- Research
- Open access
- Published:
Multiple solutions for quasilinear elliptic problems with concave-convex nonlinearities in Orlicz–Sobolev spaces
Boundary Value Problems volume 2019, Article number: 142 (2019)
Abstract
Using variational arguments, we establish the existence of two nontrivial solutions for quasilinear elliptic problems in Orlicz–Sobolev spaces, where the nonlinear terms exhibit the combined effects of concave and convex without the Ambrosetti–Rabinowitz type condition.
1 Introduction
In this article, we investigate a class of nonlinear problems in the Orlicz–Sobolev setting:
where Ω is a bounded domain with smooth boundary ∂Ω, λ is a positive constant. \(a(t)\) is such that
is an odd, increasing homeomorphism from \(\mathbb{R}\) to \(\mathbb{R}\). g is an odd, increasing homeomorphism from \(\mathbb{R}\) to \(\mathbb{R}\) with \(( \varphi_{0} -1 ) \) sublinear (see condition \(( g_{1} )\)), \(f \in \mathrm{C}( \overline{\varOmega}\times \mathbb{R},\mathbb{R})\), \(f ( x,0 ) =0 \) with \(( \varphi^{0} -1 ) \) superlinear near infinity (see condition \(( f_{3} )\)).
When \(a ( \vert t \vert ) t= | t|^{2} t\) with \(1< p <\infty\), problem (1.1) reads as follows:
The key hypothesis imposed on f is the well-known Ambrosetti–Rabinowitz type condition (AR-condition for short) [1]: there exist \(\tau>p\), \(t_{0} >0\) such that
It is noted that the AR-condition ensures that f is \((p-1)\) superlinear at infinity.
However, the AR-condition is restrictive for many nonlinearities. Consequently, there have been many efforts to remove (1.3). In the case of \(p=2\), Miyagaki and Souto [2] introduced the following monotone condition: there is \(s_{0} >0\) such that
Li and Yang [3] developed (1.4) to the case of \(p>1\). Meanwhile, Li and Yang [3] proved that (1.4) implied the following weaker condition: there is \(C_{*} >0\) such that, for all \(s\in[0,1]\),
which is due to Jeanjean [4] and is used in [5, 6] and so on.
Ambrosetti, Brezis, and Cerami [7] initiated the study of semilinear elliptic problems with concave and convex nonlinearities. They investigated (1.1) with nonlinearities of the type \(\lambda_{u}^{p}+ u^{q}\), \(0< q<1 <p\) and obtained the existence of two positive solutions for small \(\lambda>0\) by using sub- and super-solutions. Wu [8] studied problem (1.1) in the case when nonlinear terms exhibit \(u^{p}+ \lambda f ( x )u^{q} \) with \(0< q<1 <p< 2^{*} \) and obtained two positive solutions by Nehari manifold. Later, Wu [9] considered semilinear problems (1.1) in \(H^{1} ( \mathbb{R}^{N} ) \) and established existence results. Papageorgiou and Rocha [10] considered a p-Laplacian problem with nonlinearities of the form \(m ({x} ) \vert u \vert ^{r-2}u+ f ( x,u ) \) with \(1< r < p<\infty\) when f is \(( p-1 )\) superlinear near infinity but does not satisfy the AR-condition. They employed variational approach and the Ekeland variational principle [11] to show the existence of two nontrivial solutions.
Divergence operators \(-\operatorname{div}( a ( \vert \nabla u \vert ) \vert \nabla u \vert ) \) involved in problem (1.1) are more general than p-Laplacian operators, please see [12,13,14,15,16,17,18,19,20,21,22]. Such operators have been intensively studied due to numerous and relevant applications in many fields such as plasticity [23], eletrorheological fluids [24], image processing [25]. When the nonlinear terms satisfy the AR-condition, problems of type (1.1) have been considered in [23, 26].
In the case of \(\lambda=0\), Chung [27], Carvalho et al. [28] studied problem (1.1) when f is \(( \varphi^{0} -1)\) superlinear near infinity without the AR-condition. By variational methods, Chung [27], Carvalho et al. [28] established existence results under different assumptions imposed on f.
In this paper, motivated by [12,13,14, 16,17,18], we investigate a class of quasilinear elliptic problems (1.1) with concave and convex nonlinearities which do not satisfy the AR-condition in Orlicz–Sobolev spaces. Using functional techniques and variational approach, combined with the Ekeland variational principle, we establish existence results of at least two nontrivial solutions for \(\lambda>0 \) small enough. We emphasize that the extension from p-Laplacian operators to \(-\operatorname{div}( a ( \vert \nabla u \vert ) \nabla u )\) is interesting and nontrivial, since the divergence operators \(-\operatorname{div}( a ( \vert \nabla u \vert ) \nabla u )\) involved in (1.1) have a more complicated structure, for example, they are non-homogeneous. In the case of \(\lambda=0\), problem (1.1) is studied in [27, 28], but their hypotheses do not apply when the concave terms are present. Furthermore, multiplicity results are given in this paper, while [27, 28] are concerned with existence of a nontrivial weak solution under our assumptions. Summarily, our results complement and extend previous studies such as [10, 27, 28].
2 Preliminaries
\(\varPhi: \mathbb{R}\rightarrow [0,\infty)\) is called an \(\mathcal{N}\)-function [29,30,31] provided that Φ is even, continuous, and convex with \(\varPhi ({t} ) >0\) for \(t>0\), \(\frac{ \varPhi ({t} )}{t} \rightarrow0\) as \(t\rightarrow0\), and \(\frac{ \varPhi ({t} )}{t} \rightarrow\infty\) as \(t\rightarrow\infty\). Its complementary function Φ̃ is defined as
then Φ̃ is also an \(\mathcal{N}\)-function.
Young’s inequality holds true:
If \(\varPhi_{1}\), \(\varPhi_{2}\) are two \(\mathcal{N}\)-functions, we say that \(\varPhi_{1} \) increases more slowly than \(\varPhi_{2}\) near infinity (in short, \(\varPhi_{1} \prec \varPhi_{2} (\infty)\)) if there exist two positive constants K, \(t_{0}\) such that \(\varPhi_{1} ( t ) \leq \varPhi_{2} ( K t )\), \(\forall t \geq t_{0}\). We say that \(\varPhi_{1}\) increases essentially more slowly than \(\varPhi_{2}\) near infinity (in short, \(\varPhi_{1} \prec \prec \varPhi_{2} (\infty)\)) provided \(\lim_{t\rightarrow\infty} \frac{ \varPhi_{1} (kt)}{ \varPhi_{2} (t)} =0\), \(\forall k>0\).
Φ is said to satisfy \(\Delta_{ 2}\)-condition near infinity (in short, \(\varPhi\in\Delta _{2} (\infty)\)) provided that there exist positive constants K, \(t_{0}\) such that
\(\varPhi\in\nabla_{2} ( \infty ) \) provided that \(\tilde{\varPhi}\in \Delta _{2} (\infty)\).
For a measurable function \(u : \varOmega\rightarrow \mathbb{R}\), denoted as \(u\in \tilde{L}\), we define Orlicz space \(L_{\varPhi} ( \varOmega ) \) by
endowed with Luxemburg norm
Then \((L_{\varPhi} ( \varOmega ), \Vert \cdot \Vert _{ ( \varPhi )})\) forms a Banach space.
In the sequel, we always assume that [30]
The Sobolev conjugate \(\varPhi_{*} \) of Φ is defined by
Let \(\varPhi_{*} ( -t ) = \varPhi_{*} ( t )\) for all \(t < 0\). Then \(\varPhi_{*}\) is an \(\mathcal{N}\)-function and \(\varPhi \prec\prec \varPhi_{*} (\infty)\) (see [30, 32]).
An Orlicz–Sobolev space \(W^{1, \varPhi} ( \varOmega )\) is defined by
endowed with
Then \((W^{1, \varPhi} ( \varOmega ), \Vert \cdot \Vert _{W^{1, \varPhi}})\) forms a Banach space.
Let \(W_{0}^{1, \varPhi} ( \varOmega )\) be the closure of \(C_{c}^{\infty} (\varOmega)\) in \(W^{1, \varPhi} ( \varOmega )\). By Lemma 5.7 in [33], there exists a best positive constant \(\lambda_{ 1} \) such that
Therefore, \(W_{0}^{1, \varPhi} ( \varOmega )\) can be reformed by an equivalent norm \(\Vert u \Vert := \Vert \nabla u \Vert _{( \varPhi )}\). If \(\varPhi\in\Delta_{ 2} ( \infty ) \cap \nabla_{2} ( \infty )\), then \(L_{ \varPhi} ( \varOmega )\)), \(W^{1, \varPhi} ( \varOmega )\), \(W_{0}^{1, \varPhi} ( \varOmega )\) are separable and reflexive Banach spaces (refer [30]).
In this paper, we always assume \(\varPhi ({t} )= \int_{0}^{t} \varphi ( s ) \,ds\), \(\forall t\in \mathbb{R}\), and
We note that (\(\varPhi _{1}\)) yields \(\varPhi\in\Delta_{ 2} ( \infty ) \cap \nabla_{2} ( \infty )\) (see [29]).
Lemma 2.1
([23])
For an \(\mathcal{N}\)-function Φ satisfying \(1\leq \varphi_{0} \leq \varphi^{0} <\infty \) for all \(t>0\) and for some \(\varphi_{0}\), \(\varphi^{0}\). Then
-
(1)
\(\Vert u \Vert _{( \varPhi )}^{\varphi_{0}} \leq \int_{\varOmega} \varPhi ({u} )\,dx\leq \Vert u \Vert _{( \varPhi )}^{\varphi^{0}}\) (\(\Vert u \Vert _{ ( \varPhi )} >1\)).
-
(2)
\(\Vert u \Vert _{( \varPhi )}^{\varphi^{0}} \leq \int_{\varOmega} \varPhi ({u} )\,dx\leq \Vert u \Vert _{( \varPhi )}^{\varphi_{0}}\) (\(0\leq \Vert u \Vert _{ ( \varPhi )} \leq1\)).
Lemma 2.2
([30])
Let Ω be an arbitrary domain. Then \(W_{0}^{1, \varPhi} (\varOmega) \hookrightarrow L_{ \varPhi_{*}} ( \varOmega ) \). Moreover, if \(\varOmega_{0}\) is a bounded subdomain of Ω, then the imbedding \(W_{0}^{1, \varPhi} (\varOmega) \hookrightarrow L_{ B} ( \varOmega_{0} ) \) exists and is compact for any \(\mathcal{N}\)-function B with \(B \prec\prec \varPhi_{*} (\infty)\).
Definition 2.1
([34])
Let \(( X, \Vert \cdot \Vert )\) be a real Banach space, \(J \in C^{1} (X, \mathbb{R} )\). We say J satisfies the \(C_{c}\) condition if any sequence \(\{ u_{n} \}\subset X\) such that \(J( u_{n} )\rightarrow c\) and \(\Vert J ' ( u_{n} ) \Vert _{*} (1+ \Vert u_{n} \Vert )\rightarrow0\) as \(n \rightarrow\infty\) has a convergent subsequence. \(\{ u_{n} \}\) is called a Cerami sequence at the level \(c\in \mathbb{R}\).
Lemma 2.3
([35])
Let \(( X, \Vert \cdot \Vert )\) be a real Banach space, \(J \in C^{1} (X, \mathbb{R} )\) satisfies the \(C_{c}\) condition for any \(c >0\), \(J ( \theta ) =0\), and the following conditions hold:
-
(1)
There exist two positive constants ρ, η such that \(J ( u ) \geq\eta\) for any \(u\in X\) with \(\Vert u \Vert =\rho\).
-
(2)
There exists a function \(\phi\in X\) such that \(\Vert \phi \Vert >\rho\) and \(J ( \phi ) <0\).
Then the functional J has a critical value \(c\geq\eta\), i.e., there exists \(u\in X\) such that \(J ' ( u ) =\theta\) and \(J ( u ) =c\).
We call \(u\in W_{0}^{1, \varPhi} ( \varOmega ) \) a weak solution of problem (1.1) if, for all \(v\in W_{0}^{1, \varPhi} (\varOmega)\),
Let \(( X, \Vert \cdot \Vert _{X} )\), \(( Y, \Vert \cdot \Vert _{Y} )\) be Banach spaces. \(X \hookrightarrow Y\) means \(( X, \Vert \cdot \Vert _{X} )\) is continuously imbedded in \(( Y, \Vert \cdot \Vert _{Y} )\). \(X \hookrightarrow\hookrightarrow Y \) means \(( X, \Vert \cdot \Vert _{X} )\) is compactly imbedded in \(( Y, \Vert \cdot \Vert _{Y} )\).
3 Main results
For convenience, we give some conditions.
- \(( g_{1} )\) :
-
\(G\prec \varPhi ({\infty} )\), \(\lim_{t\rightarrow0} \frac{ \varPhi ({t} )}{ G ({t} )} =0\), where \(G ( t ) := \int_{0}^{t} g ( s )\,ds\), \(\forall t\in \mathbb{R}\).
- \(( f_{1} )\) :
-
\(\vert f ( x,t ) \vert \leq C ( 1+ h ( \vert t \vert ) )\), \(\forall(x,t)\in\varOmega\times \mathbb{R}\),
where C is a positive constant, \(h: \mathbb{R} \rightarrow \mathbb{R}\) is an odd, increasing homeomorphism from \(\mathbb{R}\) to \(\mathbb{R}\), \(H ( t ) := \int_{0}^{t} h ( s )\,ds\) satisfies \(H \prec\prec \varPhi_{* }(\infty)\) and \(h_{0} := \inf_{t>0} \frac{th ( t )}{H ({t} )} > \varphi^{0}\).
- \(( f_{2} )\) :
-
\(\mathop{\lim \sup}_{t\rightarrow0} \frac{ f ( x,t )}{ |\varphi ( t ) |} <\lambda_{ 1}\) uniformly for almost all \(x\in\varOmega\), where \(\lambda_{ 1}\) is defined in (2.1).
- \(( f_{3} )\) :
-
\(\lim_{| t|\rightarrow\infty} \frac{ f ( x,t )}{ | t|^{\varphi^{0} -2} t} =+\infty \) uniformly for almost all \(x\in\varOmega\).
- \(( f_{4} ) \) :
-
There exist \(D _{1} \geq1\) and \(\alpha(x) \in L^{1} (\varOmega)\) such that, for all \(s \in[0,1]\),
$$\overline{F} ({x,st} )\leq D _{1} \overline{F} ({x,t} )+ \alpha(x), \quad \forall ( x,t ) \in \varOmega\times \mathbb{R}, $$
where \(\overline{F} ({x,t} ):=tf ({x,t} ) - \varphi^{0} F ( x,t )\), \(F ({x,t} ) = \int_{0}^{t}f(x,s)\,ds\).
- \(( \varPhi_{2} ) \) :
-
There exists \(\beta ( x ) \in L^{1} ( \varOmega )\) such that, for all \(s \in[0,1]\),
$$\overline{\varPhi} ({st} )\leq D_{ 1} \overline{\varPhi} ({t} )+ \beta ( x ),\quad \forall ( x,t ) \in \varOmega\times \mathbb{R}, $$
where \(\overline{\varPhi} ({t} ) = \varphi^{0} \varPhi ( t ) -t\varphi ( t )\).
The main result of this paper is given by the following theorem.
Theorem 3.1
Given Φ satisfies \(( \varPhi_{1} ) \) and \(( \varPhi_{2} )\), g satisfies \(( g_{1} )\), f satisfies \(( f_{1} )\)–\(( f_{4} )\). Then there exists \(\lambda _{*} >0\) such that, for each \(\lambda\in (0, \lambda_{ *} )\), problem (1.1) has two nontrivial weak solutions.
Remark 3.1
From \(( g_{1} )\) and \(( f_{4} )\), it follows that \(W_{0}^{1, \varPhi} (\varOmega) \hookrightarrow\hookrightarrow L^{1} (\varOmega)\), \(W_{0}^{1, \varPhi} (\varOmega) \hookrightarrow\hookrightarrow L_{G} (\varOmega)\), and \(W_{0}^{1, \varPhi} (\varOmega) \hookrightarrow\hookrightarrow L_{H} (\varOmega)\).
For any \(\lambda>0\), we define \(\mathcal{J}_{\lambda}: W_{0}^{1, \varPhi} (\varOmega)\rightarrow \mathbb{R}\) by
Analogous to that in [32], we can deduce that \(\mathcal{J}_{\lambda} \in C^{1} ( W_{0}^{1, \varPhi} ( \varOmega ), \mathbb{R} )\), \(\mathcal{J}_{\lambda} ': W_{0}^{1, \varPhi} (\varOmega)\rightarrow ( W_{0}^{1, \varPhi} (\varOmega)^{*}\) and the derivative is given by, for all \(u,v \in W_{0}^{1, \varPhi} ( \varOmega )\),
So, critical points of the functional \(\mathcal{J}_{\lambda}\) are weak solutions of problem (1.1).
Lemma 3.2
Given that \(( \varPhi_{1} )\), \(( g_{1} )\), \(( f_{1} )\), and \(( f_{2} )\) hold, then there exist positive constants \(\lambda_{ *}\), ρ, η such that, for each \(\lambda\in (0, \lambda_{ *} )\), \(\mathcal{J}_{\lambda} ({u} )\geq \eta\) for any \(u \in W_{0}^{1, \varPhi} (\varOmega)\) with \(\Vert u \Vert =\rho\).
Proof
By conditions \(( f_{1} )\), \(( g_{1} )\) and Remark 3.1, there exists a positive constant \(C_{1}\) such that
Let \(\rho\in ( 0, \min \{ 1, {1} / {C_{1}} \} )\) for each \(u\in S_{\rho} :=\{u \in W_{0}^{1, \varPhi} ( \varOmega ): \Vert u \Vert =\rho\}\), (3.1) implies that \(\Vert u \Vert _{( G )} <1\), \(\int_{\varOmega} G ( u(x) )\,dx<1\), and \(\Vert u \Vert _{( H )} <1\).
From condition \(( f_{2} )\), we deduce that there exist \(\varepsilon_{0} \in(0, \lambda_{1} ) \), \(\delta >0\) such that
By \(( f_{1} )\), one has \(\vert F ( x,t ) \vert \leq C \vert t \vert +CH(t)\) for all \(x \in \varOmega\), \(\vert t \vert \geq\delta\). Since \(\frac{H(t)}{t}\) is increasing on \([ \delta,+\infty)\), we conclude \(\frac{ H(t)}{| t|} \geq \frac{H ( \delta )}{\delta} \) for \(\vert t \vert \geq\delta\). Combined with (3.2), we get
By Lemma 2.1 and (3.3), for all \(u\in S_{\rho}\),
Denote \(m ( \rho ) = \frac{\varepsilon_{0}}{\lambda_{1}} - C_{3} \rho^{h_{0} - \varphi^{0}}\), by \(h_{0} > \varphi^{0}\), we have \(m ( \rho ) \rightarrow \frac{\varepsilon_{0}}{\lambda_{1}} >0\) as \(\rho \rightarrow 0^{+}\). Therefore, we can choose \(\rho >0\) small enough such that \(m ( \rho ) > \frac{\varepsilon_{0}}{2 \lambda_{1}}\). Set \(\lambda_{*}:= \frac{\varepsilon_{0} \rho^{\varphi^{0}}}{4 \lambda_{1}} >0\), \(\eta =: \frac{\varepsilon_{0} \rho^{\varphi^{0}}}{4 \lambda_{1}} >0\). For all \(\lambda \in ( 0, \lambda_{*} )\) and \(u \in S_{\rho}\), applying (3.4), we obtain
□
Lemma 3.3
Given that \(( \varPhi_{1} )\), \(( g_{1} )\), and \(( f_{3} )\) hold. Then, for any \(\lambda >0\), \(\rho >0\), there exists a function \(u_{\lambda} \in W_{0}^{1, \varPhi} (\varOmega)\) such that \(\Vert u_{\lambda} \Vert >\rho\) and \(\mathcal{J}_{\lambda} ( u_{\lambda} ) <0 \).
Proof
Take a compact set \(S \subset \varOmega\) with positive measure, we can define \(u_{0} \in C_{c}^{\infty} (\varOmega)\) such that \(u_{0} ( x ) =1\) for \(x \in S\), \(0\leq u_{0} ( x ) \leq1\) for \(x \in \varOmega \) (please see [30]). Then \(u_{0} \in W_{0}^{1, \varPhi} (\varOmega)\).
By condition \(( f_{3} )\), we deduce that for \(M_{0} := \frac{2 \Vert u_{0} \Vert ^{\varphi^{0}}}{\mu S} >0\) there exists \(C_{ 1} >0\) such that
Let \(t >1 \) large enough such that \(\Vert t u_{0} \Vert >1\), by Lemma 2.1,
Due to \(\Vert u_{0} \Vert >0\), we see \(\mathcal{J}_{\lambda} ( t u_{0} )\rightarrow-\infty \) as \(t\rightarrow+\infty \).
Taking t large enough such that \(t> \max \{1, \frac{\rho+1}{ \Vert u_{0} \Vert }\}\), set \(u_{\lambda} =t u_{0}\), which completes the proof. □
Lemma 3.4
Given that \(( \varPhi_{1} )\), \(( g_{1} )\), and \(( f_{2} )\) hold. Then, for any \(\lambda >0\), \(\rho >0\), there exists a function \(\tilde{u}_{\lambda} \in W_{0}^{1, \varPhi} (\varOmega)\) such that \(\Vert \tilde{u}_{\lambda} \Vert <\rho\) and \(\mathcal{J}_{\lambda} ( \tilde{u}_{\lambda} )<0\).
Proof
Take a compact set \(\tilde{S}\subset \varOmega\) with positive measure, we can define \(\tilde{u}_{0} \in C_{c}^{\infty} (\varOmega)\) such that \(\tilde{u}_{0} ( x ) =1\) for \(x \in \tilde{S}\), \(0\leq \tilde{u}_{0} ( x ) \leq1\) for \(x \in \varOmega\) (please see [30]). Then \(\tilde{u}_{0} \in W_{0}^{1, \varPhi} (\varOmega)\).
We take \(t\in(0,\delta)\) (where δ is defined in (3.2)) such that \(\Vert t \tilde{u}_{0} \Vert <1\) and \(\Vert t \tilde{u}_{0} \Vert _{( G )} <1\). By (3.2), we have \(\vert F ( x,t \tilde{u}_{0} (x) ) \vert \leq (\lambda _{1} - \varepsilon_{0} ) \varPhi ( t \tilde{u}_{0} (x) )\) for all \(x \in \varOmega\). From Lemma 2.1 and (2.1), it follows
Due to \(( g_{1} )\), we can find \(t>0\) small enough such that for \(\Vert \tilde{u}_{\lambda} \Vert = \Vert t \tilde{u}_{0} \Vert <\rho\) and \(\mathcal{J}_{\lambda} ( t \tilde{u}_{0} )<0 \). □
Lemma 3.5
Given that \(( \varPhi_{1} )\), \(( \varPhi_{2} )\), \(( g_{1} )\), and \(( f_{1} )\)–\(( f_{4} )\) hold. Then, for each \(\lambda >0 \), the functional \(\mathcal{J}_{\lambda}\) satisfies \(C_{c}\) condition for any \(c >0\).
Proof
Given \(\lambda >0\), \(c >0\). Let \(\{ u_{n} \}\subset W_{0}^{1, \varPhi} (\varOmega)\) be a Cerami sequence at the level c of \(\mathcal{J}_{\lambda}\), i.e.,
First, we shall show that \(\{ u_{n} \}\) is bounded.
Otherwise, there is a subsequence, still denoted by \(\{ u_{n} \}\), such that \(\lim_{n\rightarrow\infty} \Vert u_{n} \Vert =\infty\) and \(\Vert u_{n} \Vert >1\) (\(\forall n\in \mathbb{N}\)).
We denote \(w_{n} (x):= \frac{u_{n} (x)}{ \Vert u_{n} \Vert }\), \(x \in \varOmega\), \(n =1,2,\ldots \) . Then \(\{ w_{n} \}\subset W_{0}^{1, \varPhi} (\varOmega)\) and \(\Vert w_{n} \Vert =1 \) for every \(n\in \mathbb{N}\). Applying the Eberlein–Smulian theorem, we may assume that there exists \(w \in W_{0}^{1, \varPhi} (\varOmega)\) such that \(w_{n}\) converges weakly to w. From Remark 3.1, it follows that
Claim: \(w ( x ) =0\) a.e. \(x \in \varOmega\).
We suppose \(\mu \varOmega_{0} := \mu \{ x \in \varOmega:w ( x ) \neq0 \}>0\). Given \(x \in \varOmega_{0} \), (3.7) implies that \(| u_{n} ( x ) |= | w_{n} ( x ) |\cdot \Vert u_{n} \Vert \rightarrow\infty\) as \(n\rightarrow\infty\). Furthermore, by \(( f_{3} )\) we obtain that, for given \(x \in \varOmega_{0} \),
From \(( f_{3} )\) and the continuity of F on \(\overline{\varOmega} \times \mathbb{R}\), there exists a constant \(C_{ 1} \) such that
which implies that
From (3.5), it follows that
Dividing the above equality by \(\Vert u_{n} \Vert ^{\varphi^{0}} \), by Lemma 2.1 and \(\Vert u_{n} \Vert >1\),
By Fatou’s lemma and (3.7)–(3.10),
Consequently, we get a contradiction, which implies that \(w ( x ) =0\) a.e. \(x \in \varOmega\).
Since \(\mathcal{J}_{\lambda} ( t u_{n} )\) is continuous on \([ 0,1 ]\) for each \(n\in \mathbb{N}\), there exists \(t_{n} \in [ 0,1 ]\) such that \(\mathcal{J}_{\lambda} ( t_{n} u_{n} ) = \max_{t\in[0,1]} \mathcal{J}_{\lambda} ( t u_{n} )\). Due to \(\Vert \mathcal{J}_{\lambda} ' ( u_{n} ) \Vert _{*} (1+ \Vert u_{n} \Vert )\rightarrow0\), we deduce
Take \(\{ s_{k} \}_{k=1}^{\infty}\subset(1,\infty)\) with \(s_{k} \rightarrow+\infty\) as \(k\rightarrow\infty\). Then, for each \(n,k \in \mathbb{N}\), one has \(\Vert s_{k} w_{n} \Vert = s_{k} >1\). From (3.6) and the claim, combining conditions \(( g_{1} ) \) and \(( f_{1} ) \), we deduce
and
Due to \(\lim_{n\rightarrow\infty} \Vert u_{n} \Vert =\infty\), given \(k\in \mathbb{N}\), there exists \(n_{k} \geq k\). For all \(n\geq n_{k} \geq k\), one has \(\Vert u_{n} \Vert > s_{k}\), i.e., \(0< \frac{s_{k}}{ \Vert u_{n} \Vert } <1\).
From \(\Vert s_{k} w_{n} \Vert >1\), Lemma 2.1 and (3.12), (3.13), for large \(n\in \mathbb{N}\),
Let \(s_{k} = \Vert u_{k} \Vert ^{\gamma}>1\), where \(\gamma\in( \frac{\varphi^{0}}{\varphi_{0}},+\infty)\) is a constant. For all \(n\geq n_{k} \geq k\), one has
Applying (3.11), \(( f_{3} )\), \(( f_{4} )\), and \(( \varPhi_{2} )\), for large \(n \mathbb{\in \mathrm{N}}\),
Combined with (3.14), we have \(\frac{1}{2} \Vert u_{k} \Vert ^{\gamma \varphi_{0}}- C_{ 3} \Vert u_{n} \Vert ^{\varphi^{0}}\leq C_{ 3} \). Letting \(k\rightarrow\infty\), then \(n\geq n_{k} \geq k\rightarrow\infty\). From \(\gamma \varphi_{0} > \varphi^{0}\), we get \(\infty\leq C_{ 3}\). This contradiction shows that \(\{ \Vert u_{n} \Vert \}\) is bounded, that is, \(\sup_{n\in \mathbb{N}} \Vert u_{n} \Vert := K_{ 0} <\infty \).
Taking into account the reflexivity of \(W_{0}^{1, \varPhi} (\varOmega)\) and the Eberlein–Smulian theorem, we may assume that \(u_{n} \) converges weakly to \(u \in W_{0}^{1, \varPhi} (\varOmega)\). By using Remark 3.1, we obtain
Using \(( f_{1} )\) and Hölder’s inequality, we have
Now, we will show that both \(\Vert g ( u_{n} ) \Vert _{ ( \tilde{G} )}\) and \(\Vert h ( u_{n} ) \Vert _{ ( \tilde{H} )} \) are bounded.
Applying Lemma 2.1,
The definition of \(\Vert \cdot \Vert _{ ( \tilde{G} )}\) yields that \(\Vert g ( u_{n} ) \Vert _{ ( \tilde{G} )} \leq C _{4} + C_{4} K_{ 0}^{\varphi^{0}}\), \(n =1,2,\ldots \) . On the other hand, due to \(\lim_{t\rightarrow\infty} \frac{ H(2t)}{ \varPhi_{*} (t)} =0\), there exists \(t_{0} >0\) such that \(H(2t)\leq \varPhi_{*} (t)\) for all \(t \geq t_{0}\). By Lemma 2.4 in [23], we have \(d_{0} := \sup_{t>0} \frac{t \varPhi_{*} ' ( t )}{\varPhi_{*} (t)} \leq \frac{N \varphi^{0}}{N- \varphi^{0}} <\infty\). Since \(W_{0}^{1, \varPhi} (\varOmega) \hookrightarrow L_{ \varPhi_{*}} ( \varOmega )\),
Hence, \(\Vert h ( u_{n} ) \Vert _{ ( \tilde{H} )} \leq C_{ 6 }+ C_{6} K_{0}^{d_{0}}<\infty\), \(n =1,2,\ldots \) .
Combining (3.15) and (3.16), we have
From (3.5), it follows that \(\int_{\varOmega} a ( \vert \nabla u_{n} \vert ) \nabla u_{n} \cdot \nabla( u_{n} -u)\,dx \rightarrow0\) as \(n\rightarrow\infty\). Since \(u_{n}\) converges weakly to u, Theorem 4 in [36] implies that \(\lim_{n\rightarrow\infty} \Vert u_{n} -u \Vert =0\). Therefore, \(\mathcal{J}_{\lambda}\) satisfies \(C_{c}\) condition. □
Next, we give the proof of our main result Theorem 3.1.
Proof
\(\lambda_{ *} >0\), \(\eta>0\), \(\rho >0 \) are constants defined in Lemma 3.2. For all \(\lambda\in (0, \lambda_{ *} )\), Lemma 3.2, Lemma 3.3, and Lemma 3.5 show that the functional \(\mathcal{J}_{\lambda}\) satisfies all the assumptions of Lemma 2.3. Then \(\mathcal{J}_{\lambda}\) has a critical value \(c \geq \eta>0\). This shows that problem (1.1) has a nontrivial weak solution u with \(\mathcal{J}_{\lambda} ({u} )=c\).
In the following, we prove there exists a second weak solution \(\tilde{u} \neq u\).
Let \(B_{\rho} := \{ u \in W_{0}^{1, \varPhi} ( \varOmega ): \Vert u \Vert \leq\rho \}\), \(U_{\rho} := \{ u \in W_{0}^{1, \varPhi} ( \varOmega ): \Vert u \Vert <\rho \}\). Applying Lemma 3.4, we deduce that
For each \(\sigma \in(0, \inf_{S_{\rho}} \mathcal{J}_{\lambda} ({u} ) - \inf_{U_{\rho}} \mathcal{J}_{\lambda} ({u} ) )\), by the Ekeland variational principle [11], there exists \(u_{\sigma} \in B_{\rho}\) such that
and
Therefore,
which implies \(u_{\sigma} \in U_{\rho}\).
\(\forall v \in B_{1}\), take \(h \in(0, \rho- \Vert u_{\sigma} \Vert )\), then \(u_{\sigma} +hv\in B_{\rho}\). By (3.18), we have
Dividing the above inequality by h and letting \(h\rightarrow 0^{+}\), one has
Replacing v with −v in the above inequality, we deduce \(\langle \mathcal{J}_{\lambda} ' ( u_{\sigma} ), v \rangle \leq\sigma \Vert v \Vert \). Therefore, \(\Vert \mathcal{J}_{\lambda} ' ( u_{\sigma} ) \Vert \leq\sigma\).
Summarily, there exist \(\{ \tilde{u}_{n} \}_{n=1}^{\infty} \subset U_{\rho}\) such that \(\mathcal{J}_{\lambda} ( \tilde{u}_{n} ) \rightarrow \tilde{c}\) and \(\Vert \mathcal{J}_{\lambda} ' ( \tilde{u}_{n} ) \Vert \leq \frac{1}{n} \rightarrow0\) as \(n\rightarrow\infty\). From the Eberlein–Smulian theorem, we may assume \(\tilde{u}_{n}\) converges to \(\tilde{u} \in B_{\rho}\). (3.17) and Theorem 4 in [36] imply that \(\lim_{n\rightarrow\infty} \Vert \tilde{u}_{n} - \tilde{u} \Vert =0\). Since \(\mathcal{J}_{\lambda} \in C^{1} ( W_{0}^{1, \varPhi} ( \varOmega ), \mathbb{R} )\) and \(\Vert \mathcal{J}_{\lambda} ' ( \tilde{u}_{n} ) \Vert \rightarrow0\), one has \(\mathcal{J}_{\lambda} ' ( \tilde{u} )= \lim_{n\rightarrow\infty} \mathcal{J}_{\lambda} ' ( \tilde{u}_{n} ) =\theta\) and \(\mathcal{J}_{\lambda} ' ( \tilde{u} )= \tilde{c}\), so \(\tilde{u} \neq\theta\) and \(\tilde{u} \neq u\), which completes the proof. □
By Lemma 3.2, Lemma 3.3, and Lemma 3.5, we can get the following corollary.
Corollary 3.6
([27])
Given that Φ satisfies \(( \varPhi_{1} )\) and \(( \varPhi_{2} )\), f satisfies \(( f_{1} )\)–\(( f_{4} )\). Then
has a nontrivial weak solution.
4 Conclusions
Using variational arguments, we establish the existence of two nontrivial solutions for quasilinear elliptic problems in Orlicz–Sobolev spaces, where the nonlinear terms exhibit the combined effects of concave and convex without the Ambrosetti–Rabinowitz type condition.
References
Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical points theory and applications. J. Funct. Anal. 14, 349–381 (1973)
Miyagaki, O.H., Souto, M.A.S.: Super-linear problems without Ambrosetti and Rabinowitz growth condition. J. Differ. Equ. 245, 3628–3638 (2008)
Li, G., Yang, C.: The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of p-Laplacian type without the Ambrosetti–Rabinowitz condition. Nonlinear Anal. 72, 4602–4613 (2010)
Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on \(\mathbb{R}^{N}\). Proc. R. Soc. A 129, 787–809 (1999)
Lam, N., Lu, G.: Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti–Rabinowitz condition. J. Geom. Anal. 24, 118–143 (2014)
Mugnai, D., Papageorgiou, N.S.: Wang’s multiplicity result for superliner \((p,q)\)-equations without the Ambrosetti–Rabinowitz condition. Trans. Am. Math. Soc. 366, 4919–4937 (2014)
Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122, 519–543 (1994)
Wu, T.F.: On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function. J. Math. Anal. Appl. 318, 253–270 (2006)
Wu, T.F.: Multiple positive solutions for a class of concave-convex elliptic problems in \(\mathbb{R}^{N}\) involving sign-changing weight. J. Funct. Anal. 258, 99–131 (2010)
Papageorgiou, N.S., Rocha, E.M.: Pairs of positive solutions for p-Laplacian equations with sublinear and superlinear nonlinearities which do not satisfy the AR-condition. Nonlinear Anal. 70, 3854–3863 (2009)
Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)
Carvalho, M.L.M., da Silva, E.D., Goulart, C.: Quasilinear elliptic problems with concave-convex nonlinearities. Commun. Contemp. Math. 19(6), 1650050 (2017). https://doi.org/10.1142/S0219199716500504
Chung, N.T.: Three solutions for a class of nonlocal problems in Orlicz–Sobolev spaces. J. Korean Math. Soc. 50(6), 1257–1269 (2013)
Chung, N.T.: Multiple solutions for a class of \(p(x)\)-Laplacian problems involving concave-convex nonlinearities. Electron. J. Qual. Theory Differ. Equ. 2013(26), 1 (2013)
Chung, N.T.: Existence of solutions for a class of Kirchhoff type problems in Orlicz–Sobolev spaces. Ann. Pol. Math. 113, 283–294 (2015)
Bonanno, G., Molica Bisci, G., Rădulescu, V.: Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz–Sobolev spaces. C. R. Math. Acad. Sci. Paris 349(5–6), 263–268 (2011)
Bonanno, G., Molica Bisci, G., Rădulescu, V.: Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces. Nonlinear Anal. 74(14), 4785–4795 (2011)
Bonanno, G., Molica Bisci, G., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Nonlinear Anal. 75(12), 4441–4456 (2012)
Chlebicka, I.: A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces. Nonlinear Anal. 175, 1–27 (2018)
Jang, Y., Kim, Y.: An end point Orlicz type estimate for nonlinear elliptic equations. Nonlinear Anal. 177(part B), 572–585 (2018)
Ho, K., Sim, I.: A-priori bounds and existence for solutions of weighted elliptic equations with a convection term. Adv. Nonlinear Anal. 6(4), 427–445 (2017)
Mohammed, A., Porru, G.: Harnack inequality for non-divergence structure semi-linear elliptic equations. Adv. Nonlinear Anal. 7(3), 259–269 (2018)
Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on Ω. Funkc. Ekvacioj 49, 235–267 (2006)
Mihuilescu, M., Radulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. A 462, 2625–2641 (2006)
Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006)
Clent, P., Garcia-Huidobro, M., Manaevich, R., Schmitt, K.: Mountain pass type solutions for quasilinear elliptic equations. Calc. Var. 11, 33–62 (2000)
Chung, N.T., Toan, H.Q.: On a nonlinear and non-homogeneous problem without (A-R) type condition in Orlicz–Sobolev spaces. Appl. Math. Comput. 219, 7820–7829 (2013)
Carvalho, M.L.M., Goncalves, J.V.A., da Silva, E.D.: On quasilinear elliptic problems without the Ambrosetti–Rabinowitz condition. J. Math. Anal. Appl. 426, 466–483 (2015)
Krasnoselski, M., Rutickii, Y.: Convex Functions and Orlicz Space. Noordhoff, Groningen (1961)
Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Academic Press, New York (2003)
Chen, S.: Geometry of Orlicz Spaces. Polish Sci., Warszawa (1996)
Garcia-Huidobro, M., Le, V.K., Manasevich, R., Schmitt, K.: On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting. Nonlinear Differ. Equ. Appl. 6, 207–225 (1999)
Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)
Cerami, G.: On the existence of eigenvalues for a nonlinear boundary value problem. Ann. Mat. Pura Appl. 124, 161–179 (1980)
Costa, D.G., Magalhaes, C.A.: Existence results for perturbation of the p-Laplacian. Nonlinear Anal. 24, 409–418 (1995)
Le, V.K.: A global bifurcation result for quasilinear elliptic equations in Orlicz–Sobolev spaces. Topol. Methods Nonlinear Anal. 15, 301–327 (2000)
Acknowledgements
The author would like to thank the handling editors for the help in the processing of the paper. This work was supported by the Fundamental Research Funds for the Central Universities (17CX02032A).
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The author conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wu, S. Multiple solutions for quasilinear elliptic problems with concave-convex nonlinearities in Orlicz–Sobolev spaces. Bound Value Probl 2019, 142 (2019). https://doi.org/10.1186/s13661-019-1256-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-019-1256-3