Skip to main content

Oscillation of super-linear fourth-order differential equations with several sub-linear neutral terms

Abstract

In this paper, we discuss the oscillatory behavior of solutions of a class of Super-linear fourth-order differential equations with several sub-linear neutral terms using the Riccati and generalized Riccati transformations. Some Kamenev–Philos-type oscillation criteria are established. New oscillation criteria are deduced in both canonical and non-canonical cases. An illustrative example is given.

1 Introduction

The aim of this paper is to discuss the oscillatory behavior of solutions of a class of super-linear fourth-order neutral differential equations of the type,

$$ \bigl( r ( t ) \bigl( z^{{\prime \prime \prime }} ( t ) \bigr) ^{\gamma } \bigr) ^{\prime }+\sum_{i=1}^{m}f_{i} \bigl( t,x \bigl( \tau _{i} ( t ) \bigr) \bigr) =0, \quad t\geq t_{0}, $$
(1.1)

where \(z(t)=x ( t ) +\sum_{j=1}^{n}a_{j} ( t ) x^{ \alpha _{j}} ( \sigma _{j} ( t ) )\), m, n are positive integers, and \(\alpha _{j}\), γ are ratios of odd positive integers and \(0<\alpha _{j}\leq 1 \), \(\gamma\geq 1\), under the conditions

$$ R ( t_{0} ) = \int _{t_{0}}^{\infty} \frac{1}{r^{\frac{1}{\gamma}} ( t ) }\,dt=\infty , $$
(1.2)

and

$$ R ( t_{0} ) = \int _{t_{0}}^{\infty} \frac{1}{r^{\frac{1}{\gamma}} ( t ) }\,dt< \infty . $$
(1.3)

Throughout the paper, we assume the following assumptions

\(( A_{1} ) \):

\(r ( t ) \in C^{1} ( [t_{0},\infty ), ( 0, \infty ) )\), \(r^{\prime} ( t ) \geq 0\);

\(( A_{2} )\):

\(a_{j} ( t ),\sigma _{j} ( t ) ,\tau _{i} ( t ) \in C[t_{0},\infty ))\), \(\sigma _{j} ( t ) \leq t\), \(\lim_{t\rightarrow \infty}\sigma _{j} ( t )=\infty \);

\(( A_{3} ) \):

there exists a function \(\tau \in C^{1} ( [t_{0},\infty ), R )\) such that \(\tau ( t ) \leq \tau _{i} ( t ) \) for \(i=1,2,\ldots,m\), \(\tau ( t ) \leq t\), \(\tau ^{\prime} ( t ) >0\) and \(\lim_{t\rightarrow \infty}\tau ( t ) =\infty \);

\(( A_{4} ) \):

\(0\leq a_{j} ( t ) \leq a_{0j} ( t )\), \(\sum_{j=1}^{n}a_{0j} ( t ) <1\), \(f_{i} ( t,x ) \in C ( [t_{0},\infty )\times R,R ) \) satisfy \(xf_{i} ( t,x )>0\) for all \(x\neq 0\), and there exist positive continuous functions \(q_{i} ( t ) \) defined on \([t_{0},\infty )\) such that \(\vert f_{i} ( t,x ) \vert \geq q_{i} ( t ) \vert x \vert ^{\gamma }\).

By a solution of (1.1), we mean a nontrivial real function \(x ( t ) \) such that \(r ( t ) ( [ x ( t ) +\sum_{j=1}^{n}a_{j} ( t ) x^{\alpha _{j}} ( \sigma _{j} ( t ) ) ] ^{\prime \prime \prime} ) ^{\gamma}\) is continuously differentiable satisfying (1.1) for any \(t_{1}\geq t_{0}\).

A solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Oscillation phenomena take part in different models from real-world applications; see, e.g., paper [8] for more details. In the last three decades, there has been considerable interest in studying the oscillation of solutions of several kinds of differential equations [15, 7, 8, 1020, 2224, 2639]. The half-linear equations have numerous applications in the study of p-Laplace equations, non-Newtonian fluid theory, porous medium, etc.; see, e.g., papers [6, 21, 25] for more details. In particular, papers [11, 24] were concerned with the oscillation of various classes of half-linear differential equations, whereas the papers [35, 7, 10, 20, 26, 38] were concerned with the oscillatory behavior of the fourth-order differential equation (1.1) and its special cases. In what follows, we briefly comment on a number of closely related results which motivated our work. The authors in [3, 4, 26] discussed in their recent papers, the special case of (1.1) of the form,

$$ \bigl( r ( t ) \bigl( \bigl[ x ( t ) +p ( t ) x \bigl( \tau ( t ) \bigr) \bigr] ^{ \prime \prime \prime} \bigr) ^{\alpha} \bigr) ^{\prime}+q ( t ) x^{\beta } \bigl( \delta ( t ) \bigr)=0. $$
(1.4)

Under the condition (1.2), Dassios and Bazighifan in [10] discussed the oscillation of the same equation under condition (1.3). In [20], Li et al. studied the oscillatory behavior of a class of fourth-order differential equations with the p-Laplacian-like operator of the type,

$$ \bigl( r ( t ) \bigl\vert z^{{\prime \prime \prime }} ( t ) \bigr\vert ^{p-2}z^{{\prime \prime \prime }} ( t ) \bigr) ^{\prime }+\sum _{i=1}^{l}q_{i} ( t ) \bigl\vert x \bigl( \tau _{i} ( t ) \bigr) \bigr\vert ^{p-2}x \bigl( \tau _{i} ( t ) \bigr) =0, $$
(1.5)

where \(z(t)=x ( t ) +a ( t ) x ( \sigma ( t ) )\). Under the condition \(\int _{t_{0}}^{\infty } \frac{1}{r^{\frac{1}{p-2}} ( t ) }\,dt<\infty \), they used the Riccati transformation and integral averaging technique and presented a Kamenev-type oscillation criterion.

More recently, Bazighifan et al. [5] studied the asymptotic behavior of solutions of the fourth-order neutral differential equation with the continuously distributed delay of the form

$$ \bigl( r ( t ) \bigl( \bigl[ x ( t ) +p ( t ) x \bigl( \phi ( t ) \bigr) \bigr] ^{ \prime \prime \prime } \bigr) ^{\alpha } \bigr) ^{\prime }+ \int _{a}^{b}q ( t,\theta ) x^{\beta } \bigl( \delta ( t,\theta ) \bigr)\,d\theta =0, $$
(1.6)

where α, β are quotients of odd positive integers, and \(\beta \geq \alpha \) under the condition (1.2).

2 Preliminaries

The following preliminary results will be needed for our proofs.

Lemma 1

([9])

Let \(h>0\). Then

$$ h^{\alpha}\leq \alpha h+ ( 1-\alpha ) ,\quad 0< \alpha \leq 1. $$

Lemma 2

([28])

Let \(z ( t )\) be a positive and n-times differentiable function on an interval \([T,\infty )\) with non-positive nth derivative \(z^{ ( n ) } ( t ) \) on \([T,\infty )\), which is not identically zero on any interval of the form \([T^{\prime},\infty )\), \(T^{\prime}\geq T\) and such that \(z^{ ( n-1 ) } ( t ) z^{ ( n ) } ( t ) \leq 0\). Then, there exist constants \(0<\theta <1\) and \(N>0\) such that \(z^{\prime} ( \theta t ) \geq Nt^{n-2}z^{ ( n-1 ) } ( t ) \) for all sufficient large t.

Lemma 3

([26])

Let \(z^{ ( n ) } ( t )\) be of fixed sign and \(z^{ ( n-1 ) } ( t ) z^{ ( n ) } ( t ) \leq 0\) for all \(t\geq t_{1}\). If \(\lim_{t \rightarrow \infty}z ( t ) \neq 0\), then for every \(\lambda \in ( 0,1 ) \), there exists \(t_{\lambda}\)t such that \(z ( t ) \geq \frac{\lambda}{ ( n-1 ) !}t^{n-1} \vert z^{ ( n-1 ) } ( t ) \vert \) for \(t\geq t_{\lambda}\).

Lemma 4

([2])

Let α is a ratio of two odd numbers. Suppose that U, V are constants with \(V>0\). Then, \(UY-VY^{\frac{ ( \gamma +1 ) }{\gamma}}\leq \frac{\gamma ^{\gamma}}{ ( \gamma +1 ) ^{\gamma +1}} \frac{U^{\gamma +1}}{V^{\gamma}}\).

Lemma 5

Assume that \(x ( t )\) is an eventually positive solution of (1.1), \(z^{\prime} ( t ) >0\), and there exists a positive decreasing function \(\delta ( t ) \in C ( [t_{0},\infty ) ) \) tending to zero such that \(\theta ( \tau _{i} ( t ) ) >0\) for \(t\geq t_{0}\) where \(\theta ( t ) =1-\sum_{j=1}^{n}\alpha _{j}a_{j} ( t ) -\frac{1}{\delta ( t ) }\sum_{j=1}^{n} ( 1- \alpha _{j} ) a_{j} ( t )\). Then,

$$ \bigl( r ( t ) \bigl( z^{{\prime \prime \prime}} ( t ) \bigr) ^{\gamma} \bigr) ^{\prime}\leq -\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) z^{\gamma} \bigl( \tau ( t ) \bigr) . $$
(2.1)

Proof

Let x be an eventually positive solution of Eq. (1.1). Then, there exists a \(t_{1}\geq t_{0}\) such that \(x ( t ) >0\), \(x ( \sigma _{j} ( t ) ) >0\) and \(x ( \tau _{i} ( t ) )>0\) for \(t\geq t_{1}\). Now from the definition of z, we have

$$ x ( t ) =z ( t ) -\sum_{j=1}^{n}a_{j} ( t ) x^{\alpha _{j}} \bigl( \sigma _{j} ( t ) \bigr) \geq z ( t ) - \sum_{j=1}^{n}a_{j} ( t ) z^{ \alpha _{j}} \bigl( \sigma _{j} ( t ) \bigr) \geq z ( t ) -\sum _{j=1}^{n}a_{j} ( t ) z^{\alpha _{j}} ( t ) . $$

Then, by Lemma 1, we have

$$ x ( t ) \geq \Biggl( 1-\sum_{j=1}^{n}\alpha _{j}a_{j} ( t ) \Biggr) z ( t ) -\sum _{j=1}^{n} ( 1- \alpha _{j} ) a_{j} ( t ) . $$

Now since \(z ( t ) \) is positive and increasing, and \(\delta ( t ) \) is a positive decreasing function tending to zero, then there exists a \(t_{2}\geq t_{1}\) such that \(z ( t ) \geq \delta ( t ) \), and

$$ x ( t ) \geq \Biggl[ 1-\sum_{j=1}^{n}\alpha _{j}a_{j} ( t ) -\frac{1}{\delta ( t ) }\sum _{j=1}^{n} ( 1-\alpha _{j} ) a_{j} ( t ) \Biggr] z ( t ),\quad \text{for } t\geq t_{2}. $$

That is \(x ( t ) \geq \theta ( t ) z ( t )\). Therefore, from (1.1), it follows that

$$ \bigl( r ( t ) \bigl( z^{{\prime \prime \prime}} ( t ) \bigr) ^{\gamma} \bigr) ^{\prime}\leq -\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) z^{\gamma} \bigl( \tau _{i} ( t ) \bigr) \leq - \sum _{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) z^{\gamma} \bigl( \tau ( t ) \bigr) . $$

Thus, the proof is completed. □

The following two auxiliary results are very similar to those reported in [3] and [10].

Lemma 6

Let \(x ( t ) \) be a positive solution of (1.1). If (1.2) is satisfied, then there exists \(t\geq t_{1}\) such that

$$\begin{aligned}& z ( t ) >0,\qquad z^{\prime} ( t ) >0,\qquad z^{\prime \prime \prime } ( t ) >0, \qquad z^{ ( 4 ) } ( t ) < 0, \qquad \bigl( r ( t ) \bigl( z^{{\prime \prime \prime}} ( t ) \bigr) ^{\gamma} \bigr) ^{\prime}\leq 0. \end{aligned}$$

Lemma 7

Let \(x ( t ) \) be a positive solution of (1.1). If (1.3) is satisfied, then there exist three possible cases for sufficiently large \(t\geq t_{1}\)

\(( S_{1} ) \):

\(z ( t ) >0\), \(z^{\prime} ( t ) >0\), \(z^{\prime \prime \prime} ( t ) >0\), \(z^{ ( 4 ) } ( t ) \leq 0\);

\(( S_{2} ) \):

\(z ( t ) >0\), \(z^{\prime} ( t ) >0\), \(z^{\prime \prime} ( t )>0\), \(z^{\prime \prime \prime} ( t )<0\);

\(( S_{3} ) \):

\(z ( t ) >0\), \(z^{\prime} ( t ) <0\), \(z^{\prime \prime} ( t ) >0\), \(z^{\prime \prime \prime} ( t )<0\).

3 Main results

We first consider the case \(R ( t_{0} ) =\infty \).

Theorem 8

If there exist \(\eta ( t ) \in C^{1} ( [t_{0},\infty ), ( 0, \infty ) ) \), \(b ( t ) \in C^{1} ( [t_{0},\infty ),[0,\infty ) )\), \(\zeta \in ( 0,1 ) \) and \(\epsilon >0\) such that

$$ \underset{t\rightarrow \infty }{\lim \sup } \int _{t_{0}}^{t} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime } ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma}} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) ] ^{\gamma}} \biggr]\,ds=\infty , $$
(3.1)

then (1.1) is oscillatory, where \(Q ( t ) =\eta ( t ) \sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma } ( \tau _{i} ( t ) ) -\eta ( t ) [ r ( t ) b ( t ) ] ^{\prime}+\zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) r ( t ) \eta ( t ) b^{1+\frac{1}{\gamma}} ( t )\).

Proof

Suppose for the contrary that x is an eventually positive solution of (1.1). Then there exists a \(t_{1}\geq t_{0}\) such that \(x ( t )>0\), \(x ( \sigma _{j} ( t ) )>0\) and \(x ( \tau _{i} ( t ) )>0\) for \(t\geq t_{1}\). Using Lemma 5, we obtain (2.1). Define

$$ \psi ( t ) =\eta ( t ) \biggl[ \frac{r ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma}}{z^{{\gamma}} ( \zeta \tau ( t ) ) }+r ( t ) b ( t ) \biggr] ,\quad \mathbf{t}\geq \mathbf{t}_{1}. $$
(3.2)

It is clear that \(\psi ( t ) >0\) for \(t\geq t_{1}\), and

$$\begin{aligned} \psi ^{\prime} ( t ) = {}&\frac{\eta ^{\prime} ( t ) }{\eta ( t ) }\psi ( t ) +\eta ( t ) \bigl[ r ( t ) b ( t ) \bigr] ^{ \prime}+\eta ( t ) \frac{ ( r ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma} ) ^{\prime}}{z^{\gamma} ( \zeta \tau ( t ) ) } \\ &{} -\eta ( t ) \frac{\gamma \zeta r ( t ) \tau ^{\prime } ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma}z^{\prime} ( \zeta \tau ( t ) ) }{z^{\gamma +1} ( \zeta \tau ( t ) ) }. \end{aligned}$$

Thus, by (2.1), it follows that

$$\begin{aligned} \psi ^{\prime} ( t ) \leq{}& \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }\psi ( t ) +\eta ( t ) \bigl[ r ( t ) b ( t ) \bigr] ^{ \prime}-\eta ( t ) \frac{\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} ( \tau _{i} ( t ) ) z^{\gamma} ( \tau ( t ) ) }{z^{\gamma} ( \zeta \tau ( t ) ) } \\ &{} -\eta ( t ) \frac{\gamma \zeta r ( t ) \tau ^{\prime } ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma}z^{\prime} ( \zeta \tau ( t ) ) }{z^{\gamma +1} ( \zeta \tau ( t ) ) }. \end{aligned}$$

By Lemma 2, we have

$$ z^{\prime} \bigl( \zeta \tau ( t ) \bigr) \geq \epsilon \tau ^{2} ( t ) z^{{\prime \prime \prime}} \bigl( \tau ( t ) \bigr) \geq \epsilon \tau ^{2} ( t ) z^{{\prime \prime \prime}} ( t ) . $$

However, since \(z ( t )\) is increasing, then \(z ( \tau ( t ) ) \geq z ( \zeta \tau ( t ) ) \). Therefore,

$$\begin{aligned} \psi ^{\prime} ( t ) \leq {}&\frac{\eta ^{\prime} ( t ) }{\eta ( t ) }\psi ( t ) +\eta ( t ) \bigl[ r ( t ) b ( t ) \bigr] ^{ \prime}-\eta ( t ) \sum _{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) \\ &{} -\eta ( t ) \frac{\gamma \zeta \epsilon r ( t ) \tau ^{\prime} ( t ) \tau ^{2} ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma +1}}{z^{\alpha +1} ( \zeta \tau ( t ) ) }. \end{aligned}$$

Moreover, since from (3.2), we have

$$ \frac{z^{{\prime \prime \prime}} ( t ) }{z ( \zeta \tau ( t ) ) }=\frac{1}{r^{\frac{1}{\gamma}} ( t ) } \biggl[ \frac{\psi ( t ) }{\eta ( t ) }- \bigl[ r ( t ) b ( t ) \bigr] \biggr] ^{ \frac{1}{\gamma}}, $$

then

$$\begin{aligned} \psi ^{\prime} ( t ) \leq& \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }\psi ( t ) +\eta ( t ) \bigl[ r ( t ) b ( t ) \bigr] ^{ \prime}-\eta ( t ) \sum _{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) \\ &{}-\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) \frac{\eta ( t ) }{r^{\frac {1}{\gamma}} ( t ) } \biggl( \frac{\psi ( t ) }{\eta ( t ) }- \bigl[ r ( t ) b ( t ) \bigr] \biggr) ^{\frac{\gamma +1}{\gamma}}. \end{aligned}$$
(3.3)

As in [35], we use the inequality

$$ M^{1+\frac{1}{\gamma}}- ( M-N ) ^{1+\frac{1}{\gamma}}\leq N^{ \frac{1}{\gamma}} \biggl[ \biggl( 1+\frac{1}{\gamma} \biggr) M- \frac {1}{\gamma}N \biggr] , \quad MN\geq 0, \gamma \geq 1, $$

with

$$ M=\frac{\psi ( t ) }{\eta ( t ) }\quad \text{and}\quad N=r ( t ) b ( t ) , $$

to get

$$\begin{aligned} \biggl( \frac{\psi ( t ) }{\eta ( t ) }- \bigl[ r ( t ) b ( t ) \bigr] \biggr) ^{ \frac{\gamma +1}{\gamma}} \geq& \biggl[ \frac{\psi ( t ) }{\eta ( t ) } \biggr] ^{1+\frac{1}{\gamma}}+ \frac{1}{\gamma} \bigl[ r ( t ) b ( t ) \bigr] ^{1+\frac{1}{\gamma}} \\ &{}- \biggl( 1+ \frac{1}{\gamma } \biggr) \frac{ [ r ( t ) b ( t ) ] ^{\frac{1}{\gamma}}}{\eta ( t ) }\psi ( t ). \end{aligned}$$
(3.4)

Using inequalities (3.3) and (3.4), for \(t\geq T\), we have

$$\begin{aligned} \psi ^{\prime} ( t ) \leq{} & \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }\psi ( t ) +\eta ( t ) \bigl[ r ( t ) b ( t ) \bigr] ^{ \prime}-\eta ( t ) \sum _{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) \\ & {}+\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) \frac{\eta ( t ) }{r^{\frac{1}{\gamma}} ( t ) } \biggl[ \biggl( 1+\frac{1}{\gamma} \biggr) \frac{ [ r ( t ) b ( t ) ] ^{\frac{1}{\gamma}}}{\eta ( t ) }\psi ( t ) \\ &{}-\frac{1}{\gamma} \bigl[ r ( t ) b ( t ) \bigr] ^{1+\frac{1}{\gamma}}- \frac{\psi ^{1+\frac{1}{\gamma}} ( t ) }{\eta ^{1+\frac{1}{\gamma}} ( t ) } \biggr]. \end{aligned}$$

Then,

$$\begin{aligned} \psi ^{\prime} ( t ) \leq {}&\eta ( t ) \Biggl( \bigl[ r ( t ) b ( t ) \bigr] ^{ \prime}-\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) \Biggr) \\ &{} + \biggl[ \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime } ( t ) \tau ^{2} ( t ) b^{ \frac{1}{\gamma}} ( t ) \biggr] \psi ( t ) \\ &{} - \frac{\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) }{r^{\frac{1}{\gamma}} ( t ) \eta ^{\frac{1}{\gamma}} ( t ) }\psi ^{1+\frac{1}{\gamma}} ( t ) - \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) r ( t ) \eta ( t ) b^{1+ \frac{1}{\gamma}} ( t ), \end{aligned}$$

i.e.

$$\begin{aligned} \psi ^{\prime} ( t ) \leq& -Q ( t ) + \biggl[ \frac {\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) b^{\frac{1}{\gamma}} ( t ) \biggr] \psi ( t ) \\ &{}- \frac{\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) }{r^{\frac{1}{\gamma}} ( t ) \eta ^{\frac{1}{\gamma}} ( t ) }\psi ^{1+\frac{1}{\gamma}} ( t ). \end{aligned}$$
(3.5)

Now let

$$\begin{aligned}& U=\frac{\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) b^{\frac{1}{\gamma}} ( t ) , \\& V= \frac{\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) }{r^{\frac{1}{\gamma}} ( t ) \eta ^{\frac{1}{\gamma}} ( t ) } \quad \text{and}\quad Y=\psi ( t ). \end{aligned}$$

Then, by Lemma 4, we obtain

$$\begin{aligned} & \biggl[ \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) b^{\frac{1}{\gamma}} ( t ) \biggr] \psi ( t ) - \frac{\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) }{r^{\frac{1}{\gamma}} ( t ) \eta ^{\frac{1}{\gamma}} ( t ) } \psi ^{1+\frac{1}{\gamma}} ( t ) \\ &\quad \leq \frac{\gamma ^{\gamma}r ( t ) \eta ( t ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) b^{\frac{1}{\gamma}} ( t ) ] ^{{\gamma +1}}}{\gamma ^{\gamma} [ \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) ] ^{\gamma}}. \end{aligned}$$

Thus, we have

$$ \psi ^{\prime} ( t ) \leq -Q ( t ) + \frac{r ( t ) \eta ( t ) }{ ( \gamma +1 ) ^{\gamma +1}}\frac{ [ \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) b^{\frac{1}{\gamma}} ( t ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) ] ^{\gamma}}. $$
(3.6)

Integrating (3.6) from T to t, we get

$$ \int _{T}^{t} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime } ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma}} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) ] ^{\gamma}} \biggr]\,ds\leq \psi ( T ), $$

which contradicts (3.1), and this completes the proof. □

The following result deals with the Kamenev-type oscillation for Eq. (1.1) under the condition (1.2).

Theorem 9

If

$$\begin{aligned}& \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{t^{n}}\int _{t_{0}}^{t} ( t-s ) ^{n} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime} ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma}} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) ] ^{\gamma}} \biggr]\,ds \\& \quad =\infty , \end{aligned}$$
(3.7)

then (1.1) is oscillatory.

Proof

Let x be a nonoscillatory solution of (1.1) on \([t_{0},\infty )\). Without loss of generality, we may assume that x is an eventually positive solution. Define \(\psi ( t )\) as in (3.2). Then, following the same steps as in the proof of Theorem 8, we arrive at (3.6). Multiplying (3.6) by \(( t-s ) ^{n}\) and integrating the resulting inequality from \(t_{0}\) to t, we have

$$\begin{aligned}& -{ \int _{t_{0}}^{t}} ( t-s ) ^{n} \psi ^{\prime} ( s )\,ds \\& \quad \geq { \int _{t_{0}}^{t}} ( t-s ) ^{n} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime} ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma}} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) ] ^{\gamma}} \biggr]\,ds. \end{aligned}$$
(3.8)

However, since

$$ { \int _{t_{0}}^{t}} ( t-s ) ^{n} \psi ^{\prime} ( s )\,ds=n{ \int _{t_{0}}^{t}} ( t-s ) ^{n-1} \psi ( s ) \,ds- ( t-t_{0} ) ^{n}\psi ( t_{0} ) , $$

then from (3.8), we get

$$\begin{aligned} & ( t-t_{0} ) ^{n}\psi ( t_{0} ) -n{ \int _{t_{0}}^{t}} ( t-s ) ^{n-1} \psi ( s ) \,ds \\ &\quad \geq { \int _{t_{0}}^{t}} ( t-s ) ^{n} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime} ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma}} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) ] ^{\gamma}} \biggr]\,ds. \end{aligned}$$

Hence,

$$\begin{aligned}& \frac{1}{t^{n}}{ \int _{t_{0}}^{t}} ( t-s ) ^{n} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime} ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma}} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) ] ^{\gamma}} \biggr]\,ds \\& \quad \leq \biggl( \frac{t-t_{0}}{t} \biggr) ^{n}\psi ( t_{0} ), \end{aligned}$$

and so

$$\begin{aligned}& \underset{t\rightarrow \infty }{\lim \sup }\frac{1}{t^{n}}{ \int _{t_{0}}^{t}} ( t-s ) ^{n} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime} ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma}} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) ] ^{\gamma}} \biggr]\,ds \\& \quad \rightarrow \psi ( t_{0} ), \end{aligned}$$

which contradicts (3.7), and this completes the proof. □

Now we are going to discuss the so called Philos-type oscillation criteria for Eq. (1.1) under condition (1.2), but we first outline the following definition.

Definition 10

Let \(D= \{ ( t,s ) \in R^{2}:t\geq s\geq t_{0} \} \) and \(D_{0}= \{ ( t,s ) \in R^{2}:t>s \geq t_{0} \}\). The functions \(K_{i} ( t,s ) \in C ( D,R ) \), \(i=1,2\) are said to belong to the class X (written \(K_{i}\in X\)) if they satisfy

  1. (I)

    \(K_{i} ( t,t ) =0\) for \(t\geq t_{0}\), \(K_{i} ( t,s ) >0\), \(( t,s ) \in D_{0}\)

  2. (II)

    \(\frac{\partial K_{i} ( t,s ) }{\partial s}\leq 0\), and there exist \(\rho ( t ) \in C^{1} ( [t_{0},\infty ), ( 0,\infty ) ) \) and \(L_{i} ( t,s ) \in C ( D,R ) \) such that

    $$ -\frac{\partial K_{1} ( t,s ) }{\partial s}=K_{1} ( t,s ) \biggl[ \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) b^{\frac{1}{\gamma}} ( t ) \biggr] +L_{1} ( t,s ), $$

    and

    $$ \frac{\partial K_{2} ( t,s ) }{\partial s}+ \frac{\rho ^{\prime } ( t ) }{\rho ( t ) }K_{2} ( t,s ) = \frac{L_{2} ( t,s ) }{\rho ( t ) } \bigl[ K_{2} ( t,s ) \bigr] ^{\frac{\gamma}{\gamma +1}}. $$

Theorem 11

Assume that there exists a function \(K_{1}\in X\) such that

$$ \underset{t\rightarrow \infty }{\lim \sup } \frac{1}{K_{1} ( t,t_{0} ) } \int _{t_{0}}^{t} \biggl[ K_{1} ( t,s ) Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \vert L_{1} ( t,s ) \vert ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) K_{1} ( t,s ) ] ^{\gamma}} \biggr]\,ds=\infty . $$
(3.9)

Then, Eq. (1.1) is oscillatory.

Proof

Let x be a nonoscillatory solution of (1.1). Without loss of generality, we may assume that x is an eventually positive solution of (1.1). Now define \(\psi ( t ) \) as in (3.2). Following the same steps as in the proof of Theorem 8, we arrive at (3.5). Multiplying (3.5) by \(K_{1} ( t,s ) \) and integrating the resulting inequality from T to t, we have

$$ { \int _{T}^{t}} K_{1} ( t,s ) Q ( s )\,ds \leq { \int _{T}^{t}} K_{1} ( t,s ) \bigl[- \psi ^{\prime} ( s ) +A ( s ) \psi ( s ) -B ( s ) \psi ^{1+\frac{1}{\gamma}} ( s ) \bigr]\,ds, $$

where

$$ A ( t ) = \frac{\eta ^{\prime} ( t ) }{\eta ( t ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) b^{\frac{1}{\gamma}} ( t ) ,\qquad B ( t ) = \frac{\zeta \gamma \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) }{r^{\frac{1}{\gamma}} ( t ) \eta ^{\frac{1}{\gamma}} ( t ) }. $$

Then, we have

$$\begin{aligned} { \int _{T}^{t}} K_{1} ( t,s ) Q ( s )\,ds \leq{}& K_{1} ( t,T ) \psi ( T ) +{ \int _{T}^{t}} \biggl[ \frac{\partial K_{1} ( t,s ) }{\partial s}+K_{1} ( t,s ) A ( s ) \biggr] \psi ( s )\,ds \\ &{} -{ \int _{T}^{t}} K_{1} ( t,s ) B ( s ) \psi ^{1+\frac{1}{\gamma}} ( s )\,ds \\ ={}&K_{1} ( t,T ) \psi ( T ) -{ \int _{T}^{t}} L_{1} ( t,s ) \psi ( s ) \,ds-{ \int _{T}^{t}} K_{1} ( t,s ) B ( s ) \psi ^{1+\frac{1}{\gamma}} ( s )\,ds \\ \leq{}& K_{1} ( t,T ) \psi ( T ) +{ \int _{T}^{t}} \bigl[ \bigl\vert L_{1} ( t,s ) \bigr\vert \psi ( s ) -K_{1} ( t,s ) B ( s ) \psi ^{1+\frac{1}{\gamma}} ( s ) \bigr]\,ds. \end{aligned}$$

Putting \(U= \vert L_{1} ( t,s ) \vert \), \(V=K_{1} ( t,s ) B ( s )\) and then using Lemma 4, we obtain

$$ \bigl\vert L_{1} ( t,s ) \bigr\vert \psi ( s ) -K_{1} ( t,s ) B ( s ) \psi ^{1+ \frac{1}{\gamma}} ( s ) \leq \frac{\gamma ^{\gamma}}{ ( \gamma +1 ) ^{\gamma +1}} \frac{ \vert L_{1} ( t,s ) \vert ^{\gamma +1}}{ [ K_{1} ( t,s ) B ( s ) ] ^{\gamma}}. $$

Then,

$$ { \int _{T}^{t}} K_{1} ( t,s ) Q ( s )\,ds \leq K_{1} ( t,T ) \psi ( T ) +{ \int _{T}^{t}} \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \vert L_{1} ( t,s ) \vert ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) K_{1} ( t,s ) ] ^{\gamma}}\,ds. $$

Hence,

$$ \frac{1}{K_{1} ( t,T ) }{ \int _{T}^{t}} \biggl[ K_{1} ( t,s ) Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \vert L_{1} ( t,s ) \vert ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime} ( s ) \tau ^{2} ( s ) K_{1} ( t,s ) ] ^{\gamma}} \biggr]\,ds\leq \psi ( T ) , $$

for all sufficiently large t, which contradicts (3.9). □

Theorem 12

Assume that

$$ \underset{t\rightarrow \infty }{\lim \inf } \frac{1}{\phi _{1}^{\ast} ( t ) } \int _{t}^{\infty}\phi _{2} ( s ) \bigl[ \phi _{1}^{ \ast} ( s ) \bigr] ^{\frac{\gamma +1}{\gamma}}\,ds> \frac{\gamma}{ ( \gamma +1 ) ^{\frac{\gamma +1}{\gamma}}} $$
(3.10)

where

$$\begin{aligned}& \phi _{1} ( t ) =\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) ,\qquad \phi _{2} ( t ) = \frac{\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) }{r^{\frac{1}{\gamma}} ( t ) },\quad \textit{and} \\& \phi _{1}^{\ast} ( t ) = \int _{t}^{\infty}\phi _{1} ( s )\,ds. \end{aligned}$$

Then, (1.1) is oscillatory.

Proof

Assume that \(x ( t ) \) is an eventually positive solution of (1.1). Then, there exists a \(t_{1}\geq t_{0}\) such that \(x ( t ) >0\), \(x ( \sigma _{j} ( t ) ) >0\) and \(x ( \tau _{i} ( t ) ) >0\) for \(t\geq t_{1}\). Using Lemma 5, we arrive at (2.1). Define

$$ \omega ( t ) = \frac{r ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma}}{z^{{\gamma}} ( \zeta \tau ( t ) ) }. $$

Then, it is clear by (2.1) that

$$ \omega ^{\prime} ( t ) \leq - \frac{\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} ( \tau _{i} ( t ) ) z^{{\gamma}} ( \tau ( t ) ) }{z^{{\gamma}} ( \zeta \tau ( t ) ) }- \frac{\gamma \zeta \tau ^{\prime} ( t ) r ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma}z^{{\prime}} ( \zeta \tau ( t ) ) }{z^{{\gamma +1}} ( \zeta \tau ( t ) ) }$$

Since, by Lemma 2, we have

$$ z^{{\prime}} \bigl( \zeta \tau ( t ) \bigr) \geq \epsilon \tau ^{2} ( t ) z^{{\prime \prime \prime}} \bigl( \tau ( t ) \bigr) \geq \epsilon \tau ^{2} ( t ) z^{{\prime \prime \prime}} ( t ) , $$

then

$$ \omega ^{\prime} ( t ) \leq -\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) - \frac{\gamma \zeta \epsilon \tau ^{\prime} ( t ) \tau ^{2} ( t ) r ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma +1}}{z^{{\gamma +1}} ( \zeta \tau ( t ) ) }$$

i.e.

$$ \omega ^{\prime} ( t ) +\phi _{1} ( t ) +\phi _{2} ( t ) \omega ^{\frac{{\gamma +1}}{\gamma}} ( t ) \leq 0. $$

Integrating the above inequality from t to l, we get

$$ \omega ( l ) -\omega ( t ) +{ \int _{t}^{l}} \phi _{1} ( s ) \,ds+{ \int _{t}^{l}} \phi _{2} ( s ) \omega ^{\frac{{\gamma +1}}{\gamma}} ( s )\,ds\leq 0. $$

Letting \(l\rightarrow \infty \) and using the fact that \(\omega ( t ) \) is positive and decreasing, we get

$$ \frac{\omega ( t ) }{\phi _{1}^{\ast} ( t ) } \geq 1+\frac{1}{\phi _{1}^{\ast} ( t ) }{ \int _{t}^{\infty}} \phi _{2} ( s ) \bigl[ \phi _{1}^{\ast} ( s ) \bigr] ^{ \frac{{\gamma +1}}{\gamma}} \biggl[ \frac{\omega ( s ) }{\phi _{1}^{\ast} ( s ) } \biggr] ^{\frac{{\gamma +1}}{\gamma}}\,ds. $$
(3.11)

Let \(\delta =\inf_{t\geq T} \frac{\omega ( t ) }{\phi _{1}^{\ast } ( t ) }\). Then obviously \(\delta \geq 1\), and by (3.10) and (3.11), it follows that

$$ \delta \geq 1+\gamma \biggl( \frac{\delta}{\gamma +1} \biggr) ^{ \frac{\gamma +1}{\gamma}}, $$

which contradicts the admissible values of \(\delta \geq 1\) and \(\gamma \geq 1\). Therefore, the proof is completed. □

4 The case \(R ( t_{0} ) <\infty \)

Now we are going to discuss the oscillatory behavior of Eq. (1.1) under the condition (1.3). First we need the following lemma.

Lemma 13

Assume that x is an eventually positive solution of Eq. (1.1) and \(( S_{2} ) \) holds. If

$$ \vartheta ( t ) =\rho ( t ) \frac{r ( t ) [ z^{{\prime \prime \prime}} ( t ) ] ^{\gamma}}{ [ z^{\prime \prime} ( t ) ] ^{\gamma}}, $$
(4.1)

then

$$ \vartheta ^{\prime} ( t ) \leq \frac{\rho ^{\prime} ( t ) }{\rho ( t ) }\vartheta ( t ) -\rho ( t ) \biggl[ \frac{\lambda}{2}\tau ^{2} ( t ) \biggr] ^{ \gamma}\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) - \frac{\gamma \vartheta ^{\gamma +1} ( t ) }{r^{\frac{1}{\gamma}} ( t ) \rho ^{\frac{1}{\gamma}} ( t ) },\quad \lambda \in ( 0,1 ). $$
(4.2)

Proof

Since x is an eventually positive solution of Eq. (1.1) and \(( S_{2} ) \) holds, then using Lemma 5, we obtain (2.1). Now from Eq. (4.1), we see that \(\vartheta ( t ) <0\) for \(t\geq t_{1}\), and

$$ \vartheta ^{\prime} ( t ) = \frac{\rho ^{\prime} ( t ) }{\rho ( t ) }\vartheta ( t ) +\rho ( t ) \frac{ [ r ( t ) [ z^{{\prime \prime \prime}} ( t ) ] ^{\gamma} ] ^{\prime}}{ [ z^{\prime \prime } ( t ) ] ^{\gamma}}- \frac{\gamma \rho ( t ) r ( t ) [ z^{{\prime \prime \prime}} ( t ) ] ^{\gamma +1}}{ [ z^{\prime \prime} ( t ) ] ^{\gamma +1}}. $$

This with (2.1) and (4.1) leads to

$$ \vartheta ^{\prime} ( t ) \leq \frac{\rho ^{\prime} ( t ) }{\rho ( t ) }\vartheta ( t ) -\rho ( t ) \frac{\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} ( \tau _{i} ( t ) ) z^{{\gamma}} ( \tau ( t ) ) }{ [ z^{\prime \prime} ( t ) ] ^{\gamma}}- \frac{\gamma [ \vartheta ( t ) ] ^{\gamma +1}}{r^{\frac{1}{\gamma}} ( t ) \rho ^{\frac{1}{\gamma}} ( t ) }, $$

i.e.

$$ \vartheta ^{\prime} ( t ) \leq \frac{\rho ^{\prime} ( t ) }{\rho ( t ) }\vartheta ( t ) -\rho ( t ) \frac{\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} ( \tau _{i} ( t ) ) z^{{\gamma}} ( \tau ( t ) ) [ z^{\prime \prime} ( \tau ( t ) ) ] ^{\gamma}}{ [ z^{\prime \prime} ( \tau ( t ) ) ] ^{\gamma} [ z^{\prime \prime} ( t ) ] ^{\gamma}}- \frac{\gamma [ \vartheta ( t ) ] ^{\gamma +1}}{r^{\frac{1}{\gamma}} ( t ) \rho ^{\frac{1}{\gamma}} ( t ) }. $$

Now since \(z^{\prime \prime} ( t )\) is decreasing, then it follows that \(- \frac{z^{\prime \prime} ( \tau ( t ) ) }{z^{\prime \prime} ( t ) }\leq -1\). Consequently, by Lemma 3, we have \(z ( \tau ( t ) ) \geq \frac{\lambda}{2}\tau ^{2} ( t ) z^{\prime \prime} ( \tau ( t ) ) \). Then

$$ \vartheta ^{\prime} ( t ) \leq \frac{\rho ^{\prime} ( t ) }{\rho ( t ) }\vartheta ( t ) -\rho ( t ) \biggl[ \frac{\lambda}{2}\tau ^{2} ( t ) \biggr] ^{ \gamma}\sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma} \bigl( \tau _{i} ( t ) \bigr) - \frac{\gamma [ \vartheta ( t ) ] ^{\gamma +1}}{r^{\frac{1}{\gamma}} ( t ) \rho ^{\frac{1}{\gamma}} ( t ) }. $$

The proof is completed. □

Theorem 14

Suppose that (3.9) holds, and

$$\begin{aligned}& \underset{t\rightarrow \infty }{\lim \sup } \int _{t_{0}}^{t} \Biggl[ K_{2} ( t,s ) \rho ( s ) \biggl[ \frac{\lambda }{2} \tau ^{2} ( s ) \biggr] ^{\gamma }\sum_{i=1}^{m}q_{i} ( s ) \theta ^{\gamma } \bigl( \tau _{i} ( s ) \bigr) \\& \quad {} - \frac{r ( s ) }{ ( \gamma +1 ) ^{\gamma +1}\rho ^{\gamma } ( s ) } \bigl[ L_{2} ( t,s ) \bigr] ^{\gamma +1} \Biggr]\,ds>0. \end{aligned}$$
(4.3)

If

$$ \int _{t_{0}}^{\infty }R ( s )\,ds=\infty , $$
(4.4)

or

$$ \int _{t_{0}}^{\infty } \int _{u}^{\infty }R ( s )\,ds\,du= \infty , $$
(4.5)

then Eq. (1.1) is oscillatory.

Proof

Suppose for the contrary that there exists a nonoscillatory solution \(x ( t ) >0\) of (1.1). Then, we have one of the three possible cases of Lemma 7. We first assume that \(( S_{1} ) \) holds. Then by Theorem 11, if (3.9) holds, Eq. (1.1) is oscillatory. Secondly, if \(( S_{2} ) \) holds, then by Lemma 13, we get (4.2). Multiplying (4.2) by \(K_{2} ( t,s ) \) and integrating from \(t_{1}\) to t, we obtain

$$\begin{aligned} & { \int _{t_{1}}^{t}} K_{2} ( t,s ) \rho ( s ) \biggl[ \frac{\lambda}{2}\tau ^{2} ( s ) \biggr] ^{\gamma}\sum_{i=1}^{m}q_{i} ( s ) \theta ^{\gamma} \bigl( \tau _{i} ( s ) \bigr)\,ds \\ &\quad \leq K_{2} ( t,t_{1} ) \omega ( t_{1} ) +{ \int _{t_{1}}^{t}} \biggl[ \frac{\partial K_{2} ( t,s ) }{\partial s}+ \frac {\rho ^{\prime} ( s ) }{\rho ( s ) }K_{2} ( t,s ) \biggr] \omega ( s )\,ds- \gamma { \int _{t_{1}}^{t}} K_{2} ( t,s ) \frac{\omega ^{\frac{\gamma +1}{\gamma}} ( s ) }{r^{\frac{1}{\gamma}} ( s ) \rho ^{\frac{1}{\gamma}} ( s ) }\,ds \\ & \quad =K_{2} ( t,t_{1} ) \omega ( t_{1} ) +{ \int _{t_{1}}^{t}} \frac{L_{2} ( t,s ) }{\rho ( s ) } \bigl[ K_{2} ( t,s ) \bigr] ^{\frac{\gamma}{\gamma +1}}\omega ( s )\,ds- \gamma { \int _{t_{1}}^{t}} K_{2} ( t,s ) \frac{\omega ^{\frac{\gamma +1}{\gamma}} ( s ) }{r^{\frac{1}{\gamma}} ( s ) \rho ^{\frac{1}{\gamma}} ( s ) }\,ds. \end{aligned}$$

Setting

$$ V= \frac{\gamma K_{2} ( t,s ) }{r^{\frac{1}{\gamma}} ( s ) \rho ^{\frac{1}{\gamma}} ( s ) }, \qquad U= \frac {L_{2} ( t,s ) }{\rho ( s ) } \bigl[ K_{2} ( t,s ) \bigr] ^{\frac{\gamma}{\gamma +1}}\quad \text{and}\quad Y= \omega ( s ) . $$

Then, by Lemma 4, we have

$$\begin{aligned} & \frac{L_{2} ( t,s ) }{\rho ( s ) } \bigl[ K_{2} ( t,s ) \bigr] ^{\frac{\gamma}{\gamma +1}} \omega ( s ) - \frac{\gamma K_{2} ( t,s ) \omega ^{\frac{\gamma +1}{\gamma}} ( s ) }{r^{\frac{1}{\gamma}} ( s ) \rho ^{\frac{1}{\gamma}} ( s ) } \\ &\quad \leq \frac{1}{ ( \gamma +1 ) ^{\gamma +1}} \bigl[ L_{2} ( t,s ) \bigr] ^{ ( \gamma +1 ) } \frac{r ( s ) }{\rho ^{\gamma} ( s ) }. \end{aligned}$$

Hence,

$$\begin{aligned} & { \int _{t_{1}}^{t}} \Biggl[ K_{2} ( t,s ) \rho ( s ) \biggl[ \frac{\lambda }{2}\tau ^{2} ( s ) \biggr] ^{\gamma}\sum_{i=1}^{m}q_{i} ( s ) \theta ^{\gamma} \bigl( \tau _{i} ( s ) \bigr) - \frac{r ( s ) }{ ( \gamma +1 ) ^{\gamma +1}\rho ^{\gamma } ( s ) } \bigl[ L_{2} ( t,s ) \bigr] ^{\gamma +1} \Biggr] \,ds \\ &\quad \leq K_{2} ( t,t_{1} ) \omega ( t_{1} ) < 0. \end{aligned}$$

This contradicts (4.3). Finally, assume the case \(( S_{3} ) \). Hence, since \(r ( t ) ( z^{{\prime \prime \prime}} ( t ) ) ^{\gamma}\) is nonincreasing, then for \(s\geq t\geq t_{1,}\) we have

$$ r^{{\frac{1}{\gamma}}} ( s ) \bigl( z^{{\prime \prime \prime}} ( s ) \bigr) \leq r^{{\frac{1}{\gamma}}} ( t ) \bigl( z^{{\prime \prime \prime}} ( t ) \bigr). $$

Going through as in the proof of Theorem 2.3 case 1 in [20], we get a contradiction with (4.4) and (4.5), and so the proof is completed. □

Remark 15

Theorem 14 remains true if we used (3.1), or (3.7), or (3.10) instead of (3.9).

5 Example

Example 16

Consider the fourth-order differential equation

$$ \biggl( t \biggl[ x ( t ) +\frac{1}{t^{3}}x^{\frac{1}{3}} ( t-2 ) + \frac{1}{t^{4}}x^{\frac{1}{5}} ( t-3 ) \biggr] ^{\prime \prime \prime } \biggr) ^{\prime }+\frac{3}{t}x ( t ) +\frac{1}{t^{3}}x ( 2t ) =0,\quad t \geq 2. $$
(5.1)

Here \(\gamma =1\), \(r ( t ) =t\), \(a_{1}=\frac{1}{t^{3}}\), \(a_{2}= \frac{1}{t^{4}}\), \(\alpha _{1}=\frac{1}{3}\), \(\alpha _{2}=\frac{1}{5}\), \(q_{1}= \frac{3}{t}\), \(q_{2}=\frac{1}{t^{3}}\), \(\tau _{1} ( t ) =t\), \(\tau _{2} ( t ) =2t\). Let \(\tau ( t ) =\frac{t}{2}\rightarrow \) \(\tau ( t ) \leq \) \(\tau _{i} ( t ) \), \(\lim_{t\rightarrow \infty }\) \(\tau ( t ) =\infty \), \(\tau ^{\prime } ( t ) =\frac{1}{2}>0\). Therefore, the conditions \(( A_{1} ) - ( A_{5} ) \) and (1.2) are satisfied. Choosing \(\delta ( t ) =\frac{1}{t}\). Then \(\delta ( t ) \rightarrow 0\) for \(t\rightarrow \infty \). Moreover, \(\theta ( \tau _{1} ( t ) ) =\theta ( t ) = [ 1-\frac{2}{3t^{2}}-\frac{17}{15t^{3}}-\frac{1}{5t^{4}} ] >0\) for \(t\geq 2\), and \(\theta ( \tau _{2} ( t ) ) =\theta ( 2t ) = [ 1-\frac{1}{6t^{2}}-\frac{17}{120t^{3}}- \frac{1}{80t^{4}} ] >0\) for \(t\geq 2\). Choosing \(\eta ( t ) =1\), \(b ( t ) =\frac{1}{t^{2}}\), we have

$$\begin{aligned}& Q ( t ) = \eta ( t ) \sum_{i=1}^{m}q_{i} ( t ) \theta ^{\gamma } \bigl( \tau _{i} ( t ) \bigr) -\eta ( t ) \bigl[ r ( t ) b ( t ) \bigr] ^{\prime }+\zeta \epsilon \tau ^{\prime } ( t ) \tau ^{2} ( t ) r ( t ) \eta ( t ) b^{1+\frac{1}{\gamma }} ( t ) \\& \hphantom{Q ( t )} = \frac{1}{t} \biggl[ \biggl( 3+\frac{\zeta \epsilon }{8} \biggr) + \frac{1}{t}-\frac{1}{t^{2}}-\frac{17}{5t^{3}}- \frac{23}{30t^{4}}- \frac{17}{120t^{5}}-\frac{1}{80t^{6}} \biggr] , \\& \underset{t\rightarrow \infty }{\lim \sup } \int _{t_{0}}^{t} \biggl[ Q ( s ) - \frac{r ( s ) \eta ( s ) }{ ( \gamma +1 ) ^{\gamma +1}} \frac{ [ \frac{\eta ^{\prime } ( s ) }{\eta ( s ) }+ ( \gamma +1 ) \zeta \epsilon \tau ^{\prime } ( s ) \tau ^{2} ( s ) b^{\frac{1}{\gamma }} ( s ) ] ^{\gamma +1}}{ [ \zeta \epsilon \tau ^{\prime } ( s ) \tau ^{2} ( s ) ] ^{\gamma }} \biggr]\,ds \\& \quad =\underset{t\rightarrow \infty }{\lim \sup } \int _{2}^{t} \frac{1}{s} \biggl[ 3+ \frac{1}{s}-\frac{1}{s^{2}}-\frac{17}{5s^{3}}- \frac{23}{30s^{4}}- \frac{17}{120s^{5}}-\frac{1}{80s^{6}} \biggr]\,ds=\infty . \end{aligned}$$

Therefore, by Theorem 8, every solution of (5.1) is oscillatory.

6 Conclusions

In this paper, we consider a general class of super-linear fourth-order differential equations with several sub-linear neutral terms of the type (1.1). Using the Riccati and generalized Riccati transformations, we establish new oscillation criteria in both cases of canonical case \(\int _{t_{0}}^{\infty } \frac{1}{r^{\frac{1}{\alpha }} ( t ) }\,dt=\infty \) and non-canonical case \(\int _{t_{0}}^{\infty } \frac{1}{r^{\frac{1}{\alpha }} ( t ) }\,dt<\infty \). With the help of the methods given in this paper, we derive some the Kamenev–Philos-type oscillation criteria for (1.1). An illustrative example is given. For interested researchers, there is a good deal of finding new results for (1.1) when \(z(t)=x ( t ) -\sum_{j=1}^{n}a_{j} ( t ) x^{ \alpha _{j}} ( \sigma _{j} ( t ) )\).

Availability of data and materials

Not applicable.

References

  1. Agarwal, R.P., Bohner, M., Li, T., Zhang, C.: Oscillation of third-order nonlinear delay differential equations. Taiwan. J. Math. 17(2), 545–558 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, R.P., Zhang, C., Li, T.: Some remarks on oscillation of second order neutral differential equations. Appl. Math. Comput. 274, 178–181 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bazighifan, O.: Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv. Differ. Equ. 201, 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Bazighifan, O., Cesarano, C.: A Philos-type oscillation criteria for fourth-order neutral differential equations. Symmetry 379(12), 1–10 (2020)

    Google Scholar 

  5. Bazighifan, O., Minhos, F., Moaaz, O.: Sufficient conditions for oscillation of fourth-order neutral differential equations with distributed deviating arguments. Axioms 39(9), 1–11 (2020)

    Google Scholar 

  6. Bohner, M., Li, T.: Kamenev-type criteria for nonlinear damped dynamic equations. Sci. China Math. 58(7), 1445–1452 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatzarakis, G.E., Elabbasy, E.M., Bazighifan, O.: An oscillation criterion in 4th-order neutral differential equations with a continuously distributed delay. Adv. Differ. Equ. 3366, 1 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Chiu, K.S., Li, T.: Oscillatory and periodic solutions of differential equations with piecewise constant generalized mixed arguments. Math. Nachr. 292(10), 2153–2164 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cloud, M.J., Drachman, B.C.: Inequalities with Applications to Enginering. Springer, New York (1998)

    MATH  Google Scholar 

  10. Dassios, I., Bazighifan, O.: Oscillation conditions for certain fourth-order non-linear neutral differential equation. Symmetry 1096(12), 1–9 (2020)

    Google Scholar 

  11. Džuurina, J., Grace, S.R., Jadlovská, I., Li, T.: Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term. Math. Nachr. 293(5), 910–922 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Sheikh, M.M.A.: Oscillation and nonoscillation criteria for second order nonlinear differential equations. J. Math. Anal. Appl. 179(1), 14–27 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Sheikh, M.M.A., Sallam, R.A., Elimy, D.: Oscillation criteria for second order nonlinear equations with damping. Adv. Differ. Equ. Control Process. 8(2), 127–142 (2011)

    MathSciNet  MATH  Google Scholar 

  14. El-Sheikh, M.M.A., Sallam, R.A., Salem, S.: Oscillation of nonlinear third-order differential equations with several sublinear neutral terms. Math. Slovaca 71(6), 1411–1426 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fu, Y., Tian, Y., Jiang, C., Li, T.: On the asymptotic properties of nonlinear third-order neutral delay differential equations with distributed deviating arguments. J. Funct. Spaces 2016, 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  16. Jiang, C., Jiang, Y., Li, T.: Asymptotic behavior of third-order differential equations with nonpositive neutral coefficients and distributed deviating arguments. Adv. Differ. Equ. 105, 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, C., Li, T.: Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments. J. Nonlinear Sci. Appl. 9, 6170–6182 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, C., Tian, Y., Jiang, Y., Li, T.: Some oscillation results for nonlinear second-order differential equations with damping. Adv. Differ. Equ. 2015, 354 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, Y., Jianng, C., Li, T.: Oscillatory behavior of third-order nonlinear neutral delay differential equations. Adv. Differ. Equ. 2016, 171 (2016)

    Article  MathSciNet  Google Scholar 

  20. Li, T., Baculikova, B., Dzurina, J., Zhang, C.: Oscillation of fourth-order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 56, 1–9 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, T., Pintus, N., Viglialoro, G.: Properties of solutions to porous medium problems with different sources and boundary conditions. Z. Angew. Math. Phys. 70(3), 86 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, T., Rogovchenko, Y.V.: Asymptotic behavior of an odd-order delay differential equation. Bound. Value Probl. 2014, 1 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, T., Rogovchenko, Y.V.: On asymptotic behavior of solutions to higher order sublinear Emden-Fowler delay differential equations. Appl. Math. Lett. 667, 53–59 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, T., Rogovchenko, Y.V.: On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations. Appl. Math. Lett. 105, 106293 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, T., Viglialoro, G.: Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime. Differ. Integral Equ. 34(5–6), 315–336 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Moaaz, O., Cesarano, C., Muhib, A.: Some new oscillation results for fourth-order neutral differential equations. Eur. J. Appl. Math. 13(2), 185–199 (2020)

    MathSciNet  Google Scholar 

  27. Moaaz, O., Metwally, E., Elabbasy, M., Shaaban, E.: Oscillation criteria for a class of third order damped differential. Arab J. Math. Sci. 24(1), 16–30 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Philos, C.: On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations will positive delays. Arch. Math. 36, 168–178 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Qin, G., Huang, C., Xie, Y., Wen, F.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 305, 1–8 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Qiu, Y.-C., Jadlovska, I., Chiu, K.-S., Li, T.: Existence of nonoscillatory solutions tending to zero of third-order neutral dynamic equations on time scales. Adv. Differ. Equ. 231, 1–9 (2020)

    MathSciNet  MATH  Google Scholar 

  31. Qiu, Y.C., Zada, A., Qin, H., Li, T.: Oscillation criteria for nonlinear third-order neutral dynamic equations with damping on time scales. J. Funct. Spaces 2017, 1–18 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sallam, R.A., El-Sheikh, M.M.A., El-Saedy, E.I.: On the oscillation of second order nonlinear neutral delay differential equations. Math. Slovaca 71(4), 859–870 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sallam, R.A., Salem, S., El-Sheikh, M.M.A.: Oscillation of solutions of third order nonlinear neutral differential equations. Adv. Differ. Equ. 314, 1–25 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Thandapani, E., El-Sheikh, M.M.A., Sallam, R., Salem, S.: On the oscillatory behavior of third order differential equations with a sublinear neutral term. Math. Slovaca 70(1), 95–106 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tian, Y., Cail, Y., Fu, Y., Li, T.: Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Adv. Differ. Equ. 267, 1–14 (2015)

    MathSciNet  Google Scholar 

  36. Tiryaki, A., Aktas, M.F.: Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping. J. Math. Anal. Appl. 325, 54–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Chen, G., Jiang, Y., Jiang, C., Li, T.: Asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. J. Math. Comput. Sci. 17, 194–199 (2017)

    Article  MATH  Google Scholar 

  38. Zhang, C., Agarwal, R.P., Bohner, M., Li, T.: Oscillation of fourth-order delay dynamic equations. Sci. China Math. 58(1), 143–160 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Q., Gao, L., Yu, Y.: Oscillation criteria for third-order neutral differential equations with continuously distributed delay. Appl. Math. Lett. 25, 1514–1519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors of the paper are grateful to the editorial board and reviewers for the careful reading and helpful suggestions, which led to an improvement of our original manuscript.

Funding

This research was not supported by any project.

Author information

Authors and Affiliations

Authors

Contributions

Authors read and approved the final manuscript.

Corresponding author

Correspondence to A. A. El-Gaber.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Gaber, A.A., El-Sheikh, M.M.A. & El-Saedy, E.I. Oscillation of super-linear fourth-order differential equations with several sub-linear neutral terms. Bound Value Probl 2022, 41 (2022). https://doi.org/10.1186/s13661-022-01620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-022-01620-2

MSC

Keywords