.J., Shuai, W.: Existence and asymptotic behavior of nodal solutions for the Kirchhoff-type problems in \(\mathbb{R}^{3}\). J. Funct. Anal. 269, 3500–3527 (2015)
Deng, Y.B., Shuai, W.: Sign-changing multi-bump solutions for Kirchhoff-type equations in \(\mathbb{R}^{3}\). Discrete Contin. Dyn. Syst., Ser. A 38, 3139–3168 (2018)
Figueiredo, G.M., Ikoma, N., Santos Júnior, J.R.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213, 931–979 (2014)
Figueiredo, G.M., Santos Júnior, J.R.: Existence of a least energy nodal solution for a Schrödinger–Kirchhoff equation with potential vanishing at infinity. J. Math. Phys. 56, 051506 (2015)
He, X., Zou, W.: Existence and concentration behavior of positive solutions for a Kirchhoff equation in \(\mathbb{R}^{3}\). J. Differ. Equ. 2, 1813–1834 (2012)
He, Y., Li, G., Peng, S.: Concentrating bound states for Kirchhoff problems in \(\mathbb{R}^{3}\) involving critical Sobolev exponents. Adv. Nonlinear Stud. 14, 483–510 (2014)
Ji, C., Fang, F., Zhang, B.: Least energy sign-changing solutions for the nonlinear Schrodinger–Poisson system. Electron. J. Differ. Equ. 2017, 282 (2017)
Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger–Poisson equations. Commun. Contemp. Math. 14, 1250041 (2012)
Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
Li, F., Song, Z., Zhang, Q.: Existence and uniqueness results for Kirchhoff–Schrödinger–Poisson system with general singularity. Appl. Anal. 96, 2906–2916 (2017)
Li, G., Ye, H.: Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \(\mathbb{R}^{3}\). J. Differ. Equ. 257, 566–600 (2014)
Li, G.B., Peng, S.J., Yan, S.S.: Infinitely many positive solutions for the nonlinear Schrödinger–Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010)
Li, Y., Li, F., Shi, J.: Existence of a positive solution to Kirchhoff type problems without compactness conditions. J. Differ. Equ. 253, 2285–2294 (2012)
Liang, Z., Xu, J., Zhu, X.: Revisit to sign-changing solutions for the nonlinear Schrödinger–Poisson system in \(\mathbb{R}^{3}\). J. Math. Anal. Appl. 435, 783–799 (2016)
Lions, P.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and Partial Differential Equations. North-Holland Math. Stud., vol. 30, pp. 284–346. North-Holland, Amsterdam (1978)
Liu, J., Qian, A.: Ground state solution for a Schrödinger–Poisson equation with critical growth. Nonlinear Anal., Real World Appl. 40, 428–443 (2018)
Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger–Poisson system. Ann. Mat. Pura Appl. 4, 775–794 (2016)
Lü, D.: Positive solutions for Kirchhoff–Schrödinger–Poisson systems with general nonlinearity. Commun. Pure Appl. Anal. 17, 605–626 (2018)
Lu, S.: Signed and sign-changing solutions for a Kirchhoff-type equation in bounded domains. J. Math. Anal. Appl. 432, 965–982 (2015)
Mao, A., Chen, Y.: Existence and concentration of solutions for sublinear Schrödinger–Poisson equations. Indian J. Pure Appl. Math. 49, 339–348 (2018)
Mao, A., Luan, S.: Sign-changing solutions of a class of nonlocal quasilinear elliptic boundary value problems. J. Math. Anal. Appl. 383, 239–243 (2011)
Mao, A., Yang, L., Qian, A., Luan, S.: Existence and concentration of solutions of Schrödinger–Poisson system. Appl. Math. Lett. 68, 8–12 (2017)
Mao, A., Zhu, X.: Existence and multiplicity results for Kirchhoff problems. Mediterr. J. Math. 14, 58 (2017). https://doi.org/10.1007/s00009-017-0875-0
Mingqi, X., Rădulescu, V.D., Zhang, B.: Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity 31, 3228–3250 (2018)
Mingqi, X., Rădulescu, V.D., Zhang, B.: Combined efects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM Control Optim. Calc. Var. 24, 1249–1273 (2018)
Miranda, C.: Un’osservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. 3, 5–7 (1940)
Oplinger, D.: Frequency response of a nonlinear stretched string. J. Acoust. Soc. Am. 32, 1529–1538 (1960)
Perera, K., Zhang, Z.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ. Equ. 221, 246–255 (2006)
Ruiz, D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
Shao, M., Mao, A.: Signed and sign-changing solutions of Kirchhoff type problems. J. Fixed Point Theory Appl. 20, 2 (2018). https://doi.org/10.1007/s11784-018-0486-9
Shao, M., Mao, A.: Multiplicity of solutions to Schrödinger–Poisson system with concave-convex nonlinearities. Appl. Math. Lett. 83, 212–218 (2018)
Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256–1274 (2015)
Shuai, W., Wang, Q.: Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger–Poisson system in \(\mathbb{R}^{3}\). Z. Angew. Math. Phys. 66, 3267–3282 (2015)
Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162 (1977)
Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ. 260, 2119–2149 (2016)
Sun, J.T., Wu, T.F., Feng, Z.S.: Multiplicity of positive solutions for a nonlinear Schrödinger–Poisson system. J. Differ. Equ. 260, 586–627 (2016)
Sun, Y.: Indirect boundary integral equation method for the Cauchy problem of the Laplace equation. J. Sci. Comput. 71, 469–498 (2017)
Tang, X.H., Cheng, B.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384–2402 (2016)
Wang, D.B.: Least energy sign-changing solutions of Kirchhoff-type equation with critical growth. Submitted
Wang, D.B., Ma, Y., Guan, W.: Least energy sign-changing solutions for the fractional Schrödinger–Poisson systems in \(\mathbb{R}^{3}\). Bound. Value Probl. 2019, 25 (2019). https://doi.org/10.1186/s13661-019-1128-x
Wang, D.B., Xie, H., Guan, W.: Existence of positive ground state solutions for a class of asymptotically periodic Schrödinger–Poisson systems. Electron. J. Differ. Equ. 2017, Article ID 231 (2017)
Wang, D.B., Xie, H., Guan, W.: Ground states for a class of asymptotically periodic Schrödinger–Poisson systems with critical growth. Electron. J. Qual. Theory Differ. Equ. 2017, Article ID 97 (2017). https://doi.org/10.14232/ejqtde.2017.1.97
Wang, D.B., Zhang, H., Guan, W.: Existence of least energy sign-changing solutions for Schrödinger–Poisson system with critical growth. Submitted
Wang, J., Tian, L., Xu, J., Zhang, F.: Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J. Differ. Equ. 253, 2314–2351 (2012)
Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in \(\mathbb{R}^{3}\). Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)
Wang, L., Zhang, B.L., Cheng, K.: Ground state sign-changing solutions for the Schrödinger–Kirchhoff equation in \(\mathbb{R}^{3}\). J. Math. Anal. Appl. 466, 1545–1569 (2018)
Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger–Poisson system in \(\mathbb{R}^{3}\). Calc. Var. Partial Differ. Equ. 52, 927–943 (2015)
Wang, Z., Zhou, H.: Radial sign-changing solution for fractional Schrödinger equation. Discrete Contin. Dyn. Syst. 36, 499–508 (2016)
Willem, M.: Minimax Theorems. Birkhäuser, Basel (1996)
Xiang, M.Q., Pucci, P., Squassina, M., Zhang, B.L.: Nonlocal Schrödinger–Kirchhoff equations with external magnetic field. Discrete Contin. Dyn. Syst. 37, 1631–1649 (2017)
Xiang, M.Q., Zhang, B.L., Qiu, H.: Existence of solutions for a critical fractional Kirchhoff type problem in \(\mathbb{R}^{N}\). Sci. China Math. 60, 1647–1660 (2017)
Zhang, Z., Perera, K.: Sign changing solutions of Kirchhoff type problems via invariant sets of descent flow. J. Math. Anal. Appl. 317, 456–463 (2006)
Zhao, G., Zhu, X., Li, Y.: Existence of infinitely many solutions to a class of Kirchhoff–Schrödinger–Poisson system. Appl. Math. Comput. 256, 572–581 (2015)
Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013)
Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger–Poisson system with a critical nonlinearity in \(\mathbb{R}^{3}\). Nonlinear Anal., Real World Appl. 39, 166–184 (2018)
Acknowledgements
The authors are thankful to the honorable reviewers and editors for their valuable reviewing of the manuscript.
Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.
Funding
The paper is supported by the Natural Science Foundation of China (Grant no. 11561043) and Natural Science Foundation of China (Grant no. 11501318).
Author information
Authors and Affiliations
Contributions
All the authors have equally made their contribution. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wang, DB., Li, TJ. & Hao, X. Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in \(\mathbb{R}^{3}\). Bound Value Probl 2019, 75 (2019). https://doi.org/10.1186/s13661-019-1183-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1183-3