- Research
- Open access
- Published:
\((\omega ,c)\)-Pseudo periodic functions, first order Cauchy problem and Lasota–Wazewska model with ergodic and unbounded oscillating production of red cells
Boundary Value Problems volume 2019, Article number: 106 (2019)
Abstract
In this paper we study a new class of functions, which we call \((\omega ,c)\)-pseudo periodic functions. This collection includes pseudo periodic, pseudo anti-periodic, pseudo Bloch-periodic, and unbounded functions. We prove that the set conformed by these functions is a Banach space with a suitable norm. Furthermore, we show several properties of this class of functions as the convolution invariance. We present some examples and a composition result. As an application, we prove the existence and uniqueness of \((\omega ,c)\)-pseudo periodic mild solutions to the first order abstract Cauchy problem on the real line. Also, we establish some sufficient conditions for the existence of positive \((\omega ,c)\)-pseudo periodic solutions to the Lasota–Wazewska equation with unbounded oscillating production of red cells.
1 Introduction
Let \(\omega >0\) and \(c\in \mathbb{C}\setminus \{0\}\). Consider the c-mean of h given by
whenever the limit exists. For example, for \(h_{1}(t)=c^{t/\omega }\) and \(h_{2}(t)=c^{t/\omega }e^{it}\), we have that \(\mathcal{M}_{c}(h_{1})=1\) and \(\mathcal{M}_{c}(h_{2})=0\). Furthermore, \(\mathcal{M}_{c}\) is a linear and continuous operator. Indeed, if \(c^{-t/{\omega }}h_{n}(t) \to c^{-t/{\omega }}h(t)\) uniformly as \(n\to \infty \), then \(\mathcal{M}_{c}(h_{n})\to \mathcal{M}_{c}(h)\) as \(n\to \infty \). Also, note that when \(c=1\) we have the mean of h, \(\mathcal{M}(h):= \lim_{T\to \infty }\frac{1}{2T}\int _{-T}^{T}h(\sigma )\,d\sigma \). Other properties of \(\mathcal{M}_{c}\) appear in Sect. 2.
Let us define the c-ergodic space
Note that when \(c=1\) we recover the ergodic space of Zhang (see [29, 30])
We say that f is a \((\omega ,c)\)-periodic function if there is a pair \((\omega ,c)\), \(c\in ({\mathbb{C}}\setminus \{0\})\), \(w>0\) such that \(f(t+\omega )=c f(t)\) for all \(t\in {\mathbb{R}}\) (see [22]). It represents periodic functions with \(c=1\), anti-periodic functions with \(c=-1\), Bloch waves with \(c=e^{ik/\omega }\), and unbounded functions for \(|c|\neq 1\). Linear systems with periodic coefficients produce, by Floquet’s theorem, \((\omega ,c)\)-periodic solutions. This is the case of the famous Hill’s and Mathieu’s equations (see [17, 31])
Mathieu’s equation is a linearized model of an inverted pendulum, where the pivot point oscillates periodically in the vertical direction (see [19]). According to Floquet’s theorem, these equations admit a complex valued basis of solutions of the form \(y(t)=e^{\mu t}p(t)\), \(t\in \mathbb{R} \), where μ is a complex number and p is a complex valued function which is ω-periodic (see [5, Ch. 8, Sect. 4]). We can observe that the solution is not periodic, but
In fluid dynamics, we can find many examples of waves being described by Mathieu’s equation. The research of Faraday surface waves is very active (see [4, 9, 23]).
Several properties of \((\omega ,c)\)-periodic functions have been obtained in [3]. Also, this class of functions appears for example when the method of Bloch wave decomposition is used in order to obtain the homogenization of self-adjoint elliptic operators in arbitrary domains with periodically oscillating coefficients (see [6, 20] and the references therein).
Now, we are ready to introduce the space of \((\omega ,c)\)-pseudo periodic functions. A continuous function f is said to be a \((\omega ,c)\)-pseudo periodic function if it can be written as \(f=g+h\), where g is a \((\omega ,c)\)-periodic function and \(h\in AA_{0,c}(X)\). Note that when \(c=1\) we obtain the space of pseudo periodic functions defined in [28, Definition 2 p. 873] (see also [16]), and when \(c=-1\) we obtain the space of pseudo anti-periodic functions defined in [27]. When \(c=e^{ik/\omega }\), we will call this set of functions pseudo Bloch-periodic functions. Also, it should be noted that the space of \((\omega ,c)\)-periodic functions, asymptotically Bloch periodic functions (see [12, 13]), and the space of \((\omega ,c)\)-asymptotically periodic functions (which basically are sums of \((\omega ,c)\)-periodic functions with continuous functions h such that \(c^{-t/\omega }h(t)\) goes to 0 as t goes to ∞, see [2, Definition 2.5]) are contained in the space of \((\omega ,c)\)-pseudo periodic functions. For other works related to pseudo periodicity, see [10, 14, 25, 26].
We give several properties of \((\omega ,c)\)-pseudo periodic functions including a characterization in terms of the pseudo periodic functions, uniqueness of the decomposition, and algebraic properties. Also, we prove a convolution theorem and that the space of \((\omega ,c)\)-pseudo periodic functions is a Banach space with the norm \(\|\cdot \|_{p \omega c}\) defined below (see Theorem 2.18). Furthermore, we prove that the range of these functions is relatively compact with this norm. A composition result is given and a variety of examples are showed. We point out that the pseudo periodic, pseudo anti-periodic, and pseudo Bloch-periodic functions are defined as a subspace of \(BC(X)\), while our results include unbounded functions on \(\mathbb{R}\) in both periodic and ergodic parts, that is, the cases \(|c|<1\) and \(|c|>1\).
The previous results allow us to show the existence and uniqueness of \((\omega ,c)\)-pseudo periodic mild solutions for the following class of semilinear abstract integral and differential equations in Banach spaces:
where f and the family R satisfy certain hypotheses. In particular, we obtain \((\omega ,c)\)-pseudo periodic mild solutions for the semilinear first order problem
where A is a closed linear and densely defined operator on a Banach space X which generates an exponentially bounded \(C_{0}\)-semigroup \(\{T(t)\}_{t\geq 0}\). The results can be extended to delayed systems, see Sect. 4.
Furthermore, we prove the existence of positive \((\omega ,c)\)-pseudo periodic solutions to the Lasota–Wazewska equation with \((\omega ,c)\)-pseudo periodic coefficients
Wazewska–Czyzewska and Lasota [24] proposed this model to describe the survival of red blood cells in the blood of an animal. In this equation, \(y(t)\) describes the number of red cells bloods in the time t, \(\delta > 0\) is the probability of death of a red blood cell, \(a(t)\) is a continuous and positive function which is related to the production of red blood cells by unity of time, τ is the time required to produce a red blood cell, \(h(t)\) is a continuous and positive function which describes the generation of red blood cells per unit time.
This paper is organized as follows. In Sect. 2, we formalize the \((\omega ,c)\)-pseudo periodic functions and give some important properties. Also, we show that the space of \((\omega ,c)\)-pseudo periodic functions is a Banach space with a suitable norm and the fact that the range of this class of functions is relatively compact with this norm. Convolution and composition theorems will be proved. Several interesting examples are given. In Sect. 3, we prove the existence and uniqueness of \((\omega ,c)\)-pseudo periodic solutions to the first order abstract Cauchy problem on \(\mathbb{R}\). Finally, in Sect. 4, we prove the existence of positive \((\omega ,c)\)-pseudo periodic solutions to the Lasota–Wazewska model with \((\omega ,c)\)-pseudo periodic coefficients. Also, we show that the solution is exponentially stable.
2 \((\omega ,c)\)-Pseudo periodic functions
Throughout the paper, \(c\in \mathbb{C}\setminus \{0\}\), \(\omega >0\), X will denote a complex Banach space with norm \(\|\cdot \|\), \(\varOmega \subset X\), and we will denote the space of continuous functions as
the space of ergodic functions as
and
Definition 2.1
([3])
A function \(g\in C(\mathbb{R},X)\) is said to be \((\omega ,c)\)-periodic if \(g(t+\omega )=cg(t)\) for all \(t\in \mathbb{R}\). ω is called the c-period of g. The collection of those functions with the same c-period ω will be denoted by \(P_{\omega c}(\mathbb{R},X)\). When \(c=1\) (ω-periodic case), we write \(P_{\omega }( \mathbb{R},X)\) in spite of \(P_{\omega 1}(\mathbb{R},X)\). Using the principal branch of the complex logarithm (i.e., the argument in \((-\pi ,\pi ]\)), we define \(c^{t/\omega }:=\exp ((t/\omega )\operatorname{Log}(c))\). Also, we will use the notation \(c^{\land }(t):=c^{t/\omega }\) and \(|c|^{\land }(t):=|c^{\land }(t)|=|c|^{t/\omega }\).
The following proposition gives a characterization of the \((\omega ,c)\)-periodic functions.
Proposition 2.2
([3])
Let \(f\in C(\mathbb{R},X)\). Then f is \((\omega ,c)\)-periodic if and only if
where \(u(t)\) is a ω-periodic complex X-valued function.
In view of (2.1), for any \(f\in P_{\omega c}(\mathbb{R},X)\), we say that \(c^{\land }(t)u(t)\) is the c-factorization of f.
Remark 2.3
From Proposition 2.2, we can write all \(f\in P _{\omega c}(\mathbb{R},X)\) as
where \(u(t)\) is ω-periodic on \(\mathbb{R}\). We will call \(u(t)\) the periodic part of f. With this convention, an anti-periodic function f can be written as \(f(t)=(-1)^{t/\omega }u(t)\), where u is ω-periodic. For example, \(f(t)=\sin t\) can be considered as an anti-periodic function, with \(\omega =\pi \). As \(\operatorname{Log}(-1)=i\pi \), f has the decomposition \(f(t)=c^{\land }(t)u(t)\), where
and
which is periodic with period π.
Let \(c=e^{2\pi i/k}\) for some natural number \(k\geq 2\), and let f be a \((\omega ,c)\)-periodic function. Then f is a periodic function with period kω but, in general, it can be written as \(f(t)=e^{2 \pi t i/k\omega }u(t)\), where u is a complex periodic function with period ω. In particular, if \(k=4\), a \((\omega ,e^{\pi i/2})\)-periodic function f can be at the same time a Bloch wave: \(f(t+\omega )=e^{\pi i/2}f(t)\), an anti-periodic function with antiperiod 2ω: \(f(t+2\omega )=-f(t)\), and a 4ω-periodic function: \(f(t+4\omega )=f(t)\).
Definition 2.4
A function \(h\in C(\mathbb{R},X)\) is said to be c-ergodic if \(c^{\land }(-t)h(t)\in AA_{0}(X)\), that is,
The collection of those functions will be denoted by \(AA_{0,c}(X)\). Analogously, a function \(h\in C(\mathbb{R}\times \varOmega ,X)\) is said to be c-ergodic if \(c^{\land }(-t)h(t,x)\in AA_{0}(\varOmega ,X)\), that is,
for all x in any compact subset of Ω. The collection of those functions will be denoted by \(AA_{0,c}(\varOmega ,X)\).
Note that \(C_{0,c}(X):=\{g\in C(\mathbb{R},X): \lim_{|t|\to \infty }g(t)=0 \}\) is contained in \(AA_{0,c}(X)\). However, note that \(L^{p}\)-integrable functions belong to \(AA_{0,c}(X)\) but there exist functions \(L^{p}\)-integrable that do not belong to \(C_{0,c}(X)\).
Definition 2.5
A function \(f\in C(\mathbb{R},X)\) is said to be \((\omega ,c)\)-pseudo periodic if \(f=g+h\) where \(g\in P_{\omega c}(\mathbb{R},X)\) and \(h\in AA_{0,c}(X)\). The collection of those functions (with the same c-period ω for the first component) will be denoted by \(PP_{\omega c}(X)\).
Remark 2.6
The preceding collection includes the pseudo periodic functions \(PP_{\omega 1}(X):=\{f\in C(\mathbb{R},X): f=g+h, g\in P_{\omega 1}(\mathbb{R},X), h\in AA_{0}(X)\}\), the pseudo anti-periodic functions \(PP_{\omega (-1)}(X):=\{f\in C(\mathbb{R},X): f=g+h, g\in P _{\omega (-1)}(\mathbb{R},X), h\in AA_{0}(X)\}\), and pseudo \((\omega ,c)\)-Bloch-periodic functions \(PP_{\omega e^{ik\omega }}(X):= \{f\in C(\mathbb{R},X): f=g+h, g\in P_{\omega e^{ik\omega }}( \mathbb{R},X), h\in AA_{0}(X)\}\).
Example 2.7
Let \(\phi (t)=\max_{k\in \mathbb{Z}}\{e^{-(t\pm k^{2})^{2}}\}\), \(t\in \mathbb{R}\). It follows from [15, Example 2.5] that \(\phi \in AA_{0}(\mathbb{R},\mathbb{R})\). Let
Then \(f_{1}\) is pseudo periodic because \(g(t)=\sin t\) is periodic with period 2π and pseudo anti-periodic because \(g(t)=\sin t\) is anti-periodic (with antiperiod π). Analogously, the function
belongs to \(PP_{\omega e^{ik\omega }}(\mathbb{R},\mathbb{R})\). The same is true for any \(\phi \in AA_{0,c}(\mathbb{R})\).
The following proposition gives a characterization of the \((\omega ,c)\)-pseudo periodic functions.
Proposition 2.8
Let \(f\in C(\mathbb{R},X)\). Then f is \((\omega ,c)\)-pseudo periodic if and only if
Proof
It is clear that if f satisfies (2.2) then f is a \((\omega ,c)\)-pseudo periodic function. In order to show the inverse statement, let \(f\in PP_{\omega c}(X)\). Then there exist \(g\in P_{ \omega c}(\mathbb{R},X)\) and \(h\in AA_{0,c}(X)\) such that \(f=g+h\). If we write \(u(t):=c^{\land }(-t)f(t)=c^{-t/\omega }f(t)\), then
It follows from [3, Proposition 2.5] that \(F_{1}\in P_{ \omega }(\mathbb{R},X)\) and by definition of \(AA_{0,c}(X)\) we have that \(F_{2}\in AA_{0}(X)\). Hence \(u\in PP_{\omega }(X)\). □
Remark 2.9
The decomposition in Definition 2.5 is unique, that is, there exist a unique \(g\in P_{\omega c}(\mathbb{R},X)\) and a unique \(h\in AA_{0,c}(X)\) such that \(f=g+h\). Indeed, suppose that
Then
belongs to \(PP_{\omega }(X)\) by Proposition 2.2. By the unique representation of the functions in this space, we have that \(c^{\land }(-t)g_{1}(t)=c^{\land }(-t)g_{2}(t)\) and \(c^{\land }(-t)h _{1}(t)=c^{\land }(-t)h_{2}(t)\), and consequently \(g_{1}(t)=g_{2}(t)\) and \(h_{1}(t)=h_{2}(t)\) for all \(t\in \mathbb{R}\).
Remark 2.10
Note that if \(|c|\geq 1\) then \(AA_{0}(X)\subset AA_{0,c}(X)\), and consequently \(P_{\omega c}(\mathbb{R},X)+ AA_{0}(X)\subset PP_{\omega c}(X)\).
As a consequence of Proposition 2.8, we have the following basic properties.
Lemma 2.11
Let \(\alpha \in \mathbb{C}\). Then
-
(a)
\((f+g)\in PP_{\omega c}(X)\) and \(\alpha h\in PP_{\omega c}(X)\) whenever \(f,g,h\in PP_{\omega c}(X)\).
-
(b)
If \(\tau \in \mathbb{R}\), then \(f_{\tau }(t)=f(t+\tau ) \in PP_{\omega c}(X)\) whenever \(f\in PP_{\omega c}(X)\).
Proof
The proof of \((a)\) is a consequence of the definition. \((b)\) follows from the invariant property of the space \(P_{\omega c}(\mathbb{R},X)\) and Lemma 2.16. □
Example 2.12
Let \(\varphi (t):=t|\sin t|^{t^{N}}\) for \(N>6\). From [1, Example p. 1143] we have that
and \(\varphi (t)\to \infty \) at the points \(t=\frac{1}{2}+k\) as \(|k|\to \infty \). Let
Then \(f\in PP_{\pi -2^{\pi }}(\mathbb{R})\). Indeed, note that \(g(t):=2^{t}\sin t\) is \((\pi ,-2^{\pi })\)-periodic. Let us prove that \(h(t):=b^{t}\varphi (t)\) belongs to \(AA_{0,-2^{\pi }}(\mathbb{R})\).
Hence f is a \((\omega ,c)\)-pseudo periodic function which is not a \((\omega ,c)\)-asymptotically periodic function.
Example 2.13
Let \(X=\mathbb{C}\), \(|b|\leq 2\). Consider
where h satisfies one of the following conditions:
-
(a)
is integrable, or
-
(b)
\(L^{p}\)-integrable for \(1< p<\infty \), or
-
(c)
asymptotic at t in −∞ and ∞.
Then f is a \((\pi ,-2^{\pi })\)-pseudo periodic function. Since \(c^{\land }(t)=\exp (\frac{t}{\pi }\operatorname{Log}(-2^{\pi }))=2^{t}e^{it}\), then by Proposition 2.2 we have that
where
is periodic with period \(\omega =\pi \). Analogously,
where
belongs to \(AA_{0}(X)\). Hence f has the decomposition
Example 2.14
Let \(u:\mathbb{R} \to X\) be a X-valued periodic function with period ω and \(v:\mathbb{R}\to X\) in \(AA_{0}(X)\). Let \(\phi :{\mathbb{R}} \to {\mathbb{C}}\) be a function with the semigroup property, that is, \(\phi (t+s)=\phi (s)\phi (t)\) for all \(t,s\in \mathbb{R}\) and such that \(\phi (\omega )\neq 0\). Then
is a \((\omega ,\phi (\omega ))\)-asymptotically periodic function if \(\varphi (t):=[\phi (\omega )]^{\land }(-t)\phi (t)\) is bounded. As a particular case, we take \(\phi (t)=e^{ikt}\) and obtain the pseudo periodic Bloch functions.
Remark 2.15
In general, if u is a \((\omega ,c)\)-pseudo periodic function and ϕ is a function with the semigroup property such that \(\phi (\omega )\neq 0\), then \(z(t):=\phi (t)u(t)\) is a \((\omega ,c \phi (\omega ))\)-pseudo periodic if \(\varphi (t):=[\phi (\omega )]^{ \land }(-t)\phi (t)\) is bounded. Moreover, let \((u_{k})_{k\in {\mathbb{N}}}\) be a sequence of \((\omega ,c)\)-pseudo periodic functions and \((\phi _{k})_{k\in {\mathbb{N}}}\) be a sequence of functions with the semigroup property and such that \(\phi _{k}(\omega )=p\neq 0\) for all \(k\in \mathbb{N}\). Assume that
is a uniformly convergent series on \({\mathbb{R}}\). Then
is a \((\omega , cp)\)-pseudo periodic function if \(\varphi _{k}(t):=p ^{\land }(-t)\phi _{k}(t)\) is bounded for \(k\in {\mathbb{N}}\).
Lemma 2.16
\(AA_{0,c}(X)\) is translation invariant, and for every \(h\in AA_{0}(X)\), we have that \(\mathcal{M}_{c}(g+h)=\mathcal{M}_{c}(g)\) for all \(g\in C(\mathbb{R},X)\).
Proof
Let \(h\in AA_{0,c}(X)\) and \(\tau \in \mathbb{R}\) be arbitrary. Then
as \(T\to \infty \). The last assertion follows from the linearity of \(\mathcal{M}\). □
We recall (see [3]) that the norm in the space \(P_{\omega c}(\mathbb{R},X)\) is given by
Proposition 2.17
Let \(f\in P_{\omega c}(\mathbb{R},X)\). Then the range \(\{c^{\land }(-t)f(t): t\in \mathbb{R}\}\) is relatively compact in X, that is, given \(\epsilon >0\), for all \(t\in \mathbb{R}\), there exist \(x_{1},\ldots,x _{k}\) in X such that \(\|c^{\land }(-t)f(t)-x_{i}\|<\epsilon \) for some \(i=1,\ldots,k\).
The following result guarantees that \(PP_{\omega c}(X)\) is a Banach space with the norm defined below.
Theorem 2.18
\(PP_{\omega c}(X)\) is a Banach space with the norm
Proof
Let \((f_{n})\) be a Cauchy sequence in \(PP_{\omega c}(X)\). Then, given \(\epsilon >0\), there exists \(N\in \mathbb{N}\) such that, for all \(m,n\geq N\), we have
Since \(f_{m},f_{n}\in PP_{\omega c}(X)\), Proposition 2.8 implies that there exist \(u_{m},u_{n}\in PP _{\omega }(X)\) such that \(f_{m}(t)=c^{\land }(t)u_{m}(t)\) and \(f_{n}(t)=c^{\land }(t)u_{n}(t)\). Now, note that for \(m,n\geq N\)
It follows that \((u_{n})\) is a Cauchy sequence in \(PP_{\omega }(X)\). Since \(PP_{\omega }(X)\) is complete, then there exists \(u\in PP_{ \omega }(X)\) such that \(\|u_{n}-u\|_{p\omega }\to 0\) as \(n\to \infty \). Let us define \(f(t):=c^{\land }(t)u(t)\). We claim that \(\|f_{n}-f \|_{p \omega c}\to 0\) as \(n\to \infty \). Indeed,
Hence \(PP_{\omega c}(X)\) is a Banach space with the norm \(\|\cdot \| _{p \omega c}\). □
We recall the following convolution result.
Theorem 2.19
([3, Theorem 2.7])
Let \(f\in P_{\omega c}(\mathbb{R},X)\) with \(f(t)=c^{\land }(t)p(t)\), \(p\in P_{\omega }(\mathbb{R},X)\). If \(k^{\sim }(t):=c^{\land }(-t)k(t) \in L^{1}(\mathbb{R})\), then \((k*f)(t)=\int _{-\infty }^{\infty }k(t-s)f(s)\in P_{\omega c}( \mathbb{R},X)\).
Lemma 2.20
Assume that \(k^{\sim }(t):=c^{\land }(-t)k(t) \in L^{1}(\mathbb{R})\). Then \(h\in AA_{0,c}(X)\) implies that \(k\ast h\in AA_{0,c}(X)\).
Proof
It is clear that the convolution \(k\ast h\) is a continuous function. Then
where \(\varPhi _{T}(s):=\frac{1}{2T}\int _{-T}^{T}\|c^{\land }(-(t-s))h(t-s) \|dt\). Since \(AA_{0,c}(X)\) is translation invariant by Lemma 2.16, then \(\varPhi _{T}(s)\to 0\) as \(T\to \infty \). Next, since \(\varPhi _{T}\) is bounded (\(\|\varPhi _{T}\|\leq \|h\|_{p\omega c}\)) and \(k^{\sim }\in L^{1}(\mathbb{R})\), using the dominated convergence theorem, it follows that
Hence \(k\ast h\in AA_{0,c}(X)\). □
We are ready to present the convolution theorem for \((\omega ,c)\)-pseudo periodic functions.
Theorem 2.21
Let \(f\in PP_{\omega c}(X)\) with \(f(t)=c^{\land }(t)p(t)\), \(p\in PP _{\omega }(X)\). If for some \(k(t)\) we have that \(k^{\sim }(t):=c^{ \land }(-t)k(t) \in L^{1}(\mathbb{R})\), then
In particular, \((k*f)(t)\in PP_{\omega c}(X)\).
Proof
Since \(p\in PP_{\omega }(X)\), then there exist \(p_{1}\in P_{\omega }( \mathbb{R},X)\) and \(p_{2}\in AA_{0}(X)\) such that \(p=p_{1}+p_{2}\). Then \(f=f_{1}+f_{2}\) where \(f_{1}(t)=c^{\land }(t)p_{1}(t)\in P_{\omega c}( \mathbb{R},X)\) and \(f_{2}(t)=c^{\land }(t)p_{2}(t)\in AA_{0,c}(X)\). We have
From Theorem 2.19 we have that \(I_{1}\in P_{\omega c}( \mathbb{R},X)\). Next, by Lemma 2.20 we have that \(I_{2}\in AA _{0,c}(X)\). Now, from the definition of f we have that \((k\ast f)(t)=c ^{\land }(t)(k^{\sim }\ast p)(t)\). Hence \((k*f)\in PP_{\omega c}(X)\). □
Example 2.22
Consider the heat equation
Let \(u(x,t)\) be a regular solution with \(u(x,0)=f(x)\). Then it is known that
Fix \(t_{0}>0\) and assume that \(f(x)\) is \((\omega , c)\)-pseudo periodic. Then, by Theorem 2.21, we have that \(u(x,t_{0})\) is \((\omega , c)\)-pseudo periodic with respect to x.
The next lemma is analogous to [15, Lemma 2.1].
Lemma 2.23
Let \(h\in C(\mathbb{R},X)\) such that \(\sup_{t\in \mathbb{R}}\|c^{ \land }(-t) h(t)\|<\infty \). Then \(h\in AA_{0,c}(X)\) if and only if
where
Proof
Assume that \(h\in AA_{0,c}(X)\) and suppose that there exists \(\epsilon _{0}>0\) such that \(\frac{1}{2T} \operatorname{meas}(M_{T,\epsilon }(h))\) does not converge to zero when \(T\to \infty \). That is, there exists \(\delta >0\) such that, for \(n\in \mathbb{N}\),
Then
which is a contradiction.
Now, assume (2.3). We prove that \(h\in AA_{0,c}(X)\). By (2.3) we have that there exists \(M>0\) such that \(\|c^{\land }(-t)h(t)\|\leq M\), and for all \(\epsilon >0\) there exists \(T_{0}>0\) such that \(T>T_{0}\) implies that
Then
Hence \(h\in AA_{0,c}(X)\). □
Next, we have the following composition result. The idea of the proof follows from [15, Theorem 2.4].
Theorem 2.24
Let \(f(t,x)=g(t,x)+h(t,x)\) where \(g(t+\omega ,cx)=cg(t,x)\) and \(h\in AA_{0,c}(X,X)\). Assume
-
(a)
\(\sup_{t\in \mathbb{R}}\|c^{\land }(-t)f(t,x)\|<\infty \) for all \(x\in X\).
-
(b)
\(f_{t}(z):=c^{\land }(-t)f(t,c^{\land }(t)z)\) is uniformly continuous for z in any bounded subset \(K\subset X\) uniformly in \(t\in \mathbb{R}\); that is, given \(\epsilon >0\) and \(K\subset X\) bounded, there exists \(\delta >0\) such that \(x,y\in K\) and \(\|x-y\|< \delta \) imply that \(\|f_{t}(x)-f_{t}(y)\|\leq \epsilon \) for all \(t\in \mathbb{R}\).
-
(c)
\(h_{t}(x):=c^{\land }(-t)h(t,c^{\land }(t)x)\) is uniformly continuous for x in any bounded set of X uniformly in \(t\in \mathbb{R}\) and
$$ \lim_{T\to \infty }\frac{1}{2T} \int _{-T}^{T} \bigl\Vert h_{t}(x) \bigr\Vert \,dt=0 $$for x in any bounded subset of X.
If \(\varphi \in PP_{\omega c}(X)\), then \(f(\cdot ,\varphi (\cdot )) \in PP_{\omega c}(X)\).
Proof
Let \(\varphi (t)=\alpha (t)+\beta (t)\) with \(\alpha \in P_{\omega c}( \mathbb{R},X)\) and \(\beta \in AA_{0,c}(X)\). Then we have
By [3, Theorem 2.11] we have that \(G(t)=g(t,\alpha (t))\) belongs to \(P_{\omega c}(\mathbb{R},X)\). On the other hand, note that \(\phi (t):=c^{\land }(-t)\varphi (t)\) and \(\phi _{1}(t):=c^{\land }(-t) \alpha (t)\) are bounded by definition and Proposition 2.17 respectively. From here we can choose \(K\subset X\) bounded such that \(\phi ([-T,T]), \phi _{1}([-T,T])\subset K\). Under assumption \((b)\), \(c^{\land }(-t)f(t,c^{\land }(t)\cdot )\) is uniformly continuous on the bounded set K uniform for \(t\in [-T,T]\), so given \(\epsilon >0\), there exists \(\delta :=\delta _{\epsilon ,K}\) such that \(\|\phi (t)-\phi _{1}(t) \|=\|c^{\land }(-t)\varphi (t)-c^{\land }(-t)\alpha (t)\|=\|c^{\land }(-t)\beta (t)\|\leq \delta \) implies that
for all \(t\in [-T,T]\). Then we have that
Since \(\beta \in AA_{0,c}(X)\), Lemma 2.3 yields for the above δ that
From here we can conclude that \(F\in AA_{0,c}(X)\).
Finally, we prove that \(H\in AA_{0,c}(X)\). Let \(\phi (t):=c^{\land }(-t) \alpha (t)\) and \(I=\phi ([-T,T])\). Then ϕ is uniformly continuous in \([-T,T]\), and therefore I is compact in X. Let \(\epsilon >0\). Then, for every \(\delta =\delta (\epsilon )>0\), there exist finite open balls \(O_{k}\) (\(k=1,2,\ldots,m\)) with centers in \(x_{k}\in I\) respectively such that \(I\subset \bigcup _{k=1}^{m}O_{k}\). Then, by the uniform continuity of \(c^{\land }(-t)h(t,c^{\land }(t)\cdot )\), we have that
The set \(B_{k}:=\{t\in [-T,T]:\phi (t)\in O_{k}\}\) is open in \([-T,T]\) and \([-T,T]=\bigcup _{k=1}^{m}B_{k}\). Let
Then \(E_{i}\cap E_{j}=\emptyset \) when \(i\neq j\), \(1\leq i,j\leq m\). Note that
It follows from (2.4) that \(\{t\in [-T,T]:\|c^{\land }(-t)[h(t, \alpha (t))-h(t,c^{\land }(t)x_{k})]\|\geq \frac{\epsilon }{2} \}\) are empty for \(k=1,\ldots,m\). Therefore
Since \(h(t,c^{\land }(t)x_{k})\in AA_{0,c}(X,X)\) by \((c)\), we have that
and therefore
that is, \(H\in AA_{0,c}(X)\). To summarize, we have proved that \(f(\cdot ,\varphi (\cdot ))\in PP_{\omega c}(X)\). □
Next, we present another composition theorem.
Theorem 2.25
Let \(f(t,x)=g(t,x)+h(t,x)\), where \(g(t+\omega ,cx)=cg(t,x)\) and \(h\in AA_{0,c}(X,X)\). Assume the following:
-
(a)
\(h_{t}(x):=c^{\land }(-t)h(t,c^{\land }(t)x)\) is uniformly continuous for x in any bounded set of X uniformly in \(t\in \mathbb{R}\) and
$$ \lim_{T\to \infty }\frac{1}{2T} \int _{-T}^{T} \bigl\Vert c^{\land }(-t)h \bigl(t,c^{ \land }(t)x\bigr) \bigr\Vert \,dt=0 $$for x in any bounded subset of X.
-
(b)
There exists a nonnegative bounded function \(L_{f}(t)\) such that
$$ \bigl\Vert f(t,x)-f(t,y) \bigr\Vert \leq L_{f}(t) \Vert x-y \Vert ,\quad t\in \mathbb{R}, x,y\in X. $$(2.5)
If \(\varphi \in PP_{\omega c}(X)\), then \(f(\cdot ,\varphi (\cdot )) \in PP_{\omega c}(X)\).
Proof
Let \(\varphi (t)=\alpha (t)+\beta (t)\) with \(\alpha \in P_{\omega c}( \mathbb{R},X)\) and \(\beta \in AA_{0,c}(X)\). Then we have
Note that
where we have used that \(L_{f}(t)\leq L_{f}\) and the fact that \(\beta \in AA_{0,c}(X)\). It follows that \(F\in AA_{0,c}(X)\). On the other hand, by [3, Theorem 2.11] we have that \(G(t)=g(t, \alpha (t))\) belongs to \(P_{\omega c}(\mathbb{R},X)\). Finally, we prove that \(H\in AA_{0,c}(X)\). From Proposition 2.17 we have that \(K:=\{c^{\land }(-t)\alpha (t):t\in \mathbb{R}\}\) is relatively compact in X. Let \(\epsilon >0\). Then, for every \(\delta >0\), there exist \(x_{1},\ldots,x_{k}\in I\) such that
Consequently, given \(t\in \mathbb{R}\) we can choose \(j\in \{1,\ldots,k\}\) such that
Since \(h_{t}(\cdot )=c^{\land }(-t)h(t,c^{\land }(t)\cdot )\) is uniformly continuous on K uniformly for \(t\in \mathbb{R}\), then taking \(\delta =\delta (\frac{\epsilon }{2})\) we obtain that
uniformly \(t\in \mathbb{R}\). From here, we can conclude that
On the other hand, since
on the bounded subsets of X, then
Thus there exists \(N\in {\mathbb{N}}\) such that for all \(t\geq N\) we have that
Next, for all \(t\geq N\) and some \(j=1,2,\ldots,k\), we have
Hence
Consequently, \(f(\cdot ,\varphi (\cdot ))\in PP_{\omega c}(X)\). □
3 Applications to abstract integral and differential equations in Banach spaces
Consider the integral equation (see [21])
where f and R satisfy the following hypotheses.
-
(H1)
\(f(t,x)=g(t,x)+h(t,x)\), where \(g(t+\omega ,cx)=cg(t,x)\) and \(h\in AA_{0,c}(X,X)\) and satisfies
$$ \bigl\Vert f(t,x)-f(t,y) \bigr\Vert \leq L_{f} \Vert x-y \Vert ,\quad t\in \mathbb{R}, x,y\in X, $$where \(L_{f}>0\).
-
(H2)
\(h_{t}(x):=c^{\land }(-t)h(t,c^{\land }(t)x)\) is uniformly continuous for x in any bounded set of X uniformly in \(t\in \mathbb{R}\) and
$$ \lim_{T\to \infty }\frac{1}{2T} \int _{-T}^{T} \bigl\Vert c^{\land }(-t)h \bigl(t,c^{ \land }(t)x\bigr) \bigr\Vert \,dt=0 $$for x in any bounded subset of X.
-
(H3)
The kernel R satisfies the inequality
$$ \bigl\Vert R(t,s) \bigr\Vert \leq Mk(t-s),\quad t\geq s,M>0, $$where \(k^{\sim }(t)=c^{\land }(-t)k(t)\in L^{1}([0,\infty ))\).
-
(H4)
\(R(t,s)\) is bi-periodic in the sense of
$$ R(t+\omega ,s+\omega )=R(t,s),\quad t\geq s. $$(3.2)
Note that, for an arbitrary periodic function a, the kernel defined by the following relation
satisfies hypothesis (H4).
Theorem 3.1
Assume that (H1)–(H4) hold. Then, if \(L_{f}M\|k^{\sim }\|_{1}<1\), the integral equation (3.1) has a unique \((\omega ,c)\)-pseudo periodic solution.
Proof
We define \(\mathcal{G}:PP_{\omega c}(X)\to PP_{\omega c}(X)\) by
for \(u\in PP_{\omega c}(X)\) and \(t\in \mathbb{R}\).
First, we prove that operator \(\mathcal{G}\) is well defined. Indeed, let \(\varphi (\cdot )=f(\cdot ,u(\cdot ))\). By Theorem 2.25, we have that \(\varphi \in PP_{\omega c}(X)\). Then
Now, since \(\varphi \in PP_{\omega c}(X)\), there exist functions \(\varphi _{1}\in P_{\omega c}(\mathbb{R},X)\) and \(\varphi _{2}\in AA _{0,c}(X)\) such that \(\varphi =\varphi _{1}+\varphi _{2}\). Then we can split \(\mathcal{G}=\mathcal{G}_{1}+\mathcal{G}_{2}\) where
First, we prove that \(\mathcal{G}_{1}\in P_{\omega c}(\mathbb{R},X)\). By (H4) we have that
It follows that \(\mathcal{G}_{1}\in P_{\omega c}(\mathbb{R},X)\).
Next, we prove that \(\mathcal{G}_{2}\in AA_{0, c}(X)\), that is,
By (H3) we have that
Since \(\varphi _{2}\in AA_{0,c}(X)\), the conclusion follows from convolution Theorem 2.21.
Therefore \(\mathcal{G}(PP_{\omega c}(X))\subset PP_{\omega c}(X)\). Now, if \(u,v\in PP_{\omega c}(X)\), we have
It follows from the Banach fixed point theorem that there exists a unique \(u\in PP_{\omega c}(X)\) such that \(\mathcal{G}u=u\), that is, \(u(t)=\int _{-\infty }^{t}R(t,s)f(s,u(s)) \,ds\). □
The previous results can be applied to obtain \((\omega ,c)\)-pseudo periodic solutions to the semilinear evolution equation
We assume the following condition.
-
(H5)
The operator A generates an exponentially stable \(C_{0}\)- semigroup \((T(t))_{t\geq 0}\), that is, there exist constants \(M>0\) and \(\alpha >0\) such that \(\|T(t)\|\leq Me^{-\alpha t}\) for each \(t\geq 0\) and \(c>e^{-\alpha }\).
Thus, we have the following theorem.
Theorem 3.2
Assume that (H1) and (H5) hold. Then (3.3) has a unique \((\omega ,c)\)-pseudo periodic solution whenever \(ML_{f}<|k^{\sim }|^{-1}\), where \(k^{\sim }(t)=c^{\land }(-t)e^{-\alpha t}\).
4 Lasota–Wazewska model with unbounded oscillating and ergodic production of red cells
The theory presented above can be extended to the semilinear abstract problem with delay
where \(\tau >0\) and for which a mild solution is a solution of the integral equation
Here, we need to know a history φ. Note that \(y(t-\tau )= \varphi (t-\tau )\) for \(t\in [0,\tau ]\), and if y is \((\omega ,c)\)-pseudo periodic, then \(y(t-\tau )\) also is. As an example, we study the important Lasota–Wazewska model with \((\omega ,c)\)-pseudo periodic variable coefficients.
The Lasota–Wazewska model is an autonomous differential equation of the form
Wazewska–Czyzewska and Lasota [24] proposed this model to describe the survival of red blood cells in the blood of an animal. In this equation, \(y(t)\) describes the number of red cells bloods in the time t, \(\delta > 0\) is the probability of death of a red blood cell, h and γ are positive constants related to the production of red blood cells by unity of time, and τ is the time required to produce a red blood cell.
In this section, we study the following model:
where \(\tau >0\), \(h(t)\) and \(a(t)\) are continuous and positive functions. Equation (4.2) models several situations in the real life, see, for example, [7, 8, 11, 18] and the references therein. We are looking for positive \((\omega ,c)\)-pseudo periodic solutions for certain \(\omega >0\), \(c>0\). Let \(f(t,y)=h(t)e ^{-a(t)y}\) and assume:
-
(a)
\(\tau \leq \omega \);
-
(b)
h is \((\omega ,c)\)-pseudo periodic;
-
(c)
a is \((\omega ,\frac{1}{c})\)-pseudo periodic;
-
(d)
\(c>e^{-\delta \omega } \);
-
(e)
\(\|ah\|_{\infty }<\delta \).
Remember that \(y(\cdot )\in PP_{\omega c}(X)\) implies that \(y(\cdot - \tau )\in PP_{\omega c}(X)\).
By \((d)\) and \((e)\) we have that \(f(t,y)=h(t)e^{-a(t)y}\) satisfies the hypotheses of Theorem 3.2 since
for \(y_{1},y_{2}>0\), and its \((\omega ,c)\)-pseudo periodic part g satisfies
By the variation of constant formula
and hence \(y(0)>0\) implies that \(y(t)>0\). Note that condition \((d)\) is necessary for positive c-periodic solutions y. In fact, (4.5) and \(h(t)>0\) imply \(y(t)>e^{-\delta t}y(0)\), which evaluated at \(t=\omega \) implies \((d)\) since \([c-e^{-\delta \omega }]y(0)>0\).
Moreover, taking \(y(0)=\int _{-\infty }^{0}e^{\delta s}f(s,y(s-\tau ))\,ds \), which is well defined, we have that y satisfies
Then by Theorem 3.2 we have that (4.6) has a unique solution \(y^{\ast }\) which belongs to \(PP_{\omega c}(X)\). Hence \(y^{\ast }\) is also a solution of type \(PP_{\omega c}(X)\) of equation (4.2). Moreover, \(y^{\ast }\) is exponentially stable. Indeed, for any solution y of (4.2), \(z=y-y^{\ast }\) satisfies
Note that
Then, taking \(\|ah\|_{\infty }<\delta \), z verifies that
for \(t\geq t_{0}\geq 0\) and \(0<\alpha <\delta -\|ah\|_{\infty }\).
We have proved the following theorem.
Theorem 4.1
Assume that conditions \((a)\) to \((e)\) hold. Then the Lasota–Wazewska model has a unique \((\omega ,c)\)-pseudo periodic solution which is exponentially stable.
References
Ait Dads, E., Ezzinbi, K., Arino, O.: Pseudo almost periodic solutions for some differential equations in a Banach space. Nonlinear Anal. 28(7), 1145–1155 (1997)
Alvarez, E., Castillo, S., Pinto, M.: \((\omega ,c)\)-asymptotically periodic functions, first order Cauchy problem and Lasota–Wazewska model with unbounded oscillating production of red cells. Submitted
Alvarez, E., Gómez, A., Pinto, M.: \((\omega ,c)\)-Periodic functions and mild solutions to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 2018(16), 1 (2018)
Cerda, E.A., Tirapegui, E.L.: Faraday’s instability in viscous fluid. J. Fluid Mech. 368, 195–228 (1998)
Coddington, E., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill, New York (1955)
Conca, C., Vanninathan, M.: Homogenization of periodic structures via Bloch decomposition. SIAM J. Appl. Math. 57(6), 1639–1659 (1997)
Coronel, A., Maulén, C., Pinto, M., Sepúlveda, D.: Almost automorphic delayed differential equations and Lasota–Wazewska model. Discrete Contin. Dyn. Syst. 37(4), 1959–1977 (2017)
Duan, L., Huang, L., Chen, Y.: Global exponential stability of periodic solutions to a delay Lasota–Wazewska model with discontinuous harvesting. Proc. Am. Math. Soc. 144, 561–573 (2016)
Faraday, M.: On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Philos. Trans. R. Soc. Lond. 121, 299–340 (1831)
Feckan, M., Rong, J.: Periodic impulsive fractional differential equations. Philos. Trans. R. Soc. Lond. 8(1), 482–496 (2019)
Gopalsamy, K., Trofimchuk, S.I.: Almost periodic solutions of Lasota–Wazewska-type delay differential equation. J. Math. Anal. Appl. 237, 106–127 (1999)
Hasler, M.: Bloch-periodic generalized functions. Novi Sad J. Math. 46(2), 135–143 (2016)
Hasler, M., N’Guérékata, G.M.: Bloch-periodic functions and some applications. Nonlinear Stud. 21(1), 21–30 (2014)
Kreulich, J.: Asymptotic behavior of evolution systems in arbitrary Banach spaces using general almost periodic splittings. Adv. Nonlinear Anal. 8(1), 1–28 (2019)
Liang, J., Zhang, J., Xiao, T.-J.: Composition of pseudo almost automorphic and asymptotically almost automorphic functions. J. Math. Anal. Appl. 340, 1493–1499 (2008)
Lizama, C., N’Guérékata, G.M.: Bounded mild solutions for semilinear integro differential equations in Banach spaces. Integral Equ. Oper. Theory 68(2), 207–227 (2010)
Mathieu, E.: Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique. J. Math. Pures Appl. 2(13), 137–203 (1968)
Mitkowski, P.J., Ogorzalek, M.J.: Evolution of density of states for delay blood cell production model. In: International Symposium on Nonlinear Theory and Its Applications (NOLTA 2010) Kraków, pp. 71–74 (2010)
Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1995)
Orive, R., Zuazua, E., Pazoto, A.: Asymptotic expansion for damped wave equations with periodic coefficients. Math. Models Methods Appl. Sci. 11(7), 1285–1310 (2001)
Pinto, M.: Pseudo almost periodic solutions of neutral integral and differential equations with applications. Nonlinear Anal. 72, 4377–4383 (2010)
Pinto, M.: Ergodicity and oscillations. In: Conference in Universidad Católica del Norte (2014)
Rajchenbach, J., Clamond, D.: Faraday waves: their dispersion relation, nature of bifurcation and wavenumber selection revisited. J. Fluid Mech. 777, R2 (2015)
Wazewska-Czyzewska, M., Lasota, A.: Mathematical problems of the red-blood cell system. Ann. Polish Math. Soc. Ser. III, Appl. Math. 6, 23–40 (1976)
Xia, Z.: Asymptotically periodic solutions of semilinear fractional integro-differential equations. Adv. Differ. Equ. 2014, 9, 1–19 (2014)
Xia, Z.: Weighted pseudo periodic solutions of neutral functional differential equations. Electron. J. Differ. Equ. 2014, 191, 1–17 (2014)
Xia, Z.: Weighted Stepanov-like pseudoperiodicity and applications. Abstr. Appl. Anal. 2014, Article ID 980869, 1–14 (2014)
Yuan, R.: Pseudo-almost periodic solutions of second-order neutral delay differential equations with piecewise constant argument. Nonlinear Anal. 41, 871–890 (2000)
Zhang, C.: Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl. 181, 62–76 (1994)
Zhang, C.: Pseudo almost periodic solutions of some differential equations II. J. Math. Anal. Appl. 192, 543–561 (1995)
Zounes, R., Rand, R.: Transition curves for the quasi-periodic Mathieu equation. SIAM J. Appl. Math. 58(4), 1094–1111 (1998)
Acknowledgements
Thanks to Colciencias, Diubb, and Fondecyt.
Availability of data and materials
Not applicable.
Funding
E. Alvarez is partially supported by Colciencias, Grant Number 121556933876, S. Castillo is partially supported by Diubb 164408 3/R, and M. Pinto is partially supported by Fondecyt Grant Number 1170466.
Author information
Authors and Affiliations
Contributions
The authors declare that the work was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Alvarez, E., Castillo, S. & Pinto, M. \((\omega ,c)\)-Pseudo periodic functions, first order Cauchy problem and Lasota–Wazewska model with ergodic and unbounded oscillating production of red cells. Bound Value Probl 2019, 106 (2019). https://doi.org/10.1186/s13661-019-1217-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1217-x