Skip to main content

Existence of solution for a resonant p-Laplacian second-order m-point boundary value problem on the half-line with two dimensional kernel


The existence of a solution for a second-order p-Laplacian boundary value problem at resonance with two dimensional kernel will be considered in this paper. A semi-projector, the Ge and Ren extension of Mawhin’s coincidence degree theory, and algebraic processes will be used to establish existence results, while an example will be given to validate our result.


The following second-order p-Laplacian boundary value problem will be considered in this work:

$$ \left \{ \textstyle\begin{array}{l} (\varphi_{p}(u'(t)))' + g(t, u(t),u'(t))=0,\quad t \in(0,+\infty), \\ \varphi_{p}(u'(0)) = \int_{0}^{+\infty } v(t)\varphi_{p}(u'(t))\,dt,\qquad \varphi_{p}(u'(+\infty ))= \sum_{j=1}^{m} \beta_{j} \int_{0} ^{\eta_{j}} \varphi_{p}(u'(t))\,dt, \end{array}\displaystyle \right . $$

where \(g:[0,+\infty) \times\mathbb{R}^{2} \to\mathbb{R}\) is an \(L^{1}\)-Carathéodory function, \(0< \eta_{1}<\eta_{2} < \cdots\leq\eta _{m} < +\infty\), \(\beta_{j} \in\mathbb{R}\), \(j=1,2, \ldots, m\), \(v \in L^{1}[0,+\infty )\), \(v(t) >0\) on \([0,+\infty )\), and

$$\varphi_{p} (s) = \vert s \vert ^{p-2}s,\quad p \geq2. $$

There are many real life applications of boundary value problems with integral and multi-point boundary conditions on an unbounded domain, for instance, in the study of physical phenomena such as the study of an unsteady flow of fluid through a semi-infinite porous medium and radially symmetric solutions of nonlinear elliptic equations. They also arise in plasma physics and in the study of drain flows; see [13].

Boundary value problems are said to be at resonance if the solution of the corresponding homogeneous boundary value problem is non-trivial. Many authors in the literature have considered resonant problems. López-Somoza and Minhós [4] obtained existence results for a resonant multi-point second-order boundary value problem on the half-line, Capitanelli, Fragapane and vivaldi [5] addressed regularity results for p-Laplacians in pre-fractal domains, while Jiang and Kosmatov [6] considered resonant p-Laplacian problems with functional boundary conditions. For other work on resonant problems without p-Laplacian operator, see [710], while for problems with the p-Laplacian operator, see [1116]. In [17], Jiang considered the following p-Laplacian operator:

$$ \left \{ \textstyle\begin{array}{l} (\varphi_{p}(u'))' + f(t,u,u') =0, \quad0< t< +\infty ,\\ u(0) =0, \qquad\varphi_{p}(u(+\infty ))=\sum_{i=1}^{n} \alpha_{i} \varphi _{p}(u'(\xi_{i})), \end{array}\displaystyle \right . $$

where \(\alpha_{i} >0\), \(i=1,2,\dots,n\), \(\sum_{i=1}^{n} \alpha_{i}=1\).

To the best of our knowledge p-Laplacian problems with two dimensional kernel on the half-line have not received much attention in the literature.

We will give the required lemmas, theorem and definitions in Sect. 2, Sect. 3 will be dedicated to stating and proving condition for existence of solutions, while an example will be given in Sect. 4 to validate the result obtained.


In this section, we will give some definitions and lemmas that will be used in this work.

Definition 2.1


A map \(w:[0,+\infty) \times\mathbb{R}^{2} \to\mathbb{R}\) is \(L^{1}[0,+\infty )\)-Carathéodory, if the following conditions are satisfied:

  1. (i)

    for each \((d,e) \in\mathbb{R}^{2}\), the mapping \(t \to w(t,d,e)\) is Lebesgue measurable;

  2. (ii)

    for a.e. \(t\in[0,\infty)\), the mapping \((d,e) \to w(t,d,e)\) is continuous on \(\mathbb{R}^{2}\);

  3. (iii)

    for each \(k>0\), there exists \(\varphi_{k}(t) \in L_{1}[0,+\infty)\) such that, for a.e. \(t \in[0,\infty)\) and every \((d,e) \in[-k,k]\), we have

    $$\bigl\vert w(t,d,e) \bigr\vert \leq\varphi_{k}(t). $$

Definition 2.2


Let \((U, \Vert\cdot\Vert_{U})\) and \((Z, \Vert\cdot\Vert_{Z})\) be two Banach spaces. The continuous operator \(M:U \cap \operatorname {dom}M \to Z\), is quasi-linear if the following hold:

  1. (i)

    \(\operatorname {Im}M = M(U\cap \operatorname {dom}M)\) is a closed subset of Z;

  2. (ii)

    \(\ker M = \{ u \in U \cap \operatorname {dom}M :Mu=0\}\) is linearly homeomorphic to \(\mathbb{R}^{n}\), \(n < +\infty \).

Definition 2.3


Let U be a Banach space and \(U_{1} \subset U\) a subspace. Let \(P, Q:U \to U_{1}\) be operators, then P is a projector if

  1. (i)

    \(P^{2} =P\);

  2. (ii)

    \(P(\lambda_{1}u_{1} + \lambda_{2}u_{2})=\lambda_{1}Pu_{1} + \lambda _{2}Pu_{2}\) where \(u_{1}, u_{2} \in U\), \(\lambda_{1}, \lambda_{2} \in\mathbb{R}\),

and Q is a semi-projector if

  1. (i)

    \(Q^{2} = Q\);

  2. (ii)

    \(Q(\lambda u) = \lambda Qu\) where \(u \in U\), \(\lambda\in \mathbb{R}\).

Let \(U_{1} = \ker M\) and \(U_{2}\) be the complement space of \(U_{1}\) in U, then \(U=U_{1} \oplus U_{2}\). Similarly, if \(Z_{1}\) is a subspace of Z and \(Z_{2}\) is the complement space of \(Z_{1}\) in Z, then \(Z = Z_{1} \oplus Z_{2}\). Let \(P: U \to U_{1}\) be a projector, \(Q:Z \to Z_{1}\) be a semi-projector and \(\varOmega\subset U\) an open bounded set with \(\theta\in\varOmega\) the origin. Also, let \(N_{1}\) be denoted by N, let \(N_{\lambda}: \overline{\varOmega} \to Z\), where \(\lambda\in [0,1]\) is a continuous operator and \(\varSigma_{\lambda} =\{ u \in \overline{\varOmega}:Mu=N_{\lambda}u \}\).

Definition 2.4


Let U be the space of all continuous and bounded vector-valued functions on \([0,+\infty )\) and \(X \subset U\). Then X is said to be relatively compact if the following statements hold:

  1. (i)

    X is bounded in U;

  2. (ii)

    all functions from X are equicontinuous on any compact subinterval of \([0,+\infty )\);

  3. (iii)

    all functions from X are equiconvergent at ∞, i.e. \(\forall \epsilon>0\), a \(T = T(\epsilon)\) such that \(\Vert A(t) - A(+\infty )\Vert_{R^{n}}<\epsilon\)\(\forall t >T\) and \(A \in X\).

Definition 2.5


Let \(N_{\lambda}: \overline{\varOmega} \to Z\), \(\lambda\in[0,1]\) be a continuous operator. The operator \(N_{\lambda}\) is said to be M-compact in Ω̅ if there exist a vector subspace \(Z_{1} \in Z\) such that \(\dim Z_{1} = \dim U_{1}\) and a compact and continuous operator \(R:\overline{\varOmega} \times[0,1] \to U_{2}\) such that, for \(\lambda\in[0,1]\), the following holds:

  1. (i)

    \((I - Q)N_{\lambda}(\overline{\varOmega}) \subset \operatorname {Im}M \subset(I-B)Z\),

  2. (ii)

    \(QN_{\lambda}u=0 \Leftrightarrow QNu=0\), \(\lambda\in(0,1)\),

  3. (iii)

    \(R(\cdot,u)\) is the zero operator and \(R(\cdot, \lambda )|_{\varSigma_{\lambda}}=(I-P)|_{\varSigma_{\lambda}}\),

  4. (iv)

    \(M[P+R(\cdot, \lambda)]=(I-Q)N_{\lambda}\).

Lemma 2.1


The following are properties of the function\(\varphi_{p} : \mathbb{R} \to\mathbb{R}\):

  1. (i)

    It is continuous, monotonically increasing and invertible. Its inverse\(\varphi_{p} ^{-1} =\varphi_{q}\), where\(q >1\)and satisfies\(\frac{1}{p}+\frac{1}{q}=1\).

  2. (ii)

    For any\(x, y >0\),

    1. (a)

      \(\varphi_{p} (x +y) \leq\varphi_{p} (x) + \varphi_{p}(y)\), if\(1 < p <2\),

    2. (b)

      \(\varphi_{p}(x+y) \leq2^{p-2}(\varphi_{p}(x) + \varphi _{p}(y))\), if\(p \geq2\).

Theorem 2.1


Let\((U, \Vert\cdot\Vert_{U})\)and\((Z, \Vert\cdot\Vert_{Z})\)be two Banach spaces and\(\varOmega\subset U\)an open and bounded set. If the following holds:


The operator\(M: U \cap \operatorname {dom}M \to Z\)is a quasi-linear,


the operator\(N_{\lambda}:\overline{\varOmega} \to Z\), \(\lambda\in[0,1]\)isM-compact,


\(Mu \neq N _{\lambda}u\), for\(\lambda\in(0,1)\), \(u \in\partial\varOmega\cap \operatorname {dom}M\),


\(\deg\{JQN, \varOmega\cap\ker M,0 \} \neq0\), where the operator\(J:Z_{1} \to U_{1}\)is a homeomorphism with\(J(\theta)=\theta \)and deg is the Brouwer degree,

then the equation\(Mu = Nu\)has at least one solution inΩ̅.


$$\begin{aligned} U = \Bigl\{ u \in C^{2}[0,+\infty): u, \varphi_{p} \bigl(u'\bigr) \in \mathit{AC}[0,+\infty ), \lim_{t \to +\infty }e^{-t} \bigl\vert u^{(i)}(t) \bigr\vert \text{ exist, } i=0,1 \Bigr\} , \end{aligned}$$

with the norm \(\Vert u \Vert= \max\{\Vert u \Vert_{\infty}, \Vert u' \Vert_{\infty}\}\) defined on U where \(\Vert u \Vert_{\infty} =\sup_{t \in[0,+\infty )}e^{-t}|u|\). The space \((U, \Vert\cdot\Vert)\) by a standard argument is a Banach Space.

Let \(Z = L^{1}[0,+\infty )\) with the norm \(\Vert w \Vert_{L^{1}} = \int_{0} ^{+\infty }|w(v)|\,dv\). Define M as a continuous operator such that \(M:\operatorname {dom}M \subset U \to Z\) where

$$\begin{aligned} \begin{aligned} \operatorname {dom}M &= \Biggl\{ u \in U: \bigl(\varphi_{p} \bigl(u' \bigr)\bigr)' \in L^{1}[0,+\infty ), \varphi _{p} \bigl(u'(0)\bigr)= \int_{0}^{+\infty }v(t)\varphi_{p} \bigl(u'(t)\bigr)\,dt, \\ &\quad \lim_{t \to +\infty } \bigl(\varphi_{p} \bigl(u'(t)\bigr)\bigr)= \sum_{j=1}^{m} \beta_{j} \int _{0} ^{\eta_{j}} \varphi_{p} \bigl(u'(t)\bigr)\,dt \Biggr\} \end{aligned} \end{aligned}$$

and \(Mu = (\varphi_{p}(u'(t)))'\). We will define the operator \(N_{\lambda}u : \overline{\varOmega} \to Z\) by

$$N_{\lambda}u = -\lambda g\bigl(t, u(t),u'(t)\bigr), \quad \lambda\in[0,1], t \in[0,+\infty ), $$

where \(\varOmega\subset U\) is an open and bounded set. Then the boundary value problem (1.1) in abstract form is \(Mu=Nu\).

Throughout the paper we will assume the hypotheses:


\(\sum_{j=1}^{m} \beta_{j} \eta_{j} = \int_{0}^{+\infty }v(t)\, dt=1\);

$$C = \left| \textstyle\begin{array}{c@{\quad}c} Q_{1}e^{-t} & Q_{2}e^{-t} \\ Q_{1}te^{-t} & Q_{2}te^{-t} \end{array}\displaystyle \right| := \left| \textstyle\begin{array}{c@{\quad}c}c_{11} & c_{12} \\ c_{21} & c_{22} \end{array}\displaystyle \right| =c_{11}\cdot c_{22} - c_{12} \cdot c_{21} \neq0,$$


$$Q_{1}w =\int_{0}^{+\infty }v(t) \int_{0}^{t} w(s)\,ds\,dt,$$


$$Q_{2}w=\sum_{j=1}^{m} \beta_{j}\int_{0}^{\eta_{j}}\int_{t}^{+\infty }w(s)\,ds\,dt.$$

It is obvious that \(\ker M = \{u \in \operatorname {dom}M:u=a +bt: a, b \in\mathbb {R}, t \in[0,+\infty )\}\) and \(\operatorname {Im}M = \{w:w \in Z, Q_{1}w = Q_{2}w=0\}\).

Clearly, \(\ker M=2\) is linearly homeomorphic to \(\mathbb{R}^{2}\) and \(\operatorname {Im}M \subset Z\) is closed, hence, the operator \(M:\operatorname {dom}M \subset U \to Z\) is quasi-linear.

We next define the projector \(P:U \to U_{1}\) as

$$ Pu(t)=u(0) + u'(0)t, \quad u \in U, $$

and the operators \(\Delta_{1}, \Delta_{2} : Z \to Z_{1}\) as

$$\Delta_{1}w=\frac{1}{C}(\delta_{11}Q_{1}w + \delta_{12}Q_{2}w)e^{-t},$$


$$\Delta_{2}w=\frac{1}{C}(\delta_{21}Q_{1}w + \delta _{22}Q_{2}w)e^{-t},$$

where \(\delta_{ij}\) is the co-factor of \(c_{ij}\), \(i,j=1,2\). Then the operator \(Q: Z \to Z_{1}\) will be defined as

$$ Qw = (\Delta_{1}w) + (\Delta_{2}w) \cdot t $$

where \(Z_{1}\) is the complement space of ImM in Z. Then the operator \(Q: Z \to Z_{1}\) can easily be shown to be a semi-projector.

Let the operator \(R:U \times[0,1] \to U_{2}\) be defined by

$$\begin{aligned} R(u,\lambda) (t)&= \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr) - \int _{0}^{\tau}\lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) - QNu(s)\bigr)\,ds \biggr)\,d\tau- u'(0)t, \end{aligned}$$

where \(U_{2}\) is the complement space of kerM in U.

Lemma 2.2

Ifgis a\(L^{1}[0,+\infty )\)-Carathéodory function, then\(R:U \times[0,1] \to U_{2}\)isM-compact.


Let the set \(\varOmega\subset U\) be nonempty, open and bounded, then, for \(u \in\overline{\varOmega}\), there exists a constant \(k >0\) such that \(\Vert u \Vert< k\). Since g is an \(L^{1}[0,+\infty )\)-Carathéodory function, there exists \(\psi_{k} \in L^{1}[0,+\infty )\) such that, for a.e. \(t \in[0,+\infty )\) and \(\lambda\in[0,1]\), we have

$$\begin{aligned} \Vert N_{\lambda}u \Vert _{L^{1}}+ \Vert QN _{\lambda }u \Vert _{L^{1}}&= \int_{0}^{+\infty } \bigl\vert N_{\lambda}u(v) \bigr\vert \,dv + \int_{0}^{+\infty } \bigl\vert QN _{\lambda}u(v) \bigr\vert \,dv \\ & \leq \Vert \psi_{k} \Vert _{L^{1}}+ \Vert QNu \Vert _{L^{1}}. \end{aligned}$$

Now for any \(u \in\overline{\varOmega}\), \(\lambda\in[0,1]\), we have

$$\begin{aligned} \begin{aligned} [b]\bigl\Vert R(u,\lambda) \bigr\Vert _{\infty} &= \sup_{t \in[0,+\infty )}e^{-t} \bigl\vert R(u,\lambda) (t) \bigr\vert \leq\frac{1}{e} \varphi_{q} \bigl(\varphi_{p}(k) + \Vert Nu_{\lambda} \Vert _{L^{1}} + \Vert QN_{\lambda}u \Vert _{L^{1}}\bigr)+k \\ &\leq\varphi_{q} \bigl( \varphi_{p}(k)+ \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) +k< +\infty \end{aligned} \end{aligned}$$


$$\begin{aligned} \begin{aligned}[b] \bigl\Vert R'(u, \lambda) \bigr\Vert _{\infty} &= \sup_{t \in[0,+\infty )}e^{-t} \bigl\vert R'(u,\lambda) (t) \bigr\vert \\ &\leq\varphi_{q} \bigl(\varphi_{p}(k)+ \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr)+k < +\infty . \end{aligned} \end{aligned}$$

Therefore it follows from (2.3) and (2.4) that \(R(u, \lambda)\overline{\varOmega}\) is uniformly bounded.

Next we show that \(R(u, \lambda)\overline{\varOmega}\) is equicontinuous in a compact set. Let \(u \in\overline{\varOmega}\), \(\lambda\in[0,1]\). For any \(T \in[0,+\infty )\), with \(t_{1}, t_{2} \in [0,T]\) where \(t_{1} < t_{2}\), we have

$$\begin{aligned} &\bigl\vert e^{t_{2}}R(u, \lambda) (t_{2})-e^{t_{1}}R(u,\lambda) (t_{1}) \bigr\vert \\ &\quad= \biggl\vert e^{t_{2}} \int_{0}^{t_{2}} \varphi_{q} \biggl( \varphi _{p}\bigl(u'(0)\bigr)- \int_{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr)\,d \tau-u'(0)t_{2}e^{-t_{2}} \\ &\qquad - e^{-t_{1}} \int_{0}^{-t_{1}} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int _{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) -QNu(s)\bigr)\,ds \biggr)\,d\tau+ u'(0)t_{1}e^{t_{1}} \biggr\vert \\ &\quad\leq \bigl\vert e^{t_{2}}-e^{-t_{1}} \bigr\vert \int_{0}^{t_{1}} \varphi_{q} \biggl( \varphi _{p}\bigl( \bigl\vert u'(0) \bigr\vert \bigr)+ \int_{0}^{\tau} \lambda \bigl\vert g \bigl(s,u(s),u'(s)\bigr)-QNu(s) \bigr\vert \,ds \biggr)\,d\tau \\ &\qquad + e^{-t_{2}} \int_{t_{1}}^{t_{2}} \varphi_{q} \biggl( \varphi _{p}\bigl( \bigl\vert u'(0) \bigr\vert \bigr)+ \int_{0}^{\tau} \lambda \bigl\vert g \bigl(s,u(s),u'(s)\bigr)-QNu(s) \bigr\vert \,ds \biggr)\,d\tau \\ &\qquad + \bigl\vert t_{1}e^{-t_{1}}-t_{2}e^{-t_{2}} \bigr\vert \bigl\vert u'(0) \bigr\vert \\ &\quad\leq\bigl(e^{t_{2}}-e^{-t_{1}}\bigr)\varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr)t_{1} \\ &\qquad+ e^{-t_{2}}\varphi_{q} \bigl( \varphi _{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) (t_{2} -t_{1}) + \bigl\vert t_{1}e^{-t_{1}}-t_{2}e^{-t_{2}} \bigr\vert r \\&\quad\to 0, \quad\text{as } t_{1} \to t_{2}, \end{aligned}$$


$$\begin{aligned} \begin{aligned}[b] &\bigl\vert e^{-t_{2}}R'(u, \lambda) (t_{2})-e^{-t_{1}}R'(u,\lambda) (t_{1}) \bigr\vert \\ &\quad= \biggl\vert e^{t_{2}}\varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int_{0}^{t_{2}} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr) -u'(0)e^{-t_{2}} \\ & \qquad- e^{-t_{1}}\varphi_{q} \biggl( \varphi_{p} \bigl(u'(0)\bigr)- \int_{0}^{t_{1}} \lambda \bigl(g \bigl(s,u(s),u'(s)\bigr) -QNu(s)\bigr)\,ds \biggr) + u'(0)e^{-t_{1}} \biggr\vert \\ &\quad\leq\bigl(e^{t_{2}}-e^{-t_{1}}\bigr)\varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) + \bigl(e^{-t_{1}}-e^{-t_{2}}\bigr)k \\ &\quad\to0, \quad\text{as } t_{1} \to t_{2}. \end{aligned} \end{aligned}$$

Thus, (2.5) and (2.6) show that \(R(u,\lambda )\overline{\varOmega}\) is equicontinuous on \([0,T]\).

We will now prove that \(R(u,\lambda)\overline{\varOmega}\) is equiconvergent at ∞. Since \(\lim_{t \to +\infty }e^{-t}=0\),

$$\begin{aligned} \lim_{t \to +\infty } e^{-t}R(u,\lambda) (t)= \lim _{t \to +\infty } e^{-t}R'(u,\lambda) (t)=0. \end{aligned}$$


$$\begin{aligned} \begin{aligned}[b] &\Bigl\vert e^{-t}R(u, \lambda) (t)-\lim_{t \to +\infty }e^{-t}R(u,\lambda) (t) \Bigr\vert \\ &\quad= \biggl\vert e^{-t} \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr) - \int _{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr)\,d\tau -te^{-t}u'(0) -0 \biggr\vert \hspace{-24pt} \\ &\quad\leq te^{-t} \varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) + kte^{-t} \\&\quad\to0, \quad\text{uniformly as } t \to +\infty , \end{aligned} \end{aligned}$$


$$\begin{aligned} \begin{aligned}[b] &\Bigl\vert e^{-t}R'(u, \lambda) (t)-\lim_{t \to +\infty }e^{-t}R'(u, \lambda) (t) \Bigr\vert \\ &\quad= \biggl\vert e^{-t}\varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr) - \int_{0}^{t} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr)-QNu(s)\bigr)\,ds \biggr) -e^{-t}u'(0) - 0 \biggr\vert \\ &\quad\leq e^{-t} \varphi_{q} \bigl( \varphi_{p}(k) + \Vert \psi_{k} \Vert _{L^{1}} + \Vert QNu \Vert _{L^{1}}\bigr) + ke^{-t} \\&\quad\to0, \quad\text{uniformly as } t \to +\infty . \end{aligned} \end{aligned}$$

Therefore \(R(u,\lambda)\overline{\varOmega}\) is equiconvergent at +∞. It then follows from Definition 2.4 that \(R(u,\lambda)\) is compact. □

Lemma 2.3

The operator\(N_{\lambda}\)isM-compact.


Since Q is a semi-projector, \(Q(I-Q)N_{\lambda}(\overline{\varOmega })=0\). Hence, \((I-Q)N_{\lambda}(\overline{\varOmega})\subset\ker Q = \operatorname {Im}M\). Conversely, let \(w \in \operatorname {Im}M\), then \(w=w -Qw = (I-Q)w \in (I-Q)Z\). Hence, condition (i) of definition (2.5) is satisfied. It can easily be shown that condition (ii) of Definition 2.5 holds.

Let \(u \in\varSigma_{\lambda}=\{u \in\overline{\varOmega}:Mu = N_{\lambda}u\}\), then \(N_{\lambda}u \in \operatorname {Im}M\). Hence, \(QN_{\lambda }u=0\) and \(R(u,0)(t)=0\). From \((\varphi_{p}(u'(t)))' + g(t, u(t),u'(t))=0\), \(t \in(0,+\infty)\), we have

$$\begin{aligned} R(u,\lambda) (t)&= \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int _{0}^{\tau} \lambda g \bigl(s,u(s),u'(s) \bigr)\,ds \biggr)\,d\tau- u'(0)t \\ &= \int_{0}^{t} \varphi_{q} \bigl( \varphi_{p}\bigl(u'(0)\bigr)+ \varphi_{p} \bigl(u'(\tau )\bigr)-\varphi_{p}\bigl(u'(0) \bigr) \bigr)\,d\tau- u'(0)t \\ &= u(t) - u(0)-u'(0)t=u(t)-Pu(t)=\bigl[(I-P)u\bigr](t). \end{aligned}$$

Therefore, condition (iii) of definition (2.5) holds.

Let \(u \in\overline{\varOmega}\). Since \(Mu = (\varphi_{p}(u'(t)))'\) we have

$$\begin{aligned} M\bigl[Pu +R(u,\lambda)\bigr](t)&= \big(\varphi_{p}\bigl(\bigl[Pu + R(u,\lambda)\bigr]\big)'(t)\bigr)' \\ &= \biggl(\varphi_{p} \biggl[u(0)+u'(0)t + \int_{0}^{t} \varphi_{q} \biggl( \varphi_{p}\bigl(u'(0)\bigr)- \int_{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) \\ &\quad - QN(s)\bigr)\,ds \biggr) \,d\tau-u'(0)t \biggr]' \biggr)' \\ &= \biggl(\varphi_{p}\bigl(u'(0)\bigr)- \int_{0}^{\tau} \lambda\bigl(g \bigl(s,u(s),u'(s)\bigr) - QN(s)\bigr)\,ds \biggr)'=(I-Q)N_{\lambda}(t), \end{aligned}$$

that is, condition (iv) of definition (2.5) holds. Hence, \(N_{\lambda}\) is M-compact in Ω̅. □

Existence result

In this section, the conditions for existence of solutions for boundary value problem (1.1) will be stated and proved.

Theorem 3.1

Assumegis a\(L^{[}0,+\infty )\)-Carathéodory function and the following hypotheses hold:


there exist functions\(x_{1}(t), x_{2}(t), x_{3}(t) \in L^{1}[0,+\infty )\)such that, for a.e. \(t \in[0,+\infty )\),

$$ \bigl\vert g\bigl(t,u,u'\bigr) \bigr\vert \leq e^{-t}\bigl(x_{1}(t) \vert u \vert ^{p-1} + x_{2}(t) \bigl\vert u' \bigr\vert ^{p-1}\bigr) + x_{3}(t), $$

for\(u \in \operatorname {dom}M\)there exists a constant\(A_{0} >0\), such that, if\(|u(t)|>A_{0}\)for\(t \in[0,+\infty )\)or\(|u'(t)|>A_{0}\)for\(t \in[0,+\infty ]\), then either

$$ Q_{1}Nu(t) \neq0 \quad\textit{or} \quad Q_{2}Nu(t) \neq0, \quad t \in [0,+\infty ), $$

there exists a constant\(l>0\)such that, for\(|a| >l\)or\(|b|>l\)either

$$ Q_{1}N(a +bt) + Q_{2}N(a +bt) < 0, \quad t \in[0,+\infty ), $$


$$ Q_{1}N(a +bt) + Q_{2}N(a +bt) >0, \quad t \in[0,+\infty ), $$

where\(a, b \in\mathbb{R}\), \(|a| + |b| > l\)and\(t \in[0,+\infty )\).

Then the boundary value problem (1.1) has at least one solution, provided

$$2^{2q-4}\bigl( \Vert x_{2} \Vert _{L^{1}} + 2^{q-2} \Vert x_{1} \Vert _{L^{1}}\bigr) < 1, \quad\textit{for } 1 < p \leq2, $$


$$\varphi_{q}\bigl( \Vert x_{1} \Vert _{L^{1}} + \Vert x_{2} \Vert _{L^{1}}\bigr) < 1, \quad \textit{for } p>2. $$

The following lemmas are also needed to prove our main result.

Lemma 3.1

The set\(\varOmega_{1} = \{ u \in \operatorname {dom}M :Mu = N_{\lambda}u \textit{ for some } \lambda\in(0,1)\}\)is bounded.


Let \(u \in\varOmega_{1}\) then \(N_{\lambda}u \in \operatorname {Im}M= \ker Q\). Hence, \(QN_{\lambda}u = 0\) and \(QNu=0\). It follows from \(H_{2}\) that there exist \(t_{0}, t_{1} \in[0,+\infty )\), such that \(|u(t_{0})| \leq A_{0}\) and \(|u'(t_{1})| \leq A_{0}\). From \(u(t)=u(t_{0}) + \int_{t_{0}}^{t}u'(v)\,dv\), we have

$$\begin{aligned} \bigl\vert u(t) \bigr\vert = \biggl\vert u(t_{0}) - \int_{t_{0}}^{t}u'(s)\,ds \biggr\vert \leq A_{0} + \vert t-t_{0} \vert \bigl\Vert u' \bigr\Vert _{\infty}. \end{aligned}$$


$$ \Vert u \Vert _{\infty} = \sup_{t \to\infty}e^{-t} \bigl\vert u(t) \bigr\vert \leq A_{0} + \bigl\Vert u' \bigr\Vert _{\infty}. $$

Also, from \(Mu = N_{\lambda}u\), we get

$$\varphi_{p}\bigl(u'(t)\bigr)=- \int_{t_{1}}^{t} \lambda g\bigl(s,u(s),u'(s) \bigr)\,ds + \varphi _{p}\bigl(u(t_{1})\bigr). $$

In view of (3.1), we have

$$\begin{aligned} \begin{aligned}[b] \bigl\vert \bigl(u'(t) \bigr) \bigr\vert &\leq\varphi_{q} \biggl(\varphi_{p}(A_{0})+ \int_{0}^{+\infty } \bigl(x_{1}(t) \bigl\vert \varphi_{p}\bigl(u(t)\bigr) \bigr\vert + x_{2}(t) \bigl\vert \varphi_{p}\bigl(u' \bigr) \bigr\vert + x_{3}(t)\bigr)\,dt \biggr) \\ &\leq\varphi_{q} \bigl(\varphi_{p}(A_{0})+ \Vert x_{1} \Vert _{L^{1}}\varphi _{p} \bigl( \Vert u \Vert _{\infty}\bigr) + \Vert x_{2} \Vert _{L^{1}}\varphi_{p}\bigl( \bigl\Vert u' \bigr\Vert _{\infty}\bigr) + \Vert x_{3} \Vert _{L^{1}} \bigr) \\ &\leq\varphi_{q} \bigl(\varphi_{p}(A_{0})+ \Vert x_{1} \Vert _{L^{1}}\varphi _{p} \bigl(A_{0}+ \bigl\Vert u' \bigr\Vert _{\infty}\bigr) + \Vert x_{2} \Vert _{L^{1}} \varphi _{p}\bigl( \bigl\Vert u' \bigr\Vert _{\infty}\bigr) + \Vert x_{3} \Vert _{L^{1}} \bigr). \end{aligned} \end{aligned}$$

If \(1 < p \leq2\), it follows from Lemma 2.1 that

$$ \bigl\Vert u' \bigr\Vert _{\infty} \leq\frac{2^{2q-4}[\varphi_{q}( \Vert x_{3} \Vert _{L^{1}}) + A_{0}(1+2^{q-2} \Vert x_{1} \Vert _{L^{1}}}{1-2^{2q-4}( \Vert x_{2} \Vert _{L^{1}} + 2^{q-2} \Vert x_{1} \Vert _{L^{1}})}. $$

If \(p >2\) then, by Lemma 2.1, we get

$$ \bigl\Vert u' \bigr\Vert _{\infty} \leq\frac{A_{0}(1+ \varphi_{q}( \Vert x_{1} \Vert _{L^{1}}) + \varphi_{q}( \Vert x_{3} \Vert _{L^{1}})}{1-\varphi_{q}( \Vert x_{1} \Vert _{L^{1}} + \Vert x_{2} \Vert _{L^{1}})}. $$

Since \(\Vert u \Vert= \max\{\Vert u \Vert_{\infty}, \Vert u' \Vert _{\infty}\} \leq A_{0} + \Vert u' \Vert_{\infty}\), in view of (3.7) and (3.8), \(\varOmega_{1}\) is bounded. □

Lemma 3.2

If\(\varOmega_{2} =\{u \in\ker M:-\lambda u +(1-\lambda)JQNu=0, \lambda\in[0,1]\}\), \(J: \operatorname {Im}Q \to\ker M\)is a homomorphism, then\(\varOmega_{2}\)is bounded.


For \(a, b \in R\), let \(J: \operatorname {Im}Q \to\ker M\) be defined by

$$ J(a+bt)= \frac{1}{C}\bigl[\delta_{11} \vert a \vert +\delta_{12} \vert b \vert + \bigl(\delta _{21} \vert a \vert + \delta_{22} \vert b \vert \bigr)t)\bigr]e^{-t}. $$

If (3.3) holds, for any \(u(t) = a + bt \in\varOmega_{3}\), from \(-\lambda u + (1-\lambda)JQNu =0\), we obtain


Since \(C \neq0\),

$$\begin{aligned} \begin{gathered} \lambda \vert a \vert =(1 - \lambda)Q_{1}N(a +bt), \\ \lambda \vert b \vert =(1 - \lambda)Q_{2}N(a +bt). \end{gathered} \end{aligned}$$

From (3.10), when \(\lambda=1\), \(a = b =0\). When \(\lambda=0\),

$$Q_{1}N(a+bt) + Q_{2}N(a+bt)=0, $$

which contradicts (3.3) and (3.4), hence from (\(H_{3}\)), \(|a| \leq l\) and \(|b| \leq l\). For \(\lambda\in(0,1)\), in view of (3.3) and (3.10), we have

$$0\leq\lambda\bigl( \vert a \vert + \vert b \vert \bigr) =(1-\lambda) \bigl[Q_{1}N(a +bt) + Q_{2}N(a+bt)\bigr] < 0, $$

which contradicts \(\lambda(|a|+|b|) \geq0\). Hence, (\(H_{3}\)), \(|a| \leq l\) and \(|b| \leq l\), thus \(\Vert u \Vert\leq2l\). Therefore \(\varOmega _{2}\) is bounded. □

Proof of Theorem 3.1

Since M is quasi-linear, condition (\(A_{1}\)) of Theorem 2.1 holds, Lemma 2.2 proved (\(A_{2}\)), while Lemma 3.1 shows that (\(A_{3}\)) holds.

Let \(\varOmega\supset\varOmega_{1} \cup\varOmega_{2}\) be a nonempty, open and bounded set, \(u \in \operatorname {dom}M \cap\partial\varOmega\), \(H(u,\lambda)=-\lambda u +(1-\lambda)JQNu\), and J be as defined in Lemma 3.2 then \(H(u,\lambda) \neq0\). Therefore by the homotopy property of the Brouwer degree

$$\begin{aligned} \deg\{JQN|_{\overline{\varOmega} \cap\ker M},\varOmega\cap\ker M,0\}&=\deg\bigl\{ H(\cdot, 0), \varOmega\cap\ker M,0\bigr\} \\ &=\deg\bigl\{ H(\cdot,1),\varOmega\cap\ker M,0\bigr\} \\ &=\deg\{-I,\varOmega\cap\ker M,0\} \neq0. \end{aligned}$$

Hence, condition (\(A_{4}\)) of Theorem 2.1 also holds. □

Since all the conditions of Theorem 2.1 are satisfied, the abstract equation \(Mu=Nu\) has at least one solution in \(\overline {\varOmega} \cap \operatorname {dom}M\). Hence, (1.1) has at least one solution.


Consider the following boundary value problem:

$$ \left \{ \textstyle\begin{array}{l} (\varphi_{4}(u'(t)))' + e^{-t-2} \sin t \cdot u^{3}+e^{-t-3}\cos t\cdot u^{\prime3} + \frac{1}{6}e^{-6t}=0, \quad t \in (0,+\infty ), \\ \varphi_{4}(u'(0))=\int_{0}^{+\infty }2e^{-2t}\varphi_{4}(u'(t))\,dt, \qquad \varphi_{4}(u'(+\infty ))= 9\int_{0}^{1/9}\varphi_{4}(u'(t))\,dt. \end{array}\displaystyle \right . $$

Here \(v(t) =2e^{-2t}\), \(p=4\), \(q=\frac{4}{3}\), \(\beta_{1} = 9\), \(\eta _{1} = \frac{1}{9}\), \(x_{1}= e^{-t-2}\sin t\) and \(x_{2}=e^{-t-3}\cos t\). Therefore, \(\sum_{j=1}^{1}\beta_{j} \eta_{j}=1\), \(\int_{0}^{+\infty }v(t)\, dt=1\), \(C \neq0\) and \(\varphi_{q}(\Vert x_{1} \Vert_{L^{1}} + \Vert x_{2} \Vert_{L^{2}})<1\). It can easily be seen that conditions (\(H_{1}\))–(\(H_{3}\)) hold. Hence, (4.1) has at least one solution.


  1. 1.

    Agarwal, R.P., O’Regan, D.: Infinite interval problems modeling phenomena which arise in the theory of plasma and electrical potential theory. Stud. Appl. Math. 111(3), 339–358 (2003)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Gala, S., Liu, Q., Ragusa, M.A.: A new regularity criterion for the nematic liquid crystal flows. Appl. Anal. 91(9), 1741–1747 (2012)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Gala, S., Ragusa, M.A.: Logarithmically improved regularity criterion for the Boussinesq equations in Besov spaces with negative indices. Appl. Anal. 95(6), 1271–1279 (2016)

    MathSciNet  Article  Google Scholar 

  4. 4.

    López-Somoza, L., Minhós, F.: On multipoint resonant problems on the half-line. Bound. Value Probl. 2019, Article ID 38 (2019).

    MathSciNet  Article  Google Scholar 

  5. 5.

    Capitanelli, R., Fragapane, S., Vivaldi, M.A.: Regularity results for p-Laplacians in pre-fractal domains. Adv. Nonlinear Anal. 8(1), 1043–1056 (2019)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Jiang, W., Kosmatov, N.: Resonant p-Laplacian problems with functional boundary conditions. Bound. Value Probl. 2018, Article ID 72 (2018).

    MathSciNet  Article  Google Scholar 

  7. 7.

    Yang, A.J., Ge, W.: Existence of symmetric solutions for a fourth-order multi-point boundary value problem with a p-Laplacian at resonance. J. Appl. Math. Comput. 29, 301–309 (2009)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Lin, X., Du, Z., Meng, F.: A note on a third-order multi-point boundary value problem at resonance. Math. Nachr. 284, 1690–1700 (2011)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Iyase, S.A., Imaga, O.F.: On a singular second-order multipoint boundary value problem at resonance. Int. J. Differ. Equ. (2017).

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Iyase, S.A., Imaga, O.F.: Higher order boundary value problems with integral boundary conditions at resonance on the half-line. J. Niger. Math. Soc. 32(2), 168–183 (2019)

    MathSciNet  Google Scholar 

  11. 11.

    Jiang, W., Zhang, Y., Qiu, J.: The existence of solutions for p-Laplacian boundary value problems at resonance on the half-line. Bound. Value Probl. (2009).

    Article  MATH  Google Scholar 

  12. 12.

    Feng, H., Lian, H., Ge, W.: A symmetric solution of a multipoint boundary value problems with one-dimensional p-Laplacian at resonance. Nonlinear Anal. 69, 3964–3972 (2008)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Yang, A., Miao, C., Ge, W.: Solvability for a second-order nonlocal boundary value problems with a p-Laplacian at resonance on a half-line. Electron. J. Qual. Theory Differ. Equ. 2009, Article ID 19 (2009)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Lin, X., Zhang, Q.: Existence of solution for a p-Laplacian multi-point boundary value problem at resonance Qual. Theory Dyn. Syst. 17, 143–154 (2017).

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Papageorgiou, N.S., Radulescu, V.D.: Qualitative phenomena for some classes of quasilinear elliptic equations with multiple resonance. Appl. Math. Optim. 69(3), 393–430 (2014)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Imaga, O.F., Edeki, S.O., Agboola, O.O.: On the solvability of a resonant p-Laplacian third-order integral m-point boundary value problem. IAENG Int. J. Appl. Math. 50(2), 256–261 (2020)

    Google Scholar 

  17. 17.

    Jiang, W.: Solvability for p-Laplacian boundary value problem at resonance on the half-line. Bound. Value Probl. 2013, Article ID 207 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Ge, W., Ren, J.: An extension of Mawhin’s continuation theorem and its application to boundary value problems with a p-Laplacian. Nonlinear Anal. 58, 477–488 (2004)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Ge, W.: Boundary Value Problems for Ordinary Nonlinear Differential Equations. Science Press, Beijing (2007) (in Chinese)

    Google Scholar 

  20. 20.

    Kosmatov, N.: Multi-point boundary value problems on an unbounded domain at resonance. Nonlinear Anal. 68, 2158–2171 (2008)

    MathSciNet  Article  Google Scholar 

Download references


The authors acknowledges Covenant University for the support received from them. The authors are also grateful to the referees for their valuable suggestions.

Availability of data and materials

Not applicable.


The authors received no specific funding for this research.

Author information




OF conceived the idea. SA supervised the work. All authors discussed and contributed to the final manuscript.

Corresponding author

Correspondence to O. F. Imaga.

Ethics declarations

Competing interests

The authors declare they have no competing interest.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imaga, O.F., Iyase, S.A. Existence of solution for a resonant p-Laplacian second-order m-point boundary value problem on the half-line with two dimensional kernel. Bound Value Probl 2020, 114 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • 70K30
  • 34B10
  • 34B15
  • 35J92


  • Coincidence degree
  • Half-line
  • Integral boundary value problem
  • m-Point
  • p-Laplacian
  • Resonance