Skip to main content

Positive solutions to second-order singular nonlocal problems: existence and sharp conditions

Abstract

In this paper we consider sharp conditions on ω and f for the existence of \(C^{1}[0,1]\) positive solutions to a second-order singular nonlocal problem \(u''(t)+\omega (t)f(t,u(t))=0\), \(u(0)=u(1)=\int _{0} ^{1}g(t)u(t)\,dt\); it turns out that this case is more difficult to handle than two point boundary value problems and needs some new ingredients in the arguments. On the technical level, we adopt the topological degree method.

1 Introduction

We consider sharp conditions for the second-order singular differential equation with integral boundary conditions

$$ \textstyle\begin{cases} u''(t)+\omega (t)f(t,u(t))=0, \quad t\in J, \\ u(0)=u(1)=\int _{0}^{1}g(t)u(t)\,dt, \end{cases} $$
(1.1)

where \(J=(0,1)\), ω is \(L^{p}\)-integrable on \([0,1]\) for some \(1\leq p\leq +\infty \), f may be singular at \(t=0\) and/or 1.

In addition, ω and f satisfy the following conditions:

\((H_{1})\) :

\(\omega \in L^{p}[0,1]\) and there exists \(\zeta > 0\) such that \(\omega (t)\geq \zeta \) a.e. on J;

\((H_{2})\) :

\(f(t,u):J\times [0,+\infty )\rightarrow [0,+\infty )\) is continuous;

\((H_{3})\) :

\(g\in L^{1}[0,1]\) is positive with \(\mu \in [0,1)\), where

$$ \mu = \int _{0}^{1}g(t)\,dt. $$

The theory of boundary value problems with positive solutions originates from various real life problems, such as plasma physics, gas dynamics, and chemical reaction. The study of boundary value problems with positive solutions has attracted recently the attention of different researchers, and it is a topic of current interest, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28] and the references therein. Problems with integral boundary conditions come naturally from thermal conduction problems [29] and hydrodynamic problems [30]. In recent years there has been a lot of investigation of boundary value problems with integral boundary conditions (see for instance [31,32,33,34,35,36,37,38,39,40,41,42,43]). In particular, Boucherif [44] used the fixed point theorem in cones to consider the following problem:

$$ \textstyle\begin{cases} u^{\prime \prime }(t)=f(t,u(t)), \quad 0< t < 1, \\ u(0)-cu^{\prime }(0)=\int _{0}^{1}g_{0}(t)u(t)\,dt, \\ u(1)-du^{\prime }(1)=\int _{0}^{1}g_{1}(t)u(t)\,dt. \end{cases} $$
(1.2)

The author obtained several excellent results on the existence of positive solutions to problem (1.2).

Recently, Feng [45] studied the following boundary value problem:

$$ \textstyle\begin{cases} (g(t)x^{\prime }(t))^{\prime }+w(t)f(t,x(t))=0, \quad 0< t < 1, \\ ax(0)-b\lim_{t\rightarrow 0^{+}}g(t)x^{\prime }(t)=\int _{0}^{1}h(s)x(s)\,ds, \\ ax(1)+b\lim_{t\rightarrow 1^{-}}g(t)x^{\prime }(t)=\int _{0}^{1}h(s)x(s)\,ds. \end{cases} $$
(1.3)

The author got the existence results of symmetric positive solutions to problem (1.3) by applying the theory of fixed point index in cones. For other related results on problem (1.1), we refer the reader to [46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] and the references cited therein.

At the same time, we notice that a type of problem on sharp conditions has received much attention, for instance, see [62,63,64,65,66,67,68,69] and the references cited therein. Specially, by the compressing fixed point theorem, Yang [65] gave the sharp conditions for the existence of positive solutions for the following second-order differential equation:

$$ \textstyle\begin{cases} u''(t)+f(u(t))=0, \quad 0< t< 1, \\ \alpha u(0)-\beta u'(0)=0, \\ \gamma u(1)+\delta u'(1)=0, \end{cases} $$

where α, β, γ, \(\delta \geq 0\), \(\rho =\alpha \beta +\alpha \delta +\gamma \beta >0\), f is singular at \(t=0\) or \(t=1\).

In [66], Pouso considered the following initial value problem:

$$ \textstyle\begin{cases} u''(t)=f(u(t)), \\ u(0)=u_{0},\qquad u'(0)=u_{1}. \end{cases} $$

The author obtained sharp conditions for local and global uniqueness and for the existence of periodic solutions for the above problem which is based on a detailed analysis of time maps. The other recent results concerning sharp condition problems can be found in [70,71,72,73,74,75].

However, as we know, in literature there are no articles on sharp conditions for the analogous second order singular differential equations with integral boundary conditions. This shows that the study in the case of \(\omega \in L^{p}[0,1]\) and \(g\not \equiv 0\) is still open for problem (1.1). The purpose of this paper is to establish sharp conditions over ω and f for the existence of positive solutions of (1.1). More precisely, we will investigate and give sharp conditions on the functions \(\omega (t)\) and \(f(t,u)\) which satisfy

\((H_{4})\) :

\(f(t,1)>0\), \(t\in J\), and there exist constants \(\lambda _{1} \geq \lambda _{2}>1\) and \(0<\lambda _{3}\leq \lambda _{4}<1\) such that, for all \(t\in J\), \(u\in [0,+\infty )\),

$$\begin{aligned}& l^{\lambda _{1}}f(t,u)\leq f(t,lu)\leq l^{\lambda _{2}}f(t,u), \quad \forall l \in J'=[0,1]; \end{aligned}$$
(1.4)
$$\begin{aligned}& l^{\lambda _{4}}f(t,u)\leq f(t,lu)\leq l^{\lambda _{3}}f(t,u),\quad \forall l\in J'. \end{aligned}$$
(1.5)
\((H_{5})\) :
$$ 0< \int _{0}^{1}H(s,s)f(s,1)\,ds< +\infty , $$

where \(H(s,s)\) is defined in (2.2).

Remark 1.1

It is not difficult to see that

  1. (i)

    (1.4) is equivalent to

    $$ l^{\lambda _{2}}f(t,u)\leq f(t,lu)\leq l^{\lambda _{1}}f(t,u), \quad \forall l\geq 1. $$
    (1.6)
  2. (ii)

    (1.5) is equivalent to

    $$ l^{\lambda _{3}}f(t,u)\leq f(t,lu)\leq l^{\lambda _{4}}f(t,u), \quad \forall l\geq 1. $$
    (1.7)

Remark 1.2

If \(f(t,u)\) satisfies \((H_{4})\), then it follows from (1.4) that, for every \(t\in J\), \(f(t,u)\) is nondecreasing with regard to \(u\in [0,+\infty )\), and

$$ \lim_{u\rightarrow +\infty } \min_{t\in [\xi ,\eta ]} \frac{f(t,u)}{u}=+\infty , \quad \forall [\xi ,\eta ]\subset J. $$

Similarly by (1.5), for every \(t\in J\), \(f(t,u)\) is nondecreasing with regard to \(u\in [0,+\infty )\), and

$$ \lim_{u\rightarrow 0}\max_{t\in [\xi ,\eta ]} \frac{f(t,u)}{u}=0, \quad \forall [\xi ,\eta ]\subset J. $$

The rest of the present paper is structured as follows. In the next section, we introduce some notation and preliminary results. In particular, we give some properties of the Green’s function related to problem (1.1). In Sect. 3, by applying Hölder’s inequality and combining the fixed point theorem, we analyze the sharp conditions for the existence of positive solutions for problem (1.1). Finally, in Sect. 4, we present a few of related remarks and comments.

2 Preliminaries

In this part, we prove a few lemmas and collect some known results for the convenience of later use and reference. The following definitions can be found in Guo and Lakshmikantham [76], or in Papageorgiou, Rădulescu, and Repovs [77].

Definition 2.1

Let E be a real Banach space over R. A nonempty closed set \(K\subset E\) is said to be a cone provided that

  1. (i)

    \(a'u+b'v\in K \) for all \(u, v\in K \) and all \(a'\geq 0\), \(b' \geq 0\), and

  2. (ii)

    \(u,{-u}\in K\) implies \(u=0\).

Every cone \(K\subset E\) induces an ordering in E given by \(u\leq v\) if and only if \(v-u\in K\).

Lemma 2.1

Assume that \((H_{1})\)\((H_{3})\) hold and \(\mu \neq 1\). Then, for any \(y\in E\), the boundary value problem

$$ \textstyle\begin{cases} -u''(t)=y(t), \quad 0< t< 1, \\ u(0)=u(1)=\int _{0}^{1}g(t)u(t)\,dt \end{cases} $$
(2.1)

has a unique solution u given by

$$ u(t)= \int _{0}^{1}{H(t,s)y(s)\,ds}, $$
(2.2)

where

$$\begin{aligned}& H(t,s)=G(t,s)+\frac{1}{1-\mu } \int _{0}^{1}G(\tau ,s)g(\tau )\,d\tau , \end{aligned}$$
(2.3)
$$\begin{aligned}& G(t,s)= \textstyle\begin{cases} s(1-t), \quad 0\leq s\leq t\leq 1, \\ t(1-s), \quad 0\leq t\leq s\leq 1. \end{cases}\displaystyle \end{aligned}$$
(2.4)

Proof

First, suppose that u is a solution of (2.1). It is easy to see by integration of (2.1) that

$$ u'(t)-u'(0)=- \int _{0}^{t}y(s)\,ds. $$
(2.5)

This shows

$$ u'(t)=u'(0)- \int _{0}^{t}y(s)\,ds. $$
(2.6)

Integrating again, we obtain

$$\begin{aligned} u(t) =&u(0)+u'(0)t- \int _{0}^{t} \int _{0}^{\tau }y(s)\,ds\,d\tau \\ =&u(0)+u'(0)t- \int _{0}^{t} \int _{s}^{t}y(s)\,d\tau \,ds \\ =&u(0)+u'(0)t- \int _{0}^{t}y(s) (t-s)\,ds. \end{aligned}$$
(2.7)

Letting \(t=1\) in (2.6), we get

$$ u(1)=u(0)+u^{\prime }(0)- \int _{0}^{1}(1-s)y(s)\,ds. $$

Combining the boundary condition \(u(0)=u(1)\), we find

$$ u'(0)= \int _{0}^{1}{(1-s)y(s)\,ds}. $$
(2.8)

Substituting the boundary condition \(u(0)=\int _{0}^{1}g(t)u(t)\,dt\) and (2.8) into (2.6), we get

$$\begin{aligned} u(t) =& \int _{0}^{1}g(t)u(t)\,dt+ \int _{0}^{1}{(1-s)y(s)\,ds\,t}- \int _{0}^{t}(t-s)y(s)\,ds \\ =& \int _{0}^{1}g(t)u(t)\,dt+ \int _{0}^{t}{s(1-t)y(s)\,ds}+ \int _{t}^{1}t(1-s)y(s)\,ds \\ =& \int _{0}^{1}g(t)u(t)\,dt+ \int _{0}^{1}G(t,s)y(s)\,ds, \end{aligned}$$
(2.9)

where \(G(t,s)\) is defined by (2.4). Multiplying the above equation by \(g(t)\) and integrating it again, we obtain

$$\begin{aligned} \int _{0}^{1}g(t)u(t)\,dt =& \int _{0}^{1}g(t)\biggl[ \int _{0}^{1}g(t)u(t)\,dt+ \int _{0}^{1}G(t,s)y(s)\,ds\biggr]\,dt \\ =& \int _{0}^{1}g(t)u(t)\,dt \int _{0}^{1}g(t)\,dt+ \int _{0}^{1}g(t)G(t,s)\,dt \int _{0}^{1}y(s)\,ds. \end{aligned}$$

Then we have

$$ (1-\mu ) \int _{0}^{1}g(t)u(t)\,dt= \int _{0}^{1}g(t)G(t,s)\,dt \int _{0}^{1}y(s)\,ds $$

and

$$ \int _{0}^{1}g(t)u(t)\,dt=\frac{\int _{0}^{1}g(t)G(t,s)\,dt\int _{0}^{1}y(s)\,ds}{1- \mu }. $$
(2.10)

Therefore, we have

$$\begin{aligned} u(t) =&\frac{1}{1-\mu } \int _{0}^{1}g(\tau )\,d\tau \int _{0}^{1}y(s)G( \tau ,s)\,ds+ \int _{0}^{1}G(t,s)y(s)\,ds \\ =& \int _{0}^{1}\biggl[G(t,s)+\frac{1}{1-\mu } \int _{0}^{1}g(\tau )G(\tau ,s)\,d \tau \biggr]y(s)\,ds. \end{aligned}$$
(2.11)

Let

$$ H(t,s)=G(t,s)+\frac{1}{1-\mu } \int _{0}^{1}G(\tau ,s)g(\tau )\,d\tau . $$
(2.12)

Then

$$ u(t)= \int _{0}^{1}H(t,s)y(s)\,ds. $$
(2.13)

The proof of Lemma 2.1 is complete. □

We can show that \(G(t,s)\) and \(H(t,s)\) have the following properties.

Lemma 2.2

Let \(\theta \in (0,\frac{1}{2})\) and define \(J_{0}=[\theta ,1-\theta ]\). If \(\mu \in [0,1)\), then for all \(t \in J_{0}\), \(s\in J'\), we have

$$\begin{aligned}& 0\leq \theta e(s)\leq G(t,s)\leq e(s)\leq \frac{1}{4}, \end{aligned}$$
(2.14)
$$\begin{aligned}& H(t,s)\leq H(s,s)\leq \gamma e(s)\leq \frac{1}{4}\gamma , \end{aligned}$$
(2.15)
$$\begin{aligned}& H(t,s)\geq \theta H(s,s), \qquad H(t,s)\geq \theta \gamma e(s), \end{aligned}$$
(2.16)

where

$$ \gamma =\frac{1}{1-\mu }, \qquad e(s)=s(1-s). $$

Proof

It is clear to see from the definition of \(G(t,s)\) that \(G(t,s)\leq e(s)\leq \frac{1}{4}\). Now, we show that \(\theta e(s) \leq G(t,s)\) also holds.

In fact, for any \(t\in J_{0}\), \(s\in J'\), we have the following.

Case 1. If \(0< s\leq t\leq 1-\theta \), then

$$ \frac{G(t,s)}{G(s,s)}=\frac{s(1-t)}{s(1-s)}=\frac{1-t}{1-s}\geq 1-t \geq \theta . $$

Case 2. If \(\theta \leq t\leq s< 1\), then

$$ \frac{G(t,s)}{G(s,s)}=\frac{t(1-s)}{s(1-s)}=\frac{t}{s}\geq t\geq \theta . $$

Case 3. If \(s\in \{0,1\}\), then it naturally follows from the definition of \(G(t,s)\) and \(G(s,s)\) that \(G(t,s)=G(s,s)=0\).

This shows that

$$ \theta e(s)\leq G(t,s), \quad t\in J_{0},s\in J'. $$

It is not difficult to see that the inequality \(H(t,s)\leq H(s,s)\) holds. Next, we show that \(H(s,s)\leq \gamma e(s)\) also holds.

$$\begin{aligned} H(s,s) \leq& G(s,s)+\frac{1}{1-\mu } \int _{0}^{1}G(s,s)g(\tau )\,d\tau \\ =&G(s,s)\biggl[1+\frac{1}{1-\mu } \int _{0}^{1}g(\tau )\,d\tau \biggr] \\ =&\gamma e(s). \end{aligned}$$

Therefore, the proof of (2.15) is complete.

Due to (2.14), we find

$$\begin{aligned}& H(t,s)\geq \theta G(s,s)+\frac{\theta }{1-\mu } \int _{0}^{1}G(s,s)g( \tau )\,d\tau \geq \theta H(s,s); \\& H(t,s)\geq \theta G(s,s)\biggl[1+\frac{\int _{0}^{1}g(\tau )\,d\tau }{1-\mu }\biggr]= \frac{ \theta }{1-\mu }G(s,s)=\theta \gamma e(s). \end{aligned}$$

So, for all \(t\in J_{0}\), \(s\in J'\), (2.16) is established.

This concludes the proof of Lemma 2.2. □

Definition 2.2

If a function u satisfies (1.1) and \(u(t)>0\), \(t \in J\), then it is said that \(u\in C[0,1]\cap C^{2}(0,1)\) is a positive solution of problem (1.1); If the positive solution \(u\in C^{1}[0,1]\), namely \(u'(0^{+})\) and \(u'(1^{-})\) exist, then u is said to be a \(C^{1}[0,1]\) positive solution of problem (1.1).

Let \(E=C[0,1]\). Then E is a real Banach space with norm \(\|\cdot \|\) defined by

$$ \Vert u \Vert =\sup_{t\in J'} \bigl\vert u(t) \bigr\vert ,\quad u\in E. $$

To establish the existence of positive solutions to problem (1.1), we consider the cone K defined by

$$ K=\bigl\{ u\in E: u(t)\geq \theta \Vert u \Vert ,t\in J'\bigr\} , $$
(2.17)

where θ is a constant as in Lemma 2.2. It is easy to see that K is a convex cone of E.

Also, define, for a given positive number r, the set \(\varOmega _{r}\) by

$$\begin{aligned}& \varOmega _{r}=\bigl\{ u\in K: \Vert u \Vert < r\bigr\} , \\& \partial \varOmega _{r}=\bigl\{ u\in K: \Vert u \Vert =r\bigr\} . \end{aligned}$$

To get some norm inequalities in our main results, we employ Hölder’s inequality.

Lemma 2.3

(Hölder)

Let \(e\in L^{p}[a,b]\) with \(p>1\), \(h\in L^{q}[a,b]\) with \(q>1\), and \(\frac{1}{p}+\frac{1}{q}=1\). Then \(eh\in L^{1}[a,b]\), and

$$ \Vert eh \Vert _{1}\leq \Vert e \Vert _{p} \Vert h \Vert _{q}. $$

Let \(e\in L^{1}[a,b]\) and \(h\in L^{\infty }[a,b]\). Then \(eh\in L^{1}[a,b]\) and

$$ \Vert eh \Vert _{1}\leq \Vert e \Vert _{1} \Vert h \Vert _{\infty }. $$

Lemma 2.4

Assume that \((H_{1})\)\((H_{5})\) hold. Define \(T:K\rightarrow E\) by

$$ (Tu) (t)= \int _{0}^{1}H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds,\quad \forall u\in K. $$
(2.18)

Then \(u\in C[0,1]\) is a \(C[0,1]\cap C^{2}(0,1)\) positive solution of (1.1) if and only if u is a fixed point of T.

Proof

Suppose that \((H_{1})\)\((H_{5})\) hold. For fixed \(u\in E\), \(u(t)\geq 0\), \(t\in J'\), taking a constant \(0< a<1\) such that \(a\|u\|<1\), then it follows from (1.4) and (1.5) that

$$\begin{aligned} f\bigl(t,u(t)\bigr) \leq& \biggl(\frac{1}{a}\biggr)^{\lambda _{1}}f \bigl(t,au(t)\bigr) \leq \biggl(\frac{1}{a}\biggr)^{\lambda _{1}}f\bigl(t,a \Vert u \Vert \bigr) \leq a^{\lambda _{2}-\lambda _{1}} \Vert u \Vert ^{\lambda _{2}}f(t,1). \end{aligned}$$

Consequently, for all \(t\in J'\), we get

$$ 0< \int _{0}^{1}H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds\leq a^{\lambda _{2}-\lambda _{1}} \Vert u \Vert ^{\lambda _{2}} \Vert \omega \Vert _{1} \int _{0}^{1}H(s,s)f(s,1)\,ds< + \infty . $$

It is obvious that the operator

$$ (Tu) (t)= \int _{0}^{1}H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds,\quad \forall u\in K $$

is defined well. And hence the definition of T and the properties of \(G(t,s)\) and \(H(t,s)\) yield that \(u\in C[0,1]\) is a \(C[0,1]\cap C^{2}(0,1)\) positive solution of (1.1) if and only if u is a positive fixed point of operator T. This finishes the proof of Lemma 2.4. □

Lemma 2.5

((Theorem 2.3.4 of [76]) (Fixed point theorem of cone expansion and compression of norm type))

Let \(\varOmega _{1}\) and \(\varOmega _{2}\) be two bounded open sets in a real Banach space E such that \(0 \in \varOmega _{1}\) and \(\bar{\varOmega }_{1}\subset \varOmega _{2}\). Let the operator \(T: K\cap (\bar{\varOmega }_{2}\backslash \varOmega _{1})\rightarrow K\) be completely continuous, where K is a cone in E. Suppose that one of the two conditions

  1. (i)

    \(\|Tx\|\leq \|x\|\), \(\forall x\in K\cap \partial \varOmega _{1}\) and \(\|Tx\|\geq \|x\|\), \(\forall x\in K\cap \partial \varOmega _{2}\),

and

  1. (ii)

    \(\|Tx\|\geq \|x\|\), \(\forall x\in K\cap \partial \varOmega _{1}\), and \(\|Tx\|\leq \|x\|\), \(\forall x\in K\cap \partial \varOmega _{2}\),

is satisfied. Then T has at least one fixed point in \(K\cap (\bar{ \varOmega }_{2}\backslash \varOmega _{1})\).

Lemma 2.6

If u is a \(C^{1}[0,1]\) positive solution of problem (1.1), then there exists \(b>0\) satisfying \(u(s)\geq bH(s,s)\), \(s \in J'\).

Proof

Let u take its maximum at \(t_{0}\). Then we discuss Lemma 2.6 under the following two cases.

Case 1. If \(0< t_{0}\leq \frac{1}{2}\), then let

$$ h(t)= \textstyle\begin{cases} \frac{1-t_{0}}{t_{0}} t, \quad 0\leq t\leq t_{0}, \\ -t+1, \quad t_{0}< t\leq 1. \end{cases} $$

Case 2. If \(\frac{1}{2}< t_{0}<1\), then let

$$ h(t)= \textstyle\begin{cases} t, \quad 0\leq t\leq t_{0}, \\ -\frac{t_{0}}{1-t_{0}}t+\frac{t_{0}}{1-t_{0}}, \quad t_{0}< t\leq 1. \end{cases} $$

Due to the concavity of u and since \(h(t_{0})<1\), we have

$$ u(t)\geq u(t_{0})h(t). $$

Next we show that \(h(t)>e(t)\) on \(J'\) holds.

It is easy to see by calculating that

$$ e'(0)=1,\qquad e'(1)=-1. $$

On the one hand, when \(0< t_{0}\leq \frac{1}{2}\), we have

$$ h'(t)= \textstyle\begin{cases} \frac{1-t_{0}}{t_{0}}, \quad 0\leq t\leq t_{0}, \\ -1, \quad t_{0}< t\leq 1. \end{cases} $$

It is obvious that

$$ \frac{1-t_{0}}{t_{0}}>1, $$

so by the concavity of e we have that \(h(t)>e(t)\) on \(J'\).

On the other hand, when \(\frac{1}{2}< t_{0}<1\), we have

$$ h'(t)= \textstyle\begin{cases} 1, \quad 0\leq t\leq t_{0}, \\ -\frac{1-t_{0}}{t_{0}}, \quad t_{0}< t\leq 1. \end{cases} $$

It can be easily seen that

$$ -\frac{1-t_{0}}{t_{0}}< -1, $$

similarly we can obtain that \(h(t)>e(t)\) on \(J'\).

At the same time, by Lemma 2.2, we have

$$ u(t)\geq u(t_{0})h(t)\geq u(t_{0})e(t)\geq \frac{u(t_{0})}{\gamma }H(t,t)= bH(t,t),\quad t\in J, $$

where \(b=\frac{u(t_{0})}{\gamma }\).

In order to better understand the above two cases, we draw Figs. 1 and 2.

Figure 1
figure 1

Case 1

Figure 2
figure 2

Case 2

This gives the proof of Lemma 2.6. □

3 Sharp conditions for the existence of positive solutions

In this section, we establish sharp conditions for the existence of positive solutions for problem (1.1) by Lemmas 2.12.6. We analyze the following three cases for \(\omega \in L^{p}[0,1]:p>1\), \(p = 1\), and \(p=\infty \). Case \(p>1\) is treated in Theorem 3.1.

Theorem 3.1

Suppose that \((H_{1})\)\((H_{5})\) hold. Then problem (1.1) admits a \(u\in C^{1}[0,1]\) positive solution if and only if

$$ 0< \int _{0}^{1}\omega (s)f(s,1)\,ds< +\infty . $$

Proof

(1) Necessity.

Let \(u\in C^{1}[0,1]\) be a positive solution of problem (1.1), then \(u'(0)\) and \(u'(1)\) exist and are finite.

On the one hand, we know that \(u(t)\) is a concave function on \(J'\) by \(u^{\prime \prime }\leq 0\). Therefore, by Lemma 2.6, there exists \(b>0\) satisfying \(u(s)\geq bH(s,s)\), \(s\in J'\). Setting \(l=\min \{b,1\}\), then \(u(s)\geq lH(s,s)\), \(s\in J'\). And by (1.4) and Remark 1.2, we have

$$\begin{aligned} \int _{0}^{1}\omega (s)f\bigl(s,H(s,s)\bigr)\,ds \leq& \int _{0}^{1}\omega (s)f\biggl(s, \frac{1}{l}u(s)\biggr)\,ds \\ \leq& \bar{l} \int _{0}^{1}\bigl[-u^{\prime \prime }(s)\bigr]\,ds \\ \leq& \bar{l}\bigl[u^{\prime }(0)-u^{\prime }(1)\bigr] \\ < &+\infty , \end{aligned}$$

where \(\bar{l}=(\frac{1}{l})^{\lambda _{1}}\).

On the other hand, if we assume that \(f(s,u(s))\equiv 0\), which shows that \(\omega (s)f(s,u(s))\equiv 0\) by \((H_{1})\). Then, by Lemma 2.4, it is obvious that \(u = 0\), which contradicts u is a positive solution of problem (1.1).

Hence there exists \(t_{1}\in J\) such that \(f(t_{1},u(t_{1}))>0\).

And then it follows from \((H_{1})\), Remarks 1.2 and (1.6) that

Case 1. If \(\omega (t_{1}) > 0\), then

$$\begin{aligned} 0 < &\omega (t_{1})f\bigl(t_{1},u(t_{1}) \bigr) \\ \leq& \omega (t_{1})f\bigl(t_{1}, \Vert u_{t_{1}} \Vert \bigr) \\ \leq& \omega (t_{1}) \Vert u_{t_{1}} \Vert ^{\lambda }f(t_{1},1), \end{aligned}$$

where \(\lambda \in \{\lambda _{2}, \lambda _{3}\}\).

Case 2. If \(\omega (t_{1}) =0\), then it follows from \((H_{1})\) that there exists a small neighborhood \([a_{1},b_{1}]\subset J\) of \(t_{1}\) such that \(\omega (t)>0\) for \(t\in [ a_{1},b_{1}]\).

Hence it is easy to see by integration of f and ω that

$$ \int _{a_{1}}^{b_{1}}\omega (s)f(s,1)\,ds>0. $$

So,

$$\begin{aligned} \int _{0}^{1}\omega (s)f(s,1)\,ds \geq& \int _{0}^{1}\omega (s)f\biggl(s, \frac{u(s)}{ \Vert u \Vert }\biggr)\,ds \\ \geq& \biggl(\frac{1}{ \Vert u \Vert } \biggr)^{\lambda ^{*}} \int _{0}^{1}\omega (s) f\bigl(s,u(s)\bigr)\,ds \\ \geq & \biggl(\frac{1}{ \Vert u \Vert } \biggr)^{\lambda ^{*}} \int _{a_{1}}^{b_{1}} \omega (s)f\bigl(s,u(s)\bigr)\,ds \\ >&0, \end{aligned}$$

where \(\lambda ^{*} \in \{\lambda _{1}, \lambda _{4}\}\).

(2) Sufficiency.

(i) First, we prove that the operator \(T: K\rightarrow K\) is completely continuous. For all \(u\in K\), \(T(u)\geq 0\) on \(J_{0}\), it follows from (2.18) and Lemma 2.2 that

$$\begin{aligned} (Tu) (t) =& \int _{0}^{1}H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds \\ \geq& \theta \int _{0}^{1}H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds \\ =&\theta \Vert Ty \Vert ,\quad \forall t\in J'. \end{aligned}$$

So we have that \(Tu\in K\), \(\forall u\in K\). Thus \(T(K)\subset K\).

Next, it follows from Arzelà–Ascoli theorem that \(T : K \rightarrow K\) is completely continuous.

It is clear that T is continuous.

Let \(B_{r}=\{u\in E| \|u\|\leq r\}\) be a bounded set. Then, for all \(u\in B_{r}\), by the definition of \(\|Tu\|\) and by Lemma 2.2 and Lemma 2.3, we get

$$\begin{aligned} \Vert Tu \Vert =&\max_{t\in J} \int _{0}^{1}H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds \\ \leq& \gamma \int _{0}^{1}G(s,s)\omega (s)\,ds\,L \\ \leq& \gamma \Vert G \Vert _{q} \Vert \omega \Vert _{p}L \\ =&\varGamma , \end{aligned}$$

where \(L=\max_{t\in J, u\in B_{r}}f(t,u)\), \(\varGamma =\gamma \|G \|_{q}\|\omega \|_{p}L\).

Therefore, the operator \(T:K\longrightarrow K\) is uniformly bounded.

On the other hand, since \(H(t,s)\) is continuous on \(J'\times J'\), we can see that \(H(t,s)\) is uniformly continuous on \(J'\times J'\). Therefore, for any \(\varepsilon >0\), there exists \(r>0\), when \(| t_{1}-t_{2} | < r\), we get

$$ \bigl\vert H(t_{1},s)-H(t_{2},s) \bigr\vert < \frac{\varepsilon }{ \Vert \omega \Vert _{1}\cdot L}. $$

Accordingly, for all \(u\in B_{r}\), when \(| t_{1}-t_{2}| < r\), we have

$$\begin{aligned} \bigl\vert (Tu) (t_{1})-(Tu) (t_{2}) \bigr\vert =& \biggl\vert \int _{0}^{1}H(t_{1},s)\omega (s)f \bigl(s,u(s)\bigr)\,ds- \int _{0}^{1}H(t_{2},s)\omega (s)f \bigl(s,u(s)\bigr)\,ds \biggr\vert \\ =& \biggl\vert \int _{0}^{1}\bigl[H(t_{1},s)-H(t_{2},s) \bigr]\omega (s)f\bigl(s,u(s)\bigr)\,ds \biggr\vert \\ \leq& \bigl\vert \Vert \omega \Vert _{1}\cdot L \bigr\vert \cdot \frac{ \varepsilon }{ \Vert \omega \Vert _{1}\cdot L} \\ \leq &\varepsilon . \end{aligned}$$

This shows that the set \(\{T(u): u\in B_{r}\}\) is equicontinuous, and it follows from Arzelà–Ascoli theorem that operator T is completely continuous.

(ii) Next, we prove that T has at least one fixed point in K.

For \(u\in K\), \(\|u\|\leq 1\), we get \(u(t)\leq \|u\|\leq 1\), and by (1.4) and Remark 1.2, we obtain

$$ f\bigl(t,u(t)\bigr)\leq u^{\lambda _{2}}(t)f(t,1). $$

Hence,

$$\begin{aligned} \Vert Tu \Vert \leq& \int _{0}^{1}\gamma G(s,s)\omega (s)u^{\lambda _{2}}(s)f(s,1)\,ds \\ \leq& \gamma \Vert u \Vert ^{\lambda _{2}} \Vert G \Vert _{q} \Vert \omega \Vert _{p} \int _{0}^{1}f(s,1)\,ds \\ \leq& A \Vert u \Vert ^{\lambda _{2}}, \end{aligned}$$

where \(A=\gamma \| G\| _{q}\| \omega \| _{p}\int _{0}^{1}f(s,1)\,ds\).

If \((\frac{1}{A})^{\frac{1}{\lambda _{2}-1}}\leq 1\), setting \(r_{1}^{*}=(\frac{1}{A})^{\frac{1}{\lambda _{2}-1}}\), then \(\|Tu\| \leq \|u\|\), \(\forall u\in K\), \(\|u\|=r_{1}^{*}\).

If \((\frac{1}{A})^{\frac{1}{\lambda _{2}-1}}>1\), we have \(A<1\). Letting \(r_{1}^{**} =1\), similarly we have \(\|Tu\|\leq \|u\|\), \(\forall u\in K\), \(\|u\|=r_{1}^{**}\).

Set \(r_{1}=\max \{r_{1}^{*},r_{1}^{**}\}\). Then we obtain \(\|Tu\| \leq \|u\|\), \(\forall u\in K\), \(\|u\|=r_{1}\).

Moreover, by Remark 1.2, there exists \(R>r_{1}\) for \(u\geq R\) such that

$$ \frac{f(t,u(t))}{u(t)}\geq \min_{t\in J_{0}} \frac{f(t,u(t))}{u(t)} \geq N, \quad t\in J_{0}, $$

that is, \(f(t,u(t))\geq Nu(t)\), \(t\in J_{0}\), \(u\geq R\), where \(N>0\) satisfies

$$ N\geq \frac{1}{\zeta \theta \min_{t\in J_{0}}\int _{\theta } ^{1-\theta }H(t,s)\,ds}. $$

So, for \(u\in K\) with \(\|u\|=R\), we get

$$\begin{aligned} \Vert Tu \Vert \geq& \min_{t\in J_{0}}(Tu) (t)\geq \min _{t\in J _{0}} \int _{\theta }^{1-\theta }H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds \\ \geq& \min_{t\in J_{0}} \int _{\theta }^{1-\theta }H(t,s)\zeta Nu(s)\,ds \\ \geq& N\zeta \min_{t\in J_{0}} \int _{\theta }^{1-\theta }H(t,s) \Vert u \Vert \theta \,ds \\ \geq& N\zeta \theta \min_{t\in J_{0}} \int _{\theta }^{1-\theta }H(t,s)\,ds \Vert u \Vert \\ \geq& \Vert u \Vert . \end{aligned}$$

Thus, \(\|Tu\|\geq \|u\|\), \(\forall u\in K\), \(\|u\|=R\).

Lemma 2.5 yields that T admits at least one fixed point \(u^{*}\) such that \(r_{1} \leq \|u^{*}\|\leq R\). Since \(u^{*}(t)\geq \|u^{*}\| \theta \geq r_{1}\theta >0\), \(0 < t<1\), we see that \(u^{*}\) is a positive solution of problem (1.1).

Moreover, for any \(u^{*}\in K\), we have \(u^{*}(s)\leq \|u^{*}\|\), \(s \in J'\), and then, for \(\lambda \in \{\lambda _{2},\lambda _{3}\}\), we get

$$\begin{aligned} \int _{0}^{1} \bigl\vert \bigl(u^{*} \bigr){''}(s) \bigr\vert \,ds =& \int _{0}^{1}\omega (s)f\bigl(s,u^{*}(s) \bigr)\,ds \\ \leq& \int _{0}^{1}\omega (s)f\bigl(s, \bigl\Vert u^{*} \bigr\Vert \bigr)\,ds \\ \leq& \bigl\Vert u^{*} \bigr\Vert ^{\lambda } \int _{0}^{1}\omega (s)f(s,1)\,ds \\ < & +\infty , \end{aligned}$$

that is, \(u^{*}\) is absolutely integrable on \(J'\). This shows that \((u^{*})'(0^{+})\) and \((u^{*})'(1^{-})\) exist, then \(u^{*}\in C^{1}[0,1]\). The proof above shows that \(u^{*}\in C^{1}[0,1]\) is a positive solution of (1.1). This completes the proof of Theorem 3.1. □

The following corollary handles the case \(p=\infty \).

Corollary 3.1

Assume that \((H_{1})\)\((H_{5})\) hold. Then problem (1.1) admits a \(u\in C^{1}[0,1]\) positive solution if and only if

$$ 0< \int _{0}^{1}\omega (s)f(s,1)\,ds< +\infty . $$

Proof

Let \(\|G\|_{1}\|\omega \|_{\infty }\) replace \(\|G\|_{q}\|\omega \|_{p}\) and repeat the argument of Theorem 3.1. Then we can complete the proof of Corollary 3.1. □

At last, we analyze the case of \(p=1\).

Corollary 3.2

Assume that \((H_{1})\)\((H_{5})\) hold. Then problem (1.1) has a \(u\in C^{1}[0,1]\) positive solution if and only if

$$ 0< \int _{0}^{1}\omega (s)f(s,1)\,ds< +\infty . $$

Proof

Let \(\frac{1}{4}\|\omega \|_{1}\) replace \(\|G\|_{q}\| \omega \|_{p}\) and repeat the argument of Theorem 3.1. Then we can complete the proof of Corollary 3.2. □

The following theorem only considers the case of \(p>1\).

Theorem 3.2

Assume \(f(t,u) =h_{1}(t,u)+h_{2}(t,u)\), where \(h_{1}(t,u)\) and \(h_{2}(t,u)\) satisfy \((H_{4})\), and the other main hypothesis is also needed

$$ 0< \gamma \Vert G \Vert _{q} \Vert \omega \Vert _{p} \int _{0}^{1}f(s,1)\,ds< 1. $$

Then problem (1.1) admits at least two \(C^{1}[0,1]\) positive solutions if and only if

$$ 0< \int _{0}^{1}\omega (s)f(s,1)\,ds< +\infty . $$

Proof

We first prove that the operator

$$\begin{aligned} (Tu) (t) =& \int _{0}^{1}H(t,s)\omega (s)f\bigl(s,u(s) \bigr)\,ds \\ =& \int _{0}^{1}H(t,s)\omega (s) \bigl[h_{1}\bigl(s,u(s)\bigr)+h_{2}\bigl(s,u(s)\bigr) \bigr]\,ds \end{aligned}$$

admits at least two fixed points in K.

Choosing \(J_{1} =[\xi _{1},\eta _{1}]\subset J\), \(\tau _{1}=\min_{t\in J_{1}} h_{1}(t,1)\) and taking a constant \(l>1\) such that \(l\theta >1\), for \(\|u\|>1\), \(u\in K\), \(t\in J_{1}\), we obtain

$$ lu(t)\geq l\theta \Vert u \Vert > l\theta >1,\qquad h_{1}\bigl(t,u(t)\bigr)\geq l^{\lambda _{2}-\lambda _{1}}u(t)^{\lambda _{2}}h_{1}(t,1). $$

Consequently,

$$\begin{aligned} (Tu) (t) \geq& \int _{\xi _{1}}^{\eta _{1}}H(t,s)\omega (s) \bigl[h_{1}\bigl(s,u(s)\bigr)+h _{2}\bigl(s,u(s)\bigr) \bigr]\,ds \\ \geq& \int _{\xi _{1}}^{\eta _{1}}G(t,s)\omega (s) \bigl[h_{1}\bigl(s,u(s)\bigr)+h_{2}\bigl(s,u(s)\bigr) \bigr]\,ds \\ \geq& \theta ^{\lambda _{2}}\tau _{1} l^{(\lambda _{2}-\lambda _{1})}\zeta \int _{\xi _{1}}^{\eta _{1}}G(\xi _{1},s)\,ds \Vert u \Vert ^{\lambda _{2}} \\ \geq& A \Vert u \Vert ^{\lambda _{2}}, \end{aligned}$$

where \(A=\theta ^{\lambda _{2}}\tau _{1} l^{(\lambda _{2}-\lambda _{1})} \zeta \int _{\xi _{1}}^{\eta _{1}}G(\xi _{1},s)\,ds\).

Due to \(\|u\|> 1\), \(\lambda _{2} > 1\), there exists arbitrarily large \(R_{2} >1\) such that

$$ \Vert Tu \Vert \geq \Vert u \Vert ,\quad \forall u\in K, \Vert u \Vert =R_{2}. $$

When \(\|u\|<1\), taking \(J_{2} =[\xi _{2},\eta _{2}]\subset J \) and \(\tau _{2}=\min_{t\in J_{2}} h_{2}(t,1) \), we also get that

$$\begin{aligned} (Tu) (t) \geq & \int _{\xi _{2}}^{\eta _{2}}G(t,s)\omega (s) \bigl[h_{1}\bigl(s,u(s)\bigr)+h _{2}\bigl(s,u(s)\bigr) \bigr]\,ds \\ \geq& \theta ^{\lambda _{4}}\tau _{2} \zeta \int _{\xi _{2}}^{\eta _{2}}G(\xi _{2},s)\,ds \Vert u \Vert ^{\lambda _{4}} \\ \geq& A_{1} \Vert u \Vert ^{\lambda _{4}}, \end{aligned}$$

where \(A_{1}=\theta ^{\lambda _{4}}\tau _{2} \zeta \int _{\xi _{2}}^{\eta _{2}}G(\xi _{2},s)\,ds\).

Similarly, due to \(\|u\|< 1\), \(\lambda _{4} <1\), there exists arbitrarily small \(r_{2}<1\) such that

$$ \Vert Tu \Vert \geq \Vert u \Vert ,\quad \forall u\in K, \Vert u \Vert =r_{2}. $$

Moreover, because of \(u\in K\), \(\|u\|=1\) and \(u(t)\leq \|u\|=1\leq 1\), we can obtain

$$ h_{1}\bigl(t,u(t)\bigr)+h_{2}\bigl(t,u(t)\bigr)\leq u(t)^{\lambda _{2}}h_{1}(t,1)+u(t)^{ \lambda _{3}}h_{2}(t,1) \leq \bigl[h_{1}(s,1)+h_{2}(s,1)\bigr]. $$

Accordingly,

$$\begin{aligned} (Tu) (t) \leq& \int _{0}^{1}\gamma G(s,s)\omega (s) \bigl[h_{1}\bigl(s,u(s)\bigr)+h_{2}\bigl(s,u(s)\bigr) \bigr]\,ds \\ \leq& \gamma \Vert G \Vert _{q} \Vert \omega \Vert _{p} \int _{0}^{1}\bigl[h_{1}(s,1)+h_{2}(s,1) \bigr]\,ds \\ < &1= \Vert u \Vert . \end{aligned}$$
(3.1)

That is, \(\|Tu\|<\|u\|\), \(\forall u\in K\cap \partial \varOmega =\{u\in K : \|u\|=1\}\).

Consequently, Lemma 2.5 yields that the operator T admits at least two fixed points \(u_{1}(t)\) and \(u_{2}(t)\) in K, and \(u_{1}(t) \neq u _{2}(t)\) by (3.1).

On the other hand, the proof of necessity is similar to that of Theorem 3.1, so we omit it here. The proof of Theorem 3.2 is complete. □

4 Remarks and comments

In this section, we provide some remarks and comments related to problem (1.1).

Remark 4.1

The proof of Theorems 3.13.2 is directly inspired by Theorem 1.1 of [63], but there are no papers analyzing sharp conditions of positive solution for second-order boundary value problems with integral boundary conditions, particularly under the case ω is \(L^{p}\)-integrable.

Remark 4.2

In general, it is difficult to analyze sharp conditions of positive solutions for nonlinear second-order differential equations (see, e.g., [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28] and their references).

Remark 4.3

Similar to the proof of Theorems 3.13.2, one can prove sharp conditions of positive solution for the following problems:

$$\begin{aligned}& \textstyle\begin{cases} u''(t)+\omega (t)f(t,u(t))=0, \\ u(0)=\int _{0}^{1}g(t)u(t)\,dt, \qquad u(1)=0, \end{cases}\displaystyle \end{aligned}$$
(4.1)
$$\begin{aligned}& \textstyle\begin{cases} u''(t)+\omega (t)f(t,u(t))=0, \\ u(0)=0,\qquad u(1)=\int _{0}^{1}g(t)u(t)\,dt, \end{cases}\displaystyle \end{aligned}$$
(4.2)

where \(J=(0,1)\), \(\omega \in L^{p}[0,1]\) for some \(1\leq p\leq +\infty \), \(f\in C(J\times R^{+},R^{+})\), \(R^{+}=[0,+\infty )\) (here, f may be singular at \(t=0\) and/or 1), \(g\in L^{1}[0,1]\).

References

  1. Hao, X., Zuo, M., Liu, L.: Multiple positive solutions for a system of impulsive integral boundary value problems with sign-changing nonlinearities. Appl. Math. Lett. 82, 24–31 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Mao, J., Zhao, Z.: The existence and uniqueness of positive solutions for integral boundary value problems. Bull. Malays. Math. Sci. Soc. 34, 153–164 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Jiao, L., Zhang, X.: A class of second-order nonlocal indefinite impulsive differential systems. Bound. Value Probl. 2018, 163 (2018)

    Article  MathSciNet  Google Scholar 

  4. Zhang, X.: Exact interval of parameter and two infinite families of positive solutions for a nth order impulsive singular equation. J. Comput. Appl. Math. 330, 896–908 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hao, X., Liu, L., Wu, Y.: Positive solutions for second order impulsive differential equations with integral boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 16, 101–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, Y., Liu, L., Zhang, X., Wu, Y.: Positive solutions of an abstract fractional semipositone differential system model for bioprocesses of HIV infection. Appl. Math. Comput. 258, 312–324 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Autuori, G., Cluni, F., Gusella, V., Pucci, P.: Mathematical models for nonlocal elastic composite materials. Adv. Nonlinear Anal. 6, 355–382 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Zhang, X., Ge, W.: Symmetric positive solutions of boundary value problems with integral boundary conditions. Appl. Math. Comput. 219, 3553–3564 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Hao, X., Liu, L., Wu, Y.: Positive solutions for singular second order differential equations with integral boundary conditions. Math. Comput. Model. 57, 836–847 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hao, X., Liu, L., Wu, Y., Sun, Q.: Positive solutions for nonlinear nth-order singular eigenvalue problem with nonlocal conditions. Nonlinear Anal., Theory Methods Appl. 73, 1653–1662 (2010)

    Article  MATH  Google Scholar 

  11. Hao, X., Wang, H., Liu, L., Cui, Y.: Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, 182 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, X., Feng, M.: Existence of a positive solution for one-dimensional singular p-Laplacian problems and its parameter dependence. J. Math. Anal. Appl. 413, 566–582 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hao, X., Xu, N., Liu, L.: Existence and uniqueness of positive solutions for fourth-order m-point boundary value problems with two parameters. Rocky Mt. J. Math. 43, 1161–1180 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao, X., Liu, L., Wu, Y.: On positive solutions of an m-point nonhomogeneous singular boundary value problem. Nonlinear Anal., Theory Methods Appl. 73, 2532–2540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, X., Feng, M.: Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps. Commun. Pure Appl. Anal. 17, 2149–2171 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhong, Q., Zhang, X.: Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian. Adv. Differ. Equ. 2016, 11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, 5 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hao, X., Liu, L.: Multiple monotone positive solutions for higher order differential equations with integral boundary conditions. Bound. Value Probl. 2014, 74 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 23, 611–626 (2018)

    Article  MathSciNet  Google Scholar 

  21. He, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, 189 (2018)

    Article  MathSciNet  Google Scholar 

  22. Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, X., Zhong, Q.: Triple positive solutions for nonlocal fractional differential equations with singularities both on time and space variables. Appl. Math. Lett. 80, 12–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hao, X., Zhang, L., Liu, L.: Positive solutions of higher order fractional integral boundary value problem with a parameter. Nonlinear Anal., Model. Control 24, 210–223 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hao, X., Wang, H.: Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 16, 581–596 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mao, J., Zhao, Z., Wang, C.: The exact iterative solution of fractional differential equation with nonlocal boundary value conditions. J. Funct. Spaces 2018, Article ID 8346398 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Guan, Y., Zhao, Z., Lin, X.: On the existence of positive solutions and negative solutions of singular fractional differential equations via global bifurcation techniques. Bound. Value Probl. 2016, 141 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, M., Li, P., Sun, S.: Symmetric positive solutions for fourth-order n-dimensional m-Laplace systems. Bound. Value Probl. 2018, 63 (2018)

    Article  MathSciNet  Google Scholar 

  29. Cannon, J.R.: The solution of the heat equation subject to the specification of energy. Q. Appl. Math. 21, 155–160 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chegis, R.Yu.: Numerical solution of a heat conduction problem with an integral boundary condition. Liet. Mat. Rink. 24, 209–215 (1984)

    MATH  Google Scholar 

  31. Qin, P., Feng, M., Li, P.: Positive solutions to one-dimensional quasilinear impulsive indefinite boundary value problems. Adv. Differ. Equ. 2018, 421 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Jiang, J., Liu, L., Wu, Y.: Positive solutions for second order impulsive differential equations with Stieltjes integral boundary conditions. Adv. Differ. Equ. 2012, 124 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, X., Feng, M., Ge, W.: Existence result of second-order differential equations with integral boundary conditions at resonance. J. Math. Anal. Appl. 353, 311–319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, X., Ge, W.: Symmetric positive solutions of boundary value problems with integral boundary conditions. Appl. Math. Comput. 219, 3553–3564 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Guo, L., Liu, L., Wu, Y.: Iterative unique positive solutions for singular p-Laplacian fractional differential equation system with several parameters. Nonlinear Anal., Model. Control 22, 182–203 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252–263 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, X., Liu, L., Wu, Y.: Variational structure and multiple solutions for a fractional advection-dispersion equation. Comput. Math. Appl. 68, 1794–1805 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kong, L.: Second order singular boundary value problems with integral boundary conditions. Nonlinear Anal., Theory Methods Appl. 72, 2628–2638 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wei, Y., Bai, Z., Sun, S.: On positive solutions for some second-order three-point boundary value problems with convection term. J. Inequal. Appl. 2019, 72 (2019)

    Article  MathSciNet  Google Scholar 

  41. Jiang, J., Liu, L., Wu, Y.: Second-order nonlinear singular Sturm–Liouville problems with integral boundary problems. Appl. Math. Comput. 215, 1573–1582 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, X., Liu, L., Wiwatanapataphee, B., Wu, Y.: The eigenvalue for a class of singular p-Laplacian fractional differential equations involving the Riemann–Stieltjes integral boundary condition. Appl. Math. Comput. 235, 412–422 (2014)

    MathSciNet  MATH  Google Scholar 

  43. Li, P., Feng, M., Qin, P.: A class of nonlocal indefinite differential systems. Bound. Value Probl. 2018, 81 (2018)

    Article  MathSciNet  Google Scholar 

  44. Boucherif, A.: Second-order boundary value problems with integral boundary conditions. Nonlinear Anal., Theory Methods Appl. 70, 364–371 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Feng, M.: Existence of symmetric positive solutions for a boundary value problem with integral boundary conditions. Appl. Math. Lett. 24, 1419–1427 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yan, F., Zuo, F., Hao, X.: Positive solution for a fractional singular boundary value problem with p-Laplacian operator. Bound. Value Probl. 2018, 51 (2018)

    Article  MathSciNet  Google Scholar 

  47. Karakostas, G.L., Tsamatos, P.Ch.: Multiple positive solutions of some Fredholm integral equations arisen from nonlocal boundary-value problems. Electron. J. Differ. Equ. 2002, 30 (2002)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, X., Liu, L., Wu, Y.: The eigenvalue problem for a singular higher fractional differential equation involving fractional derivatives. Appl. Math. Comput. 218, 8526–8536 (2012)

    MathSciNet  MATH  Google Scholar 

  49. Feng, M., Ge, W.: Positive solutions for a class of m-point singular boundary value problems. Math. Comput. Model. 46, 375–383 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jiang, J., Liu, L., Wu, Y.: Positive solutions for p-Laplacian fourth-order differential system with integral boundary conditions. Discrete Dyn. Nat. Soc. 2012, Article ID 293734 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  51. Lan, K.: Multiple positive solutions of semilinear differential equations with singularities. J. Lond. Math. Soc. 63, 690–704 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhang, X., Liu, L., Wu, Y.: Existence results for multiple positive solutions of nonlinear higher order perturbed fractional differential equations with derivatives. Appl. Math. Comput. 219, 1420–1433 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Guo, L., Liu, L., Wu, Y.: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions. Nonlinear Anal., Model. Control 21, 635–650 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhang, X., Liu, L., Wu, Y., Lu, Y.: The iterative solutions of nonlinear fractional differential equations. Appl. Math. Comput. 219, 4680–4691 (2013)

    MathSciNet  MATH  Google Scholar 

  55. Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  56. Feng, M., Du, B., Ge, W.: Impulsive boundary value problems with integral boundary conditions and one-dimensional p-Laplacian. Nonlinear Anal., Real World Appl. 70, 3119–3126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  57. Li, P., Feng, M.: Denumerably many positive solutions for a n-dimensional higher-order singular fractional differential system. Adv. Differ. Equ. 2018, 145 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ahmad, B., Alsaedi, A.: Existence of approximate solutions of the forced Duffing equation with discontinuous type integral boundary conditions. Nonlinear Anal., Real World Appl. 10, 358–367 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  59. Sun, F., Liu, L., Zhang, X., Wu, Y.: Spectral analysis for a singular differential system with integral boundary conditions. Mediterr. J. Math. 13, 4763–4782 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Liu, L., Sun, F., Zhang, X., Wu, Y.: Bifurcation analysis for a singular differential system with two parameters via to topological degree theory. Nonlinear Anal., Model. Control 22, 31–50 (2017)

    MathSciNet  MATH  Google Scholar 

  61. Zhang, X., Liu, L., Wu, Y.: Multiple positive solutions of a singular fractional differential equation with negatively perturbed term. Math. Comput. Model. 55, 1263–1274 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, Y.: Positive solutions of singular sublinear Emden–Fowler boundary value problems. J. Math. Anal. Appl. 185, 215–222 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  63. Zhao, Z.: A necessary and sufficient condition for singular nonlinear second-order boundary value problems to have positive solutions. Annal. Math. JCU 13B, 15–24 (1998)

    MathSciNet  MATH  Google Scholar 

  64. Zhang, X., Tian, Y.: Sharp conditions for the existence of positive solutions for a second-order singular impulsive differential equation. Appl. Anal., 1–13 (2017)

  65. Yang, F.: Necessary and sufficient conditions for existence of positive solutions to a class of singular second order boundary value problems. Chin. J. Eng. Math. 25, 281–287 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Pouso, R.: Necessary and sufficient conditions for existence and uniqueness of solutions of second-order autonomous differential equations. J. Lond. Math. Soc. 2, 397–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Du, X., Zhao, Z.: A necessary and sufficient condition for the existence of positive solutions to singular sublinear three-point boundary value problems. Appl. Math. Comput. 186, 404–413 (2007)

    MathSciNet  MATH  Google Scholar 

  68. Cid, J., Pouso, R., Enguiça, R.: Sharp conditions for the existence of solutions of second-order autonomous differential equations. Mediterr. J. Math. 42, 191–214 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  69. Zhao, J., Wang, L., Ge, W.: Necessary and sufficient conditions for the existence of positive solutions of fourth order multi-point boundary value problems. Nonlinear Anal. 72, 822–835 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  70. Zhang, X., Feng, M.: The existence and asymptotic behavior of boundary blow-up solutions to the k-Hessian equation. J. Differ. Equ. 267, 4626–4672 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. Zhang, X., Du, Y.: Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation. Calc. Var. Partial Differ. Equ. 57, 30 (2018)

    Article  MATH  Google Scholar 

  72. Zhang, X., Feng, M.: Boundary blow-up solutions to the k-Hessian equation with a weakly superlinear nonlinearity. J. Math. Anal. Appl. 464, 456–472 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. Feng, M., Zhang, X.: On a k-Hessian equation with a weakly superlinear nonlinearity and singular weights. Nonlinear Anal. 190, 111601 (2020)

    Article  MathSciNet  Google Scholar 

  74. Zhang, X., Feng, M.: Boundary blow-up solutions to the Monge–Ampère equation: sharp conditions and asymptotic behavior. Adv. Nonlinear Anal. 9, 729–744 (2020)

    Article  MathSciNet  Google Scholar 

  75. Feng, M., Zhang, X.: On a k-Hessian equation with a weakly superlinear nonlinearity and singular weights. Nonlinear Anal. 190, 111601 (2020)

    Article  MathSciNet  Google Scholar 

  76. Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988)

    MATH  Google Scholar 

  77. Papageorgiou, N.S., Rădulescu, V.D., Repovs, D.D.: Nonlinear Analysis—Theory and Methods. Springer Monographs in Mathematics. Springer, Cham (2019)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We wish to express our thanks to Prof. Meiqiang Feng, School of Applied Science, Beijing Information Science & Technology University, Beijing, PR China, for his kind help, careful reading, and making useful comments on the earlier version of this paper. The authors are also grateful to anonymous referees for their constructive comments and suggestions which have greatly improved this paper.

Availability of data and materials

Not applicable.

Funding

This work is sponsored by the National Natural Science Foundation of China (11301178) and the Beijing Natural Science Foundation of China (1163007).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally in this article. They have all read and approved the final manuscript.

Corresponding author

Correspondence to Xuemei Zhang.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that there is no conflict of interests regarding the publication of this manuscript. The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Zhang, X. Positive solutions to second-order singular nonlocal problems: existence and sharp conditions. Bound Value Probl 2019, 173 (2019). https://doi.org/10.1186/s13661-019-1289-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-019-1289-7

Keywords