- Research
- Open access
- Published:
The existence of solutions for Sturm–Liouville differential equation with random impulses and boundary value problems
Boundary Value Problems volume 2021, Article number: 97 (2021)
Abstract
In this article, we consider the existence of solutions to the Sturm–Liouville differential equation with random impulses and boundary value problems. We first study the Green function of the Sturm–Liouville differential equation with random impulses. Then, we get the equivalent integral equation of the random impulsive differential equation. Based on this integral equation, we use Dhage’s fixed point theorem to prove the existence of solutions to the equation, and the theorem is extended to the general second order nonlinear random impulsive differential equations. Then we use the upper and lower solution method to give a monotonic iterative sequence of the generalized random impulsive Sturm–Liouville differential equations and prove that it is convergent. Finally, we give two concrete examples to verify the correctness of the results.
1 Introduction
Impulsive dynamical systems are an emerging field drawing attention from both theoretical and applied disciplines. They are often typically described by ordinary differential equations with instantaneous state jumps [24, 29]. And the impulsive differential equations serve as basic models to study the dynamics of processes that are subject to sudden changes in their states. Since many evolution processes, optimal control models in economics, mechanics, electricity, several fields in engineering stimulated neural networks, frequency modulated systems, and some motions of missiles or aircrafts are characterized by the impulsive dynamical behavior, the study of impulsive systems, especially the impulsive differential, is of great importance, for details, see [12, 17, 24, 27, 34]. But real systems are often subject to not only impulse effect but also noise perturbations. Taking into account the stochastic effects, the models are better described as random impulsive differential equations (RIDEs) rather than impulsive differential equations or stochastic differential equations. Hence the study of RIDEs has received some attention [2, 30]. Recently, a large number of important results about the impulsive differential equation have been reported in [3, 4, 6, 13–15, 18, 23, 24, 28–31, 35, 36, 41]. For example, in [6], Gowrisankar et al. investigated the existence and stability of mild solutions of the first order semilinear differential equation with random impulse (1.1) using the contraction principle.
where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators \(S(t)\) with domain \(D(A)\subseteq X\). \(x_{t}(s)=x(t+s)\) and \(\xi _{k}\) is the random pulse time point. In addition, many scholars have also studied the properties of random impulsive differential equations. Radhakrishnan et al. [25] studied the existence of solutions for quasilinear random impulsive neutral differential evolution equation by using the analytic semigroup theory and Schauder fixed point theorem. Niu et al. [23] studied the existence and Hyers–Ulam stability of the random impulsive differential equation with the initial condition. Zhang et al. [40] studied the existence and exponential stability of random impulsive fractional differential equations using the Leray–Schauder fixed point theorem.
Moreover, Sturm–Liouville differential equations play an important role in the study of differential equations. For any second order homogeneous linear differential equation
we can multiply both sides of the equation by the integral factor \(\mu (x)=\frac{1}{P(x)}e^{\int \frac{Q(x)}{P(x)}\,\mathrm{d}x}\), so that the equation becomes a Sturm–Liouville differential equation
Therefore, the study of Sturm–Liouville type differential equations is of great significance, and some scholars have conducted in-depth research [22, 37, 38].
Besides, in recent years, the boundary value problems of different order differential equations have emerged as an important area of research, since these problems have applications in various disciplines of science and engineering such as control theory, signal and image processing, polymer rheology, regular variation in thermodynamics, biophysics, aerodynamics, and damping [5, 36]. Many researchers studied the existence and stability theory for differential equations with a variety of boundary conditions, for instance, see the papers [1, 9–11, 16, 19–21, 26, 33, 42]. For example, Hua, Cong, and Cheng [8] studied equation (1.2) in 2012, which is the existence and uniqueness of solutions for the periodic-integrable boundary value problem of second order differential equations
where \(p(t)\in C(R,R)\) is a given T-periodic function in \(t\in R\), and \(p(t)>0\). \(f\in C(R\times R,R)\) is T-periodic in t.
Finally, we found that the current main research results are focused on ordinary impulsive differential equations, and few scholars have studied random impulsive differential equations. Therefore, based on the importance of random impulsive differential equations, we have carried out research on them. Besides, we found that many researchers investigated the normal impulsive differential equations and the boundary value problem of the equations. But there are fewer people who studied the boundary value problem of Sturm–Liouville type differential equations with random impulses and the upper and lower solutions of this kind of equation. In this paper, we discuss the Sturm–Liouville type differential equations with random impulses and boundary value problems, and we derive the Green function (the researchers gave the Green function of the normal impulsive differential equations [4, 7]) of the equations with the random impulses which has never been studied in the past. At the same time, we use the upper and lower solution method to construct the monotone iterative sequence converging to the maximum and minimum solutions of the equation and prove their convergence.
The rest of the paper is organized as follows: in Sect. 2, we introduce some notations and necessary preliminaries to give an idea of some important definitions and lemmas. And the Green function of the random impulsive differential equations is derived. In Sect. 3, we use Dhage’s fixed point theorem to study the existence of the solutions of equation (2.1), and then the existence of solutions of general second order nonlinear random impulsive differential equations with boundary value problems is given. In Sect. 4, we use the upper and lower solution method to give the monotonic iterative convergent sequence of the generalized Sturm–Liouville differential equation with random impulses. Finally, two practical examples are given in Sect. 5 to verify the correctness of the theorem.
2 Preliminaries
In this article, we investigate the solution of the following equation:
where L is the Sturm–Liouville operator defined as \(Lu(t)=-(p(t)u'(t))'+q(t)u(t)\). Let X be a Banach space and Ω be a sample space. Assume that \(\tau _{k}\) is a random variable defined from Ω to \(D_{k}:=(0,d_{k})\) for \(k=1,2,\ldots \) , where \(0< d_{k}<\infty \). Furthermore, assume that \(\tau _{i}\) and \(\tau _{j}\) are independent from each other when \(i\neq j\) for \(i, j=1,2,\ldots \) \(u(t)\) is a stochastic process taking values in X. For the sake of simplicity, we denote \(J=[0,1]\). \({C}={C}(J,R)\) is the set of all the stochastic processes mapping J into R. \(f:[J,{C}]\rightarrow R\) is a continuous function. \(\xi _{k}=\xi _{k-1}+\tau _{k}\) for \(k=1,2,\ldots \) , and \(\xi _{0}=0\). Obviously, \(0=\xi _{0}<\xi _{1}<\xi _{2}<\cdots<\xi _{k}<\cdots\) , i.e., \(\xi _{k}\) forms a strictly increasing sequence. \(b_{k}:D_{k}\rightarrow R\) for each \(k=1,2,\ldots \) The convergence is under the meaning of the orbit, \(u(\xi _{k}^{-})=\lim_{t\uparrow \xi _{k}}u(t)\). \(p(t)\) and \(q(t)\) are positive continuous functions mapping \(J=[0,1]\) into \(R^{+}=[0,+\infty ]\). \(a_{ij}\) are positive constants for \(i,j=1,2\).
Denote by \(\{W_{t},t\in [0,1]\}\) the simple counting process generated by \(\{\xi _{k}\}_{k\in N}\), it is to say that \(\{W_{t}\geq n\}=\{\xi _{n}\leq t\}\) and denote by \(\mathcal{F}\) the σ-algebra generated by \(\{W_{t},t\in J\}\), then \(\{\Omega ,\mathcal{F},P\}\) is a probability space. Define by \(L_{p}=L_{p}(\Omega ,\mathcal{F},R)\) the Hilbert space of all \(\mathcal{F}\textit{-measurable}\), pth integrable random variables with values in R.
\(\Vert \cdot \Vert \) is any norm of R, and the expectation of the random variable x is defined as \(\mathrm{E}(x)=\int _{\Omega }x\,\mathrm{d}P<\infty \). Then we introduce the space \(\mathit{PC}=\mathit{PC}(J,L_{p}):=\{u(t):u(t)\) is strongly measurable, pth integrable random process from J into \(L_{p}\), and \(u(t)\) is continuously differentiable when \(t\in J\setminus \{\xi _{1},\xi _{2},\ldots\}\) and left continuous when \(t\in J\}\). It is easy to see that PC is a Banach space with the norm
We use the following notations: \(P_{cl}(R)=\{Y\subseteq R\): Y is a closed set}, \(P_{bd}(R)=\{Y\subseteq R\): Y is a bounded set}, \(P_{cp}(R)=\{Y\subseteq R\): Y is a compact set}, \(P_{cv}(R)= \{Y\subseteq R\): Y is a convex set}.
Definition 2.1
-
The operator A is called upper semi-continuous (u.s.c.) on R if, for each open set V of R containing \(A(x_{0})\), there exists an open neighborhood N of \(x_{0}\) such that \(A(N)\subseteq V\).
-
A is closed graph if there exists a sequence \(x_{n}\rightarrow x^{\ast }\), \(y_{n}\rightarrow y^{\ast }\), \(y_{n}=Ax_{n}\), then we can imply \(y^{\ast }=Ax^{\ast }\).
-
A is called a completely continuous operator if A is a bounded linear operator and for every \(x_{n}\rightharpoonup x^{\ast }\), we can get \(Ax_{n}\rightarrow Ax^{\ast }\).
-
A is called a compact operator if A is a linear operator and \(\overline{A(V)}\) is compact for every \(V\in P_{bd}(R)\).
Lemma 2.1
([32])
Suppose that \((\mathcal{X}, \Vert \cdot \Vert )\) is a normed linear space, then the set A is compact if and only if it is self-column compact.
Lemma 2.2
(Resonance theorem; [39])
Suppose that \(\mathcal{X}\) is a Banach space, \(\mathcal{Y}\) is a linear normed space (\(B^{\ast }\) space), if W is a subset of all bounded linear operators from \(\mathcal{X}\) to \(\mathcal{Y}\) such that \(\sup_{A\in W} \Vert Ax \Vert <\infty \), \(\forall x\in \mathcal{X}\), then there exists a constant M such that \(\Vert A \Vert \leq M\), \(\forall A\in W\).
Theorem 2.1
If A is a compact operator, then A is a completely continuous operator.
Proof
Suppose \(x_{n}\rightharpoonup x^{\ast }\), we use proof by contradiction. If \(Ax_{n}\) does not converge to \(y=Ax^{\ast }\), then there exist \(\varepsilon _{0}>0\) and \(\{n_{i}\}\) such that \(\Vert Ax_{n_{i}}-Ax^{\ast } \Vert \geq \varepsilon _{0}\). From Lemma 2.2, we can know that \(\{x_{n}\}\) is bounded. Combining that A is compact, we can get a subsequence from \(\{x_{n_{i}}\}\), we write it as \(\{x_{n_{i_{k}}}\}\) such that \(Ax_{n_{i_{k}}}\rightarrow z\), but for every \(y^{\ast }\in \mathcal{Y}^{\ast }\) (\(\mathcal{Y}^{\ast }\) is the conjugate space of \(\mathcal{Y}\)), \(\langle y^{\ast }, Ax_{n_{i_{k}}}-y\rangle =\langle A^{\ast }y^{\ast }, x_{n_{i_{k}}}-x^{ \ast }\rangle \rightarrow 0\), which implies \(Ax_{n_{i_{k}}}\rightharpoonup y\), then \(y=z\), which is a contradiction. The proof is completed. □
Definition 2.2
Suppose that T is a linear operator from \(\mathcal{X}\) to \(\mathcal{Y}\). \(D(T)\) is the definitional domain of T, T is called closed if \(x_{n}\in D(T)\), \(x_{n}\rightarrow x\), and \(Tx_{n}\rightarrow y\), then we can imply \(x\in D(T)\) and \(y=Tx\).
Remark 2.1
From the closed graph theorem, we can easily know that if A is a completely continuous operator, then A is u.s.c. if and only if A is a closed graph.
Theorem 2.2
(Dhage’s fixed point theorem)
Let X be a Banach space, \(A: X\rightarrow P_{bd,cl,cv}(R)\), \(B: X\rightarrow P_{cl,cv}(R)\) are two operators satisfying:
- \((i)\):
-
A is contraction,
- \((ii)\):
-
B is u.s.c. and completely continuous.
Then either
- \((a)\):
-
the operator inclusion \(x\in Ax+Bx\) has a solution for \(\lambda =1\) or
- \((b)\):
-
the set \(U=\{u\in X: u\in \lambda Au+\lambda Bu, 0\leq \lambda \leq 1\}\) is unbounded.
Theorem 2.3
The solution of equation (2.1) is equivalent to the solution of the following integral equation:
where A is the set of all the sample orbits and \(I_{A}(x)\) is the index function defined as
and
Proof
Suppose that \(\xi _{1}, \xi _{2},\ldots\) is a sample orbit. Thus, when \(t\in (0,\xi _{1}]\), we have
When \(t\in (\xi _{1},\xi _{2}]\), in the same way, we have
The first derivative of this function has no impulses, so we can know
Combining these two equations, we have
Combining with the identity
we can get
Suppose when \(t\in (\xi _{k},\xi _{k+1}]\)
Then, using the same way, we can get when \(t\in (\xi _{k+1},\xi _{k+2}]\),
So, using the mathematical induction, we can get
and
It is easy to see that
Plug in the boundary value conditions, we can get
Then we define the matrix Q as
So, the solution of the above equation group is
where ζ is defined as
So, we can write \(u(t)\) as
And we have completed the proof of Theorem 2.3. □
Remark 2.2
We can see that \(G(t,s)\) is a positive continuous function of t and s.
Remark 2.3
Using the same way, we can prove that the solution of the equation
is equivalent to the solution of the following integral equation:
where
and
Definition 2.3
Define the operator \(\Lambda : \mathit{PC}(J,L_{2})\rightarrow \mathit{PC}(J,L_{2})\) such that
Theorem 2.4
(Operator decomposition theorem)
Suppose that \(\mathcal{X}\) and \(\mathcal{Y}\) are two Banach spaces, T is an operator from \(\mathcal{X}\) to \(\mathcal{Y}\). \(u(t):\Omega \rightarrow \mathcal{X}\) is a functional, \(\{\Omega _{i}\}\) is a division of Ω, it is to say that \(\bigcup_{i\in I}\Omega _{i}=\Omega \), and \(\Omega _{i}\) and \(\Omega _{j}\) have no element in common for every \(i, j\in I\), \(i\neq j\), where I is an arbitrary set. Then \(u(t)\) is the fixed point of T if and only if, for every \(i\in I\), \(u_{i}(t)\) is the fixed point of T, where the definition domain of \(u_{i}(t)\) is \(\Omega _{i}\) and \(u_{i}(t)\equiv u(t)\) when \(t\in \Omega _{i}\).
3 The existence of solutions
In this section, we list the following basic assumptions of this paper and prove our main results.
- \((H_{1})\)::
-
There exists a constant M such that, for each \(u_{1}, u_{2}\in \mathit{PC}(J,L_{2})\),
$$ \bigl\Vert f \bigl(t,u_{1}(t) \bigr)-f \bigl(t, u_{2}(t) \bigr) \bigr\Vert \leq M \bigl\Vert u_{1}(t)-u_{2}(t) \bigr\Vert . $$ - \((H_{2})\)::
-
There exists a constant \(\eta _{2}\) such that
$$ \sup_{k,\omega } \frac{ \Vert b_{k}(\tau _{k})-1 \Vert }{E \Vert b_{k}(\tau _{k})-1 \Vert } \leq \eta _{2}< \infty . $$ - \((H_{3})\)::
-
\(\{E \Vert b_{k}(\tau _{k})-1 \Vert \}\) is a convergent series, and
$$ \sum_{k=1}^{\infty }\sup_{\omega } \bigl\Vert b_{k}(\tau _{k})-1 \bigr\Vert \leq \eta _{3}< \infty , $$where \(\eta _{3}\) is a constant.
- \((H_{4})\)::
-
There exists a constant \(M_{f}\) such that, for each \(u\in \mathit{PC}(J,L_{2})\) and \(t\in J\),
$$ \bigl\Vert f \bigl(t,u(t) \bigr) \bigr\Vert _{\mathit{PC}}\leq M_{f} \bigl( \bigl\Vert u(t) \bigr\Vert _{\mathit{PC}}+1 \bigr). $$ - \((H_{5})\)::
-
Suppose
$$\begin{aligned}& \eta _{0}=\frac{1}{ \vert Q \vert } \biggl(a_{12}+a_{11}p(0) \int _{0}^{1} \frac{1}{p(\tau )}\,\mathrm{d}\tau \biggr) \biggl(a_{22}\frac{1}{p(1)}+a_{21} \int _{0}^{1}\frac{1}{p(\tau )}\,\mathrm{d}\tau \biggr), \\& \begin{aligned} \mathcal{C}_{1}={}&\max \biggl\{ \frac{1}{ \vert Q \vert }a_{11}p(0) \biggl(a_{21} \int _{0}^{1}\frac{1}{p(\tau )}\,\mathrm{d}\tau +a_{22}\frac{1}{p(1)} \biggr), \\ &{}\frac{1}{ \vert Q \vert }a_{21}p(0) \biggl(a_{11} \int _{0}^{1} \frac{1}{p(\tau )}\,\mathrm{d}\tau +a_{12}\frac{1}{p(0)} \biggr) \biggr\} , \end{aligned} \\& M_{q}=\sup_{t\in J} \bigl\Vert q(t) \bigr\Vert , \end{aligned}$$then they should satisfy the following equalities:
$$ 4\eta _{0}^{2}M_{q}^{2}+4\eta _{0}^{2}M_{f}^{2}+2 \mathcal{C}_{1}^{2} \eta _{2}\eta _{3}^{2}< 1 $$and
$$ \eta _{0}M< 1. $$
Theorem 3.1
If conditions \((H_{1})\sim (H_{5})\) are met, equation (2.1) has a solution \(u(t)\) in \(\mathit{PC}(J,L_{2})\) which satisfies
Proof
First of all, we can decompose the operator Λ into A and B, that is to say \(\Lambda u(t)=Au(t)+Bu(t)\) for every \(u(t)\in \mathit{PC}(J,L_{2})\). The operators A and B are defined as
It is easy to see that B is a linear operator, and we can easily prove that the solution of equation (2.1) is equivalent to the fixed point of the operator \(\Lambda =A+B\). Then we will prove Theorem 3.1 in six steps.
-
Step (1):
A is a single-valued operator, so \(Au\in P_{cl,cv}(R)\). Then we prove that, for every \(u\in \mathcal{B}_{q}=\{u(t): \Vert u(t) \Vert _{\mathit{PC}}\leq q\}\), \(\Vert Au(t) \Vert _{\mathit{PC}}\leq \eta _{1}\), where \(\eta _{1}\) is a constant.
Hence,
-
Step (2):
We prove that A is a contraction.
So, we get
and we can easily know that A is a contraction.
-
Step (3):
It is easy to see that B is a single-valued operator, so for each \(u(t)\in \mathit{PC}(J,L_{2})\), \(Bu\in P_{cl,cv}(R)\). Next, we prove, for every \(u(t)\in \mathcal{B}_{q}\), that Bu is bounded.
And based on the second mean value theorem of integrals, we know, for each k, that there exists \(\omega _{k}\in \Omega \) such that
Based on the above equation, we can easily know that Bu is bounded for each \(u(t)\in \mathcal{B}_{q}\).
-
Step (4):
Define \(B(\mathcal{B}_{q})=\{Bu(t):u(t)\in \mathcal{B}_{q}\}\), then we prove that \(B(\mathcal{B}_{q})\) is equicontinuous. Based on Theorem 2.4, we only need to prove for each \((\xi _{k},\xi _{k+1}]\), \(k=0,1,2, \ldots\) and every \(\varepsilon >0\) that there exists \(\delta >0\) such that, for any \(t_{1}, t_{2}\in (\xi _{k},\xi _{k+1}]\), \(\Vert t_{1}-t_{2} \Vert <\delta \), we have \(\Vert Bu(t_{1})-Bu(t_{2}) \Vert _{\mathit{PC}}<\varepsilon \) for every \(u(t)\in \mathcal{B}_{q}\).
so we have
where
hence
So, combining with the above equations, we have
It is easy to see that \(\mathrm{E} \Vert (Bu)(t_{1})-(Bu)(t_{2}) \Vert ^{2} \rightarrow 0\) as \(\vert t_{1}-t_{2} \vert \rightarrow 0\), so we have proved that the set is equicontinuous. From step (3) to step (4), combining with the Arzela–Ascoli theorem, we can easily know that \(B(\mathcal{B}_{q})\) is sequentially compact and \(\overline{B(\mathcal{B}_{q})}\) is self-listed. Using Lemma 2.1, we can know that \(\overline{B(\mathcal{B}_{q})}\) is compact. Combining with Theorem 2.1, we have proved that B is completely continuous.
-
Step (5):
We prove that B is u.s.c. Based on Remark 2.1, we only need to prove that for each \(u_{n}(t)\rightarrow u^{\ast }(t)\) we have \((Bu_{n})(t)\rightarrow (Bu^{\ast })(t)\).
Hence,
So, we have proved that B is u.s.c.
-
Step (6):
We prove that the set \(U=\{u(t): u(t)\in \lambda (Au)(t)+\lambda (Bu)(t), 0\leq \lambda \leq 1\}\) is bounded. If \(u(t)\in U\), then we have
hence
By simplifying, we can get
This is a quadratic function, and
Then we can get
So, the set U is bounded. As a consequence of Theorem 2.2, we deduce that \(A+B\) has a fixed point \(u(t)\) which is a solution of equation (2.1), and we have completed the proof of Theorem 3.1. □
Using the same way, we can prove the following theorem.
- \((H_{6})\)::
-
There exists a constant M such that, for each \(x_{1}, x_{2}\in \mathit{PC}(J,L_{2})\),
$$\begin{aligned} \bigl\Vert f \bigl(t,x_{1},x'_{1} \bigr)-f \bigl(t,x_{2},x'_{2} \bigr) \bigr\Vert \leq M \Vert x_{1}-x_{2} \Vert . \end{aligned}$$ - \((H_{7})\)::
-
There exists a constant \(M_{f}\) such that, for each \(u\in \mathit{PC}(J,L_{2})\) and \(t\in J\),
$$\begin{aligned} \bigl\Vert f \bigl(t,x(t),x'(t) \bigr) \bigr\Vert \leq M_{f} \bigl( \bigl\Vert x(t) \bigr\Vert _{\mathit{PC}}+1 \bigr). \end{aligned}$$ - \((H_{8})\)::
-
Suppose
$$\begin{aligned}& \eta _{0}=\frac{(a_{11}+a_{12})(a_{21}+a_{22})}{a_{11}a_{21}+a_{12}a_{21}+a_{11}a_{22}}, \\& \mathcal{C}_{1}=\frac{\max \{a_{11}(a_{21}+a_{22}),a_{21}(a_{11}+a_{12})\}}{a_{11}a_{21}+a_{12}a_{21}+a_{11}a_{22}}, \end{aligned}$$then they should satisfy the following equalities:
$$\begin{aligned} 4\eta _{0}^{2}M_{f}^{2}+2 \mathcal{C}_{1}^{2}\eta _{2}\eta _{3}^{2}< 1, \end{aligned}$$and
$$\begin{aligned} \eta _{0}M< 1. \end{aligned}$$
Theorem 3.2
If conditions \((H_{2})\sim (H_{3})\) and \((H_{6})\sim (H_{8})\) are met, then equation (2.7) has a solution \(x(t)\) in \(\mathit{PC}(J,L_{2})\) which satisfies
4 The upper and lower solutions
In this section, we consider the upper and lower solutions of the following generalized Sturm–Liouville differential equation with random impulses:
The notation in this equation is the same as the previous definition. First of all, we consider the following linear random impulsive differential equation:
where \(h(t)\in \mathit{PC}(J,L_{2})\) is a stochastic process. Based on Theorem 2.3, we can get that the solution of equation (4.2) is equivalent to the solution of the following integral equation:
where \(G(t,s)\) and \(W(t,k)\) are defined as (2.9) and (2.10).
Then we define the operator \(\Lambda : \mathit{PC}(J,L_{2})\rightarrow \mathit{PC}(J,L_{2})\) as
we can easily prove that \(h(t)\) is the solution of the equation if and only if it is the fixed point of the operator Λ.
Definition 4.1
\(\omega _{0}(t)\in \mathit{PC}(J,L_{2})\) is called an upper solution of equation (4.1) if \(\omega _{0}(t)\) satisfies the following inequality:
If the above inequalities are reversed, we call it a lower solution of equation (4.1).
Lemma 4.1
([32])
Suppose that E is a semi-ordered Banach space. For \(x_{0}, y_{0}\in E\), \(x_{0}\leq y_{0}\), and \(D=[x_{0}(t),y_{0}(t)]\), \(A:D\rightarrow E\) is an operator. Assume that the following conditions are satisfied:
-
(i)
A is an increasing operator,
-
(ii)
\(x_{0}\) is the lower solution of A and \(y_{0}\) is the upper solution of A,
-
(iii)
A is a continuous operator,
-
(iv)
\(A(D)\) is a relatively compact set of columns in E.
Then A has a maximum fixed point and a minimum fixed point in D. Let \(x_{0}\) and \(y_{0}\) be the initial conditions. We then have the iteration sequences
Thus,
and
- \((H_{9})\) :
-
\(v_{0}(t)\) is the lower solution of equation (4.1) and \(\omega _{0}(t)\) is the upper solution of equation (4.1), and they meet the following inequality:
$$ v_{0}(t)\leq \omega _{0}(t) $$for any \(t\in J\).
- \((H_{10})\) :
-
$$ \inf_{k} \bigl\{ b_{k}(\tau _{k})-1:k \in N \bigr\} >0. $$
Theorem 4.1
If conditions \((H_{2})\sim (H_{3})\), \((H_{6})\sim (H_{10})\) are met, then equation (4.1) has the maximum solution \(u^{*}(t)\) and the minimum solution \(u_{*}(t)\) in \([v_{0}(t),\omega _{0}(t)]\cap \mathit{PC}(J,L_{2})\). \(\omega _{n}(t)=\Lambda \omega _{n-1}(t)\) uniformly converges to \(u^{*}(t)\), \(v_{n}(t)=\Lambda v_{n-1}(t)\) uniformly converges to \(u_{*}(t)\), where \(n=1,2,\ldots \) .
Proof
First of all, we prove that \(v_{0}\) is the lower solution of Λ. It is to say that we should prove that \(v_{0}(t)\leq \Lambda v_{0}(t)=v_{1}(t)\). We can easily prove this when there is no pulse (for more details, see [34]). When the equation is equipped with the random impulses, we have
combining with \(v_{1}(\xi _{k})\geq v_{0}(\xi _{k})\), we can get \(v_{1}(\xi _{k}^{+})\geq v_{0}(\xi _{k}^{+})\). So, we have proved \(v_{0}(t)\leq \Lambda v_{0}(t)\).
Then we prove that it is an increasing operator. It is to say that, for any \(h_{1}(t)\leq h_{2}(t)\), we have \(\Lambda h_{1}(t)\leq \Lambda h_{2}(t)\). When there is no pulse, we can easily prove this conclusion (for more details, see [13]). When there are random impulses, we have
so we have proved that \(\Lambda h_{1}(t)\leq \Lambda h_{2}(t)\).
Based on the proof of Theorem 3.1, we can easily prove that Λ is a continuous operator and \(\Lambda ([v_{0}, \omega _{0}])\) is a relatively compact set of columns. Combining with Lemma 4.1, we complete the proof of Theorem 4.1. □
In this section, we give some examples to illustrate our main result.
5 Examples
Example 5.1
Consider the following equation:
where \(\{\tau _{k}\}\) is a variable sequence, \(\tau _{i}\) and \(\tau _{j}\) are independent from each other for each \(i\neq j\). \(\tau _{k}\sim U(0,\frac{1}{4^{k}})\), it is to say that the probability density function of \(\tau _{k}\) is
Then it is easy to see that \(\{\sqrt{\tau _{k}}\}\) is also a variable sequence, and for every \(i\neq j\), \(\sqrt{\tau _{i}}\) and \(\sqrt{\tau _{j}}\) are independent. We can easily get the probability density function of \(\sqrt{\tau _{k}}\):
Set \(\xi _{0}=0\), \(\xi _{k+1}=\xi _{k}+\tau _{k+1}\), obviously, \(\{\xi _{k}\}\) is a process with independent increments, and the impulsive moments \(\{\xi _{k}\}\) form a strictly increasing sequence. And we have
In this example, we define the norm \(\Vert x \Vert = \vert x \vert \). Then we have
and
So we have
Based on Theorem 3.1, we can know that equation (5.1) has a solution \(u(t)\) which satisfies
We have completed the proof of the example.
Example 5.2
Now we consider the following second order random impulsive differential equation with boundary value problems:
Here we define the norm \(\Vert u \Vert _{\mathit{PC}}=\sup_{t\in J}\mathrm{E} \vert u(t) \vert ^{2}\). \(\{\tau _{k}\}\) is a variable sequence and \(\tau _{i}\) and \(\tau _{j}\) are independent from each other when \(i\neq j\). The probability density function of \(\tau _{k}\) is
Suppose \(\xi _{k+1}=\xi _{k}+\tau _{k+1}\), \(k=0,1,2,\ldots\) . Obviously, we have
Then we have
And we can easily get \(M_{f}=\frac{1}{22}\), \(M=\frac{1}{33}\),
Hence, \(\eta _{0}M=\frac{2}{45}\approx 0.044<1\) and \(4\eta _{0}^{2}M_{f}^{2}+2\mathcal{C}_{1}^{2}\eta _{2}\eta _{3}^{2}= \frac{5}{9}\approx 0.556<1\). So, this equation satisfies all the conditions of Theorem 3.2, which shows that the equation has a solution satisfying
We can easily prove that \(\omega _{0}(t)=0\) is an upper solution and \(v_{0}(t)=-\frac{1}{1+\sin t}\) is a lower solution of equation (5.2) and \(\omega _{0}(t)\geq v_{0}(t)\). So, equation (5.2) satisfies all the conditions of Theorem 4.1. Hence, we can get the extremal solutions of problem (5.2) between \(v_{0}\) and \(\omega _{0}\) by constructing iterative sequences starting from \(v_{0}\) and \(\omega _{0}\):
We have completed the proof of the example.
Availability of data and materials
Not applicable.
References
Alsaedi, A., Albideewi, A.F., Ntouyas, S.K., Ahmad, B.: On Caputo–Riemann–Liouville type fractional integro-differential equations with multi-point sub-strip boundary conditions. Mathematics 8, 1899–1913 (2020)
Anguraj, A., Wu, S., Vinodkumar, A.: The existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness. Nonlinear Anal., Theory Methods Appl. 74, 331–342 (2011)
Anokhin, A., Berezansky, L., Braverman, E.: Exponential stability of linear delay impulsive differential equations. J. Math. Anal. Appl. 193, 923–941 (1995)
Bai, C.: Antiperiodic boundary value problems for second-order impulsive ordinary differential equations. Bound. Value Probl. 2008, 585378 (2008)
Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)
Gowrisankar, M., Mohankumar, P., Vinodkumar, A.: Stability results of random impulsive semilinear differential equations. Acta Math. Sci. 34, 1055–1071 (2014)
Han, X., Huang, J.: The generalized Green’s function for boundary value problem of second order difference equation. J. Funct. Spaces 2015, 201946 (2015)
Hua, H., Cong, F., Cheng, Y.: Existence and uniqueness of solutions for periodic-integrable boundary value problem of second order differential equation. Bound. Value Probl. 2012, 89 (2012)
Huang, J., Li, Y.: Hyers–Ulam stability of linear functional differential equations. J. Math. Anal. Appl. 426, 1192–1200 (2015)
Ji, J., Yang, B.: Positive solutions for boundary value problems of second order difference equations and their computation. J. Math. Anal. Appl. 367, 409–415 (2010)
Jin, F., Yan, B.: Positive solutions of singular initial-boundary value problems to second-order functional differential equations. Bound. Value Probl. 2008, 457028 (2008)
Lakshmikantham, V., Bainov, D., Simeonov, P.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
Li, Z., Shu, X., Xu, F.: The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem. AIMS Math. 6, 6189–6210 (2020)
Liang, J., Liu, J., Xiao, T.: Periodic solutions of delay impulsive differential equations. Nonlinear Anal., Theory Methods Appl. 74, 6835–6842 (2011)
Liu, B., Liu, X., Teo, K., Wang, Q.: Razumikhin-type theorems on exponential stability of impulsive delay systems. J. Comput. Appl. Math. 71, 47–61 (2006)
Liu, J., Wang, S., Zhang, J.: Multiple solutions for boundary value problems of second-order difference equations with resonance. J. Math. Anal. Appl. 374, 187–196 (2011)
Liu, S., Wang, J., Shen, D., O’Regan, D.: Iterative learning control for differential inclusions of parabolic type with noninstantaneous impulses. Appl. Math. Comput. 350, 48–59 (2019)
Liu, X., Wang, Q.: The method of Lyapunov functionals and exponential stability of impulsive systems with time delay. Nonlinear Anal., Theory Methods Appl. 66, 1465–1484 (2007)
Liu, Y.: Application of Avery–Peterson fixed point theorem to nonlinear boundary value problem of fractional differential equation with the Caputo’s derivative. Commun. Nonlinear Sci. Numer. Simul. 17, 4576–4584 (2012)
Lu, Y., Ma, R.: Global structure of positive solutions for second-order difference equation with nonlinear boundary value condition. Adv. Differ. Equ. 2014, 188 (2014)
Mahmudov, N.I., Emin, S., Bawanah, S.: On the parametrization of Caputo-type fractional differential equations with two-point nonlinear boundary conditions. Mathematics 7, 707–730 (2019)
Mukhtarov, O.S., Yucel, M.: A study of the eigenfunctions of the singular Sturm–Liouville problem using the analytical method and the decomposition technique. Mathematics 8, 415–429 (2020)
Niu, P., Shu, X., Li, Y.: The existence and Hyers–Ulam stability for second order random impulsive differential equations. Dyn. Syst. Appl. 3, 673–690 (2019)
Pan, L., Cao, J.: Exponential stability of impulsive stochastic functional differential equations. J. Math. Anal. Appl. 382, 672–685 (2011)
Radhakrishnan, B., Tamilarasi, M.: Existence of solutions for quasilinear random impulsive neutral differential evolution equation. Arab J. Math. Sci. 24, 235–246 (2018)
Rodrigo, M.R., Thamwattana, N.: A unified analytical approach to fixed and moving boundary problems for the heat equation. Mathematics 9, 749–768 (2021)
Samoilenko, A., Perestyuk, N.: Impulsive Differential Equations. World Scientific, Singapore (1995)
Shen, J., Yan, J.: Razumikhin type stability theorems for impulsive functional differential equations. Nonlinear Anal., Theory Methods Appl. 33, 519–531 (1998)
Shen, L., Sun, J.: Existence and uniqueness of mild solutions for nonlinear stochastic impulsive differential equation. Abstr. Appl. Anal. 2011, 439724 (2011)
Shen, L., Sun, J.: Global existence of solutions for stochastic impulsive differential equations. Acta Math. Sin. Engl. Ser. 27, 773–780 (2011)
Shu, L., Shu, X., Zhu, Q., Xu, F.: Existence and exponential stability of mild solutions for second-order neutral stochastic functional differential equation with random impulses. J. Appl. Anal. Comput. 11, 59–80 (2021). https://doi.org/10.11948/20190089
Sun, J., Guo, D.: Functional methods for nonlinear ordinary differential equations; Shandong Science and Technology Press, 3–5
Thaiprayoon, C., Tariboon, J., Ntouyas, S.: Separated boundary value problems for second-order impulsive q-integro-difference equations. Adv. Differ. Equ. 2014, 88 (2014)
Wang, J., Luo, Z., Shen, D.: Iterative learning control for linear delay systems with deterministic and random impulses. J. Franklin Inst. 355, 2473–2497 (2018)
Wang, Q., Liu, X.: Impulsive stabilization of delay differential systems via the Lyapunov–Razumikhin method. Appl. Math. Lett. 20, 839–845 (2007)
Wang, Y., Li, Y., Zhou, J.: Solvability of boundary value problems for impulsive fractional differential equations via critical point theory. Mediterr. J. Math. 13, 4845–4866 (2016)
Wang, Y., Zhang, M., Zhao, W.: Reconstruction for Sturm–Liouville operators with frozen argument for irrational cases. Appl. Math. Lett. 111, 106590 (2021)
Wu, X., Niu, P., Wei, G.: An inverse eigenvalue problem for a nonlocal Sturm–Liouville operator. J. Math. Anal. Appl. 494, 124661 (2021)
Zhang, G., Lin, Y.: Functional analysis handout; Science and Technology Press, 17–18
Zhang, S., Jiang, W.: The existence and exponential stability of random impulsive fractional differential equations. Adv. Differ. Equ. 2018, 404 (2018)
Zhao, Y., Chen, H., Xu, C.: Nontrivial solutions for impulsive fractional differential equations via Morse theory. Appl. Math. Comput. 307, 170–179 (2017)
Zhao, Z., Liang, J.: Existence of solutions to functional boundary value problem of second-order nonlinear differential equation. J. Math. Anal. Appl. 373, 614–634 (2011)
Acknowledgements
The authors thank the anonymous referee and the associate editor for giving some valuable suggestions for the improvement of this work.
Funding
This work is supported by the Innovation Platforms Open Foundation of Hunan Educational Committee [grant number 541109100002].
Author information
Authors and Affiliations
Contributions
All the authors contributed equally and significantly in writing this paper. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Li, Z., Shu, XB. & Miao, T. The existence of solutions for Sturm–Liouville differential equation with random impulses and boundary value problems. Bound Value Probl 2021, 97 (2021). https://doi.org/10.1186/s13661-021-01574-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-021-01574-x