Skip to main content

Nonstandard competing anisotropic \((p,q)\)-Laplacians with convolution

Abstract

A competing anisotropic \((p,q)\)-Laplacian

$$ -\overset{N}{\underset{i=1}{\sum}}\frac{\partial }{\partial x_{i}} \biggl( \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}-2}- \mu \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{q_{i}-2} \biggr) \frac{\partial u}{\partial x_{i}} =f \bigl(x, \phi \star u,\nabla (\phi \star u)\bigr) $$

as a nonstandard Dirichlet problem with convolutions on a bounded smooth domain in \(\mathbb{R}^{N}\), \(N\geq 3\) is considered. Assume \(f:\Omega \times \mathbb{R}\times \mathbb{R}^{N}\to \mathbb{R}\) is a Carathéodory function and \(\phi \in L^{1}(\mathbb{R}^{N})\). If \(\mu >0\), the existence of a generalized solution is proved. By the Galerkin basis for the space, a sequence that converges strongly to the solution is constructed. If \(\mu \leq 0\), it is proved that any generalized solution is a weak solution.

1 Introduction

The \((p,q)\)-Laplacian comes from a general reaction-diffusion system that has a wide spectrum of applications in physics and related sciences such as biophysics, plasma physics, solid-state physics, fractional quantum mechanics in the study of particles on stochastic fields, fractional superdiffusion and fractional white-noise limit, etc. (see [1, 57, 2325, 31, 32] and the references therein).

Recently, Motreanu [20] proved the existence of solutions (generalized and weak) for

$$ \textstyle\begin{cases} -\operatorname{div} ( \vert \nabla u \vert ^{p-2}\nabla u-\mu \vert \nabla u \vert ^{q-2}\nabla u )=f(x,\rho \star u,\nabla (\rho \star u))&\text{in } \Omega , \\ u=0&\text{on } \partial \Omega , \end{cases} $$

under suitable condition of f and ρ, where he overcame the lack of ellipticity.

Here, with the inspiration of [20], the multiplicity of nontrivial solutions for the nonstandard Dirichlet problem with an anisotropic competing \((p, q)\)-Laplacian

$$ \textstyle\begin{cases} -\overset{N}{\underset{i=1}{\sum}}\frac{\partial }{\partial x_{i}} ( \vert \frac{\partial u}{\partial x_{i}} \vert ^{p_{i}-2}- \mu \vert \frac{\partial u}{\partial x_{i}} \vert ^{q_{i}-2} ) \frac{\partial u}{\partial x_{i}} =f(x, \phi \star u,\nabla (\phi \star u))&\text{in } \Omega , \\ u=0&\text{on } \partial \Omega , \end{cases} $$
(1.1)

is proved, where Ω is a bounded smooth domain in \(\mathbb{R}^{N}\), \(N\geq 3\), with a Lipschitz boundary Ω, \(f:\Omega \times \mathbb{R}\times \mathbb{R}^{N}\to \mathbb{R}\) is a Carathéodory function, \(\phi \in L^{1}(\mathbb{R}^{N})\), \(u\in W_{0}^{1,\overrightarrow{p}}(\Omega )\), and the convolution \(\phi \star u(x)\) is defined by

$$ \phi \star u(x):= \int _{\mathbb{R}^{N}}\phi (x-y)u(y)\,dy\quad \text{for a.e. } x\in \mathbb{R}^{N}. $$

We set \(\overrightarrow{p}:=(p_{1},\ldots , p_{N})\) and \(\overrightarrow{q}:=(q_{1},\ldots , q_{N})\) where

$$ \begin{aligned} &1< p_{1}, p_{2},\ldots ,p_{N}, \quad \sum^{N}_{i=1} \frac{1}{p_{i}}>1, \\ &1< q_{1}, q_{2}, \ldots , q_{N}, \quad \sum ^{N}_{i=1}\frac{1}{q_{i}}>1. \end{aligned} $$

Let and denote the harmonic means \(\overline{p}= N/ (\sum^{N}_{i=1}\frac{1}{p_{i}} )\) and \(\overline{q}= N/ (\sum^{N}_{i=1}\frac{1}{q_{i}} )\), respectively, and define

$$\begin{aligned}& p^{\star }:=\frac{N}{ (\sum^{N}_{i=1}\frac{1}{p_{i}} )-1}= \frac{N\overline{p}}{N-\overline{p}},\qquad q^{\star }:= \frac{N}{ (\sum^{N}_{i=1}\frac{1}{q_{i}} )-1}= \frac{N\overline{q}}{N-\overline{q}}, \\& p_{\infty}:=\max \bigl\{ p_{+},p^{\star }\bigr\} \quad \text{and}\quad p_{+}:=\max \{p_{i}: i=1,\ldots , N\}. \end{aligned}$$

We define an order as follows:

$$ \overrightarrow{q}\leq \overrightarrow{p} \quad \text{if and only if}\quad q_{i}\leq p_{i}\quad \text{for all } i=1,\ldots , N. $$
(1.2)

Throughout the paper, we assume that

$$ \overrightarrow{q}\leq \overrightarrow{p},\qquad q_{N} < q^{\star },\qquad p_{N}< p^{ \star }\quad \text{and}\quad q^{\star }< p^{\star }. $$
(1.3)

Also, we assume

\((H_{1})\):

\(|f(x,t,\xi )|\leq \sigma (x)+c_{1}|t|^{p^{+}-1}+c_{2} \overset{N}{\underset{i=1}{\sum}}|\xi _{i}|^{p_{i}-1}\) for a.e. \(x\in \Omega \) and for all \((t,\xi )\in \mathbb{R}\times \mathbb{R}^{N}\), where \(\xi =(\xi _{1},\ldots ,\xi _{N})\), \(\sigma \in L^{\gamma '}(\Omega )\) for \(\gamma \in (1,p^{+})\), \(\gamma '=\frac{\gamma}{\gamma -1}\) and constants \(c_{1}\geq 0\), \(c_{2}\geq 0\), satisfying

$$ \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N})}^{p^{+}-1} c_{1}S_{p^{+}}+c_{2}\Pi < 1, $$
(1.4)

where \(\Pi =\max_{1\leq i\leq N}\{S^{\prime}_{p_{i}}\|\phi \|^{p_{i}-1}_{L^{1}( \mathbb{R}^{N})}\}\) and \(S^{\prime}_{p_{i}}\) is the Sobolev constant for the embedding \(W_{0}^{1,p_{i}}(\Omega )\subset L^{p_{i}}(\Omega )\) for \(i=1,\ldots , N\).

The differential operator in (1.1), i.e.,

$$ u\to \overset{N}{\underset{i=1}{\sum}} \frac{\partial }{\partial x_{i}} \biggl( \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}-2}-\mu \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{q_{i}-2} \biggr) \frac{\partial u}{\partial x_{i}} $$

is the difference of the anisotropic degenerated p-Laplacian and q-Laplacian. In fact, the negative anisotropic ϱ-Laplacian (for \(\varrho =p,q\))

$$ -\Delta _{\overrightarrow{\varrho}}: W_{0}^{1, \overrightarrow{\varrho}}(\Omega )\to W^{-1,\overrightarrow{\varrho}^{ \prime}(\Omega )} $$

is expressed as

$$ \langle -\Delta _{\overrightarrow{\varrho}}u,v\rangle = \overset{N}{\underset{i=1}{\sum }} \int _{\Omega} \frac{\partial }{\partial x_{i}} \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{\varrho _{i}-2} \frac{\partial u}{\partial x_{i}}\cdot \frac{\partial v}{\partial x_{i}}\,dx $$

for all \(u,v\in W_{0}^{1,\overrightarrow{\varrho}}(\Omega )\), where \(\overrightarrow{\varrho}:=(\varrho _{1},\ldots ,\varrho _{N})\) and \(\overrightarrow{\varrho}^{\prime}:=( \frac{\varrho _{1}}{\varrho _{1}-1},\ldots , \frac{\varrho _{N}}{\varrho _{N}-1})\).

Since \(1< q_{1}\), \(\overrightarrow{q}<\overrightarrow{p}\), \(p_{N}<\infty \), the continuous embedding \(W_{0}^{1,\overrightarrow{p}}(\Omega )\hookrightarrow W_{0}^{1, \overrightarrow{q}}(\Omega )\) holds and the operator \(-\Delta _{\overrightarrow{p}}+\mu \Delta _{\overrightarrow{q}}\) is well defined on \(W_{0}^{1,\overrightarrow{p}}(\Omega )\).

The sign of \(-\Delta _{\overrightarrow{p}}+\mu \Delta _{\overrightarrow{q}}\) for \(\mu >0\) and sufficiently large is different from \(\mu >0\) and sufficiently small. This makes it difficult to study (1.1). We owe essential ideas to [20] to overcome the lack of ellipticity, monotonicity, and variational structure in problem (1.1) (see [1820, 22]). Therefore, for problem (1.1), the existence of a solution is proved by Theorem 1.1.

Theorem 1.1

Suppose that \((H_{1})\) holds. Then, there exists a generalized solution to problem (1.1). In particular, if \(\mu \leq 0\), there exists a weak solution to problem (1.1).

The rest of the paper is organized as follows: In Sect. 2, the suitable function spaces and some lemmas are recalled. In Sect. 3, the associated Nemytskij operator is introduced and then we show the anisotropic competing \((p,q)\)-Laplacian (1.1) has a solution, i.e., the proof of Theorem 1.1 is presented.

2 Function space

Consider the anisotropic Sobolev spaces \(W^{1,\overrightarrow{p}}(\Omega )\), with the norm

$$ \Vert u \Vert _{W^{1,\overrightarrow{p}}(\Omega )}:= \int _{\Omega } \bigl\vert u(x) \bigr\vert \,dx+ \sum _{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{\frac{1}{p_{i}}}, $$

and \(W^{1,\overrightarrow{p}}_{0}(\Omega )\) with the norm

$$ \begin{aligned} \Vert u \Vert _{W^{1,\overrightarrow{p}}_{0}(\Omega )}&:=\sum _{i=1}^{N} \biggl( \int _{\Omega } \biggl\vert \frac{\partial u}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{\frac{1}{p_{i}}} \\ &=\sum_{i=1}^{N} \Vert u \Vert _{W^{1,p_{i}}_{0}(\Omega )}. \end{aligned} $$

Note that \(W^{1,\overrightarrow{p}}_{0}(\Omega )\) is a reflexive and uniformly convex Banach space (see [2628] and references therein for more details or more literature in [2, 4, 814, 30]). Here, is an embedding theorem [15, Theorem 1].

Theorem 2.1

Let \(\Omega \subset \mathbb{R}^{N}\) be an open bounded domain with Lipschitz boundary. If

$$ p_{i}>1, \quad \textit{for all } i=1,\ldots ,N, \qquad \sum _{i=1}^{N} \frac{1}{p_{i}}>1, $$

then for all \(r\in [1,p_{\infty}]\), there is a continuous embedding \(W_{0}^{1,\overrightarrow{p}}(\Omega )\subset L^{r}(\Omega )\). For \(r< p_{\infty}\), the embedding is compact.

Note that the Sobolev space \(W^{1,\overrightarrow{p}}_{0}(\Omega )\) is embedded in \(W^{1,\overrightarrow{p}}(\mathbb{R}^{N})\) by identifying every \(u\in W^{1,\overrightarrow{p}}_{0}(\Omega )\) with its extension equal to zero outside Ω. Thus, one can define the convolution \(\phi \star u\) of \(\phi \in L^{1}(\mathbb{R}^{N})\) with \(u\in W^{1,\overrightarrow{p}}_{0} (\Omega )\) (see [3, Sect. 4.4 and Sect. 9.1]) by

$$ \phi \star u(x)= \int _{\mathbb{R}^{N}}\phi (x-y)u(y)\,dy\quad \text{for a.e. } x\in \mathbb{R}^{N}. $$

Also,

$$ \frac{\partial}{\partial x_{i}}(\phi \star u) =\phi \star \frac{\partial u}{\partial x_{i}}\in L^{p_{i}}\bigl(\mathbb{R}^{N}\bigr), \text{for all} i=1,2,\ldots , N. $$

Remark 2.2

Assume \(\phi \in L^{1}(\mathbb{R}^{N})\) with \(u\in W^{1,\overrightarrow{p}}_{0} (\Omega )\), then

  1. (i)
    $$ \Vert \phi \star u \Vert _{L^{r}(\mathbb{R}^{N})}\leq \Vert \phi \Vert _{L^{1}( \mathbb{R}^{N})} \Vert u \Vert _{L^{r}(\Omega )} $$
    (2.1)

    whenever \(r\in [1,p^{\star }]\);

  2. (ii)
    $$ \biggl\Vert \phi \star \frac{\partial u}{\partial x_{i}} \biggr\Vert _{L^{p_{i}}( \mathbb{R}^{N})}\leq \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N})} \biggl\Vert \frac{\partial u}{\partial x_{i}} \biggr\Vert _{L^{p_{i}}(\Omega )} $$
    (2.2)

    for all \(i=1,\ldots , N\);

  3. (iii)

    By (2.2), we have

    $$ \begin{aligned} \Vert \phi \star u \Vert _{W_{0}^{1\overrightarrow{p}}(\mathbb{R}^{N})}={}& \sum_{i=1}^{N} \biggl( \int _{\mathbb{R}^{N}} \biggl\vert \frac{\partial (\phi \star u)}{\partial x_{i}} \biggr\vert ^{p_{i}}\,dx \biggr)^{ \frac{1}{p_{i}}} \\ ={}& \sum_{i=1}^{N} \biggl\Vert \frac{\partial (\phi \star u)}{\partial x_{i}} \biggr\Vert _{L^{p_{i}}( \mathbb{R}^{N})} \\ \leq {}& \sum_{i=1}^{N} \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N})} \biggl\Vert \frac{\partial u}{\partial x_{i}} \biggr\Vert _{L^{p_{i}}(\mathbb{R}^{N})} \\ = {}& \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N})}\sum_{i=1}^{N} \biggl\Vert \frac{\partial u}{\partial x_{i}} \biggr\Vert _{L^{p_{i}}(\mathbb{R}^{N})} \\ ={}& \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N})} \Vert u \Vert _{W_{0}^{1\overrightarrow{p}}( \mathbb{R}^{N})}. \end{aligned} $$
    (2.3)

Before ending this section we require a generalized solution for (1.1).

Definition 2.3

A function \(u\in W^{1,\overrightarrow{p}}_{0}(\Omega )\) is called a generalized solution to problem (1.1) if there exists a sequence \(\{u_{n}\}_{n\geq 1}\) in \(W^{1,\overrightarrow{p}}_{0}(\Omega )\) such that

  1. (I)

    \(u_{n}\rightharpoonup u\) in \(W^{1,\overrightarrow{p}}_{0}(\Omega )\) as \(n\to \infty \);

  2. (II)

    \(-\Delta _{\overrightarrow{p}}u_{n}+\mu \Delta _{\overrightarrow{q}}u_{n}-f (\cdot , \phi \star u_{n}(\cdot ),\nabla (\phi \star \nabla u)(\cdot )) \rightharpoonup 0\) in \(W^{-1,\overrightarrow{p}^{\prime}}(\Omega )\) as \(n\to \infty \);

  3. (III)

    \(\lim_{n\to \infty}\langle -\Delta _{\overrightarrow{p}}u_{n}+ \mu \Delta _{\overrightarrow{q}}u_{n}, u_{n}-u\rangle =0\).

Remark 2.4

Assume u is a weak solution of (1.1), i.e., u satisfies

$$ \bigl\langle (-\Delta _{\overrightarrow{p}}+\mu \Delta _{ \overrightarrow{q}} ) (u),v\bigr\rangle _{W_{0}^{1,\overrightarrow{p}}( \Omega )}= \int _{\Omega }f\bigl(x,\phi \star u(x),\nabla \bigl(\phi \star u(x) \bigr)\bigr)v(x)\,dx $$

for all \(v\in W^{1,\overrightarrow{p}}_{0}(\Omega )\). Set \(u_{n} = u\) for all n, then any weak solution is a generalized solution to problem (1.1).

3 Weak and generalized solutions

Here, we study the behavior of the Nemytskij operator and construct a sequence (by the Galerkin basis of the space) that converges strongly to the generalized (weak) solution of (1.1) when \(\mu \geq 0\) (\(\mu <0\)). First, we recall an embedding result.

Since \(\overrightarrow{q}<\overrightarrow{p}\) and Ω is bounded then

$$ \begin{aligned} & W_{0}^{1\overrightarrow{p}}(\Omega )\quad \text{is continuously embedded in } W_{0}^{1\overrightarrow{q}}( \Omega ) \quad \text{and } \\ &W^{-1,\overrightarrow{q}^{\prime}}(\Omega )\quad \text{is continuously embedded in } W^{-1,\overrightarrow{p}^{\prime}}( \Omega ). \end{aligned} $$
(3.1)

Assume the operator \(A: W_{0}^{1,\overrightarrow{p}}(\Omega )\to W^{-1,\overrightarrow{p}^{ \prime}}(\Omega ) \) (see (1.1)) is defined by

$$ \bigl\langle A(u),v\bigr\rangle =\langle -\Delta _{\overrightarrow{p}}u+\mu \Delta _{\overrightarrow{q}}u,v\rangle - \int _{\Omega}f\bigl(x, \phi \star u(x), \nabla (\phi \star u) (x) \bigr)v(x)\,dx. $$
(3.2)

Lemma 3.1

The operator A defined by (3.2) is continuous, when (\(H_{1}\)) holds.

Proof

Define the operator

$$ T: W_{0}^{1,\overrightarrow{p}}(\Omega )\to L^{p^{+}}(\Omega )\times L^{p_{1}}( \Omega )\times \cdots \times L^{p_{N}}(\Omega ) $$

by \(T(u)=(\phi \star u |_{\Omega}, \nabla (\phi \star u) |_{ \Omega})\). Relations (2.1) and (2.3) imply that T is linear and continuous. By (\(H_{1}\)) and Krasnoselskii’s theorem [16], the Nemytskii operator

$$ \begin{aligned} \mathcal{N}:{}&L^{p^{+}}(\Omega )\times \bigl(L^{{p_{1}}}( \Omega )\times \cdots \times L^{{p_{N}}}(\Omega ) \bigr)\to L^{{p^{+}}^{ \prime}}(\Omega ) \\ &{}(v,,w_{1},\ldots ,w_{N})\mapsto f\bigl(\cdot ,v(\cdot ),w_{1}(\cdot ), \ldots ,w_{N}(\cdot )\bigr) \end{aligned} $$

is well defined and continuous and so the composition operator

$$ W_{0}^{1,\overrightarrow{p}}(\Omega )\to L^{{p^{+}}^{\prime}}( \Omega ), \qquad u\mapsto f\bigl(\cdot ,\phi \star u(\cdot ),\nabla (\phi \star u) ( \cdot )\bigr) $$
(3.3)

is continuous. Note that \(L^{{p^{+}}^{\prime}}(\Omega )\) is continuously embedded in \(W^{-1,{p^{+}}^{\prime}}(\Omega )\).

The operator \(-\Delta _{\overrightarrow{\varrho}}: W_{0}^{1, \overrightarrow{\varrho}}(\Omega )\to W^{-1,\overrightarrow{\varrho}^{ \prime}}(\Omega ) \) (for \(\varrho =p,q\)) is continuous. Therefore, embedding (3.1) implies \(-\Delta _{\overrightarrow{p}}+\mu \Delta _{\overrightarrow{q}}: W_{0}^{1 \overrightarrow{p}}(\Omega )\to W^{-1,\overrightarrow{p}^{\prime}}( \Omega ) \) is continuous and finally the operator A is continuous. □

Assume \(\{X_{n}\}\) (vector subspaces of \(W_{0}^{1,\overrightarrow{p}}(\Omega )\)) is a Galerkin basis for the separable Banach space \(W_{0}^{1,\overrightarrow{p}}(\Omega )\), i.e.,

  1. (i)

    \(\dim (X_{n})<\infty \), for all n;

  2. (ii)

    \(X_{n}\subset X_{n+1}\), for all n;

  3. (iii)

    \(\overline{\underset{n}{\cup}X_{n}}=W_{0}^{1,\overrightarrow{p}}( \Omega )\).

A consequence of Brouwer’s fixed-point theorem will resolve each approximate problem on \(X_{n}\). Due to this, we construct a sequence \(\{u_{n}\}\) by the next Proposition.

Proposition 3.2

Assume (\(H_{1}\)) holds. Then, for each \(n\geq 1\) there exists \(u_{n}\in X_{n}\) such that

$$ \begin{aligned} \bigl\langle (-\Delta _{\overrightarrow{p}}+ \mu \Delta _{ \overrightarrow{q}} ) (u_{n}),v\bigr\rangle _{W_{0}^{1, \overrightarrow{p}}(\Omega )} = \int _{\Omega }f\bigl(x,\phi \star u_{n}(x), \nabla \bigl(\phi \star u_{n}(x)\bigr)\bigr)v(x)\,dx \end{aligned} $$
(3.4)

for all \(v\in X_{n}\). In addition, \(\{u_{n}\}_{n\geq 1}\) is bounded in \(W_{0}^{1,\overrightarrow{p}}(\Omega )\).

Proof

We define \(A_{n}:X_{n}\to X_{n}^{\star }\) by

$$ \begin{aligned} &\bigl\langle A_{n}(u),v\bigr\rangle _{X_{n}} \\ &\quad =\bigl\langle (-\Delta _{\overrightarrow{p}}+\mu \Delta _{ \overrightarrow{q}} ) (u),v\bigr\rangle _{W_{0}^{1,\overrightarrow{p}}( \Omega )}- \int _{\Omega }f\bigl(x,\phi \star u(x),\nabla \bigl(\phi \star u(x) \bigr)\bigr)v(x)\,dx \end{aligned} $$

for all \(u,v\in X_{n}\) and all \(n\in \mathbb{N}\). The operator \(A_{n}\) is continuous (by Lemma 3.1) and

$$ \begin{aligned} &\bigl\langle A_{n}(v),v\bigr\rangle _{X_{n}} \\ &\quad =\overset{N}{\underset{i=1}{\sum}} \int _{\Omega } \biggl( \biggl\vert \frac{\partial v}{\partial x_{i}} \biggr\vert ^{p_{i}}-\mu \biggl\vert \frac{\partial v}{\partial x_{i}} \biggr\vert ^{q_{i}} \biggr)\,dx - \int _{ \Omega }f\bigl(x,\phi \star v(x),\nabla \bigl(\phi \star v(x) \bigr)\bigr)v(x)\,dx \\ &\quad \geq \overset{N}{\underset{i=1}{\sum}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}} -\mu \overset{N}{\underset{i=1}{\sum}} \vert \Omega \vert ^{ \frac{p_{i}-q_{i}}{p_{i}}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}(\Omega )}^{q_{i}}- \Vert \sigma \Vert _{L^{\gamma ^{\prime}}(\Omega )} \Vert v \Vert _{L^{\gamma}(\Omega )} \\ & \qquad {}-c_{1} \Vert \phi \star v \Vert ^{p^{+}-1}_{L^{p^{+}}(\Omega )} \Vert v \Vert _{L^{p^{+}}( \Omega )}-c_{2}\overset{N}{\underset{i=1}{ \sum}} \Vert \phi \star v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}-1} \Vert v \Vert _{L^{p_{i}}(\Omega )} \end{aligned} $$

for all \(v\in X_{n}\), by (\(H_{1}\)) and the Hölder inequality. Now (2.1), (2.3), and Sobolev embedding show that

$$\begin{aligned}& \bigl\langle A_{n}(v) ,v\bigr\rangle _{X_{n}} \\& \quad = \overset{N}{\underset{i=1}{\sum}} \int _{\Omega } \biggl( \biggl\vert \frac{\partial v}{\partial x_{i}} \biggr\vert ^{p_{i}}-\mu \biggl\vert \frac{\partial v}{\partial x_{i}} \biggr\vert ^{q_{i}} \biggr)\,dx \\& \qquad {} - \int _{\Omega }f\bigl(x,\phi \star v(x),\nabla \bigl(\phi \star v(x) \bigr)\bigr)v(x)\,dx \\& \quad \geq \overset{N}{\underset{i=1}{\sum}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}} -\mu \overset{N}{\underset{i=1}{\sum}} \vert \Omega \vert ^{ \frac{p_{i}-q_{i}}{p_{i}}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}(\Omega )}^{q_{i}}- \Vert \sigma \Vert _{L^{\gamma ^{\prime}}(\Omega )} \Vert v \Vert _{L^{\gamma}(\Omega )} \\& \qquad {} -c_{1} \Vert \phi \Vert ^{p^{+}-1}_{L^{1}(\mathbb{R}^{N})} \Vert v \Vert ^{p^{+}}_{L^{p^{+}}( \Omega )}-c_{2}\overset{N}{ \underset{i=1}{\sum}} \Vert \phi \Vert ^{p_{i}-1}_{L^{1}( \mathbb{R}^{N})} \Vert v \Vert _{W_{0}^{1,{p_{i}}}(\Omega )}^{p_{i}-1} \Vert v \Vert _{L^{p_{i}}( \Omega )} \\& \quad \geq \overset{N}{\underset{i=1}{\sum}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}} -\mu \overset{N}{\underset{i=1}{\sum}} \vert \Omega \vert ^{ \frac{p_{i}-q_{i}}{p_{i}}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}(\Omega )}^{q_{i}}-S_{ \gamma} \Vert \sigma \Vert _{L^{\gamma ^{\prime}}(\Omega )} \Vert v \Vert _{W_{0}^{1, \overrightarrow{p}}(\Omega )} \\& \qquad {} -c_{1}S_{p^{+}} \Vert \phi \Vert ^{p^{+}-1}_{L^{1}(\mathbb{R}^{N})} \sum_{i=1}^{N} \Vert v \Vert ^{p_{i}}_{W_{0}^{1,p_{i}}(\Omega )}-c_{2} \overset{N}{\underset{i=1}{\sum }} S'_{p_{i}} \Vert \phi \Vert ^{p_{i}-1}_{L^{1}( \mathbb{R}^{N})} \Vert v \Vert _{W_{0}^{1,{p_{i}}}(\Omega )}^{p_{i}} \\& \quad \geq \overset{N}{\underset{i=1}{\sum}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}} -\mu \overset{N}{\underset{i=1}{\sum}} \vert \Omega \vert ^{ \frac{p_{i}-q_{i}}{p_{i}}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}(\Omega )}^{q_{i}}-S_{ \gamma} \Vert \sigma \Vert _{L^{\gamma ^{\prime}}(\Omega )} \Vert v \Vert _{W_{0}^{1, \overrightarrow{p}}(\Omega )} \\& \qquad {} - \bigl( \Vert \phi \Vert _{L^{1}(\mathbb{R}^{N})}^{p^{+}-1} c_{1}S_{p^{+}}+c_{2} \Pi \bigr)\overset{N}{ \underset{i=1}{\sum}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}}, \end{aligned}$$
(3.5)

for all \(x\in X_{n}\), where \(|\Omega |\) is the Lebesgue measure of Ω.

Assume \(\lambda _{1,\overrightarrow{p}}>0\) denotes the first eigenvalue of the negative anisotropic p-Laplacian on \(W_{0}^{1,\overrightarrow{p}}(\Omega )\) that is given by

$$ \lambda _{1,\overrightarrow{p}}=\min \biggl\{ \frac{\overset{N}{\underset{i=1}{\sum}}\int _{\Omega} \vert \frac{\partial u}{\partial x_{i}} \vert ^{p_{i}}\,dx}{ \Vert u \Vert _{L^{p^{+}}(\Omega )}^{p^{+}}}: u\in W_{0}^{1,\overrightarrow{p}}(\Omega )\backslash \{0\} \biggr\} . $$
(3.6)

See [15, Theorem 3] or [17, Theorem 2] for more details. By (1.4) (recall that \(S_{p^{+}}=\lambda _{1,\overrightarrow{p}}^{-\frac{1}{p^{+}}}\)) and \(p_{i}>q_{i}>1\) and \(p^{+}>q^{+}>1\), for \(i=1,\ldots ,N\), for \(R = R(n)>0\) sufficiently large we obtain

$$ \bigl\langle A_{n}(v),v\bigr\rangle _{X_{n}}\geq 0\quad \text{whenever } v\in X_{n} \text{ with } \Vert v \Vert _{W_{0}^{1,\overrightarrow{p}}(\Omega )}=R. $$

As a consequence of Brouwer’s fixed-point theorem (see, e.g., [29, p. 37]) (since \(X_{n}\) is a finite-dimensional space) there exists \(u_{n} \in X_{n}\) solving the equation \(A_{n}(u_{n})=0\) and this shows that \(u_{n}\in X_{n}\) is a solution for problem (3.4).

\(\{u_{n}\}_{n\geq 1}\) is bounded in \(W_{0}^{1,\overrightarrow{p}}(\Omega )\). To show this, let \(v=u_{n}\in X_{n}\) in (3.5), then

$$\begin{aligned}& \overset{N}{\underset{i=1}{\sum}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}} -c_{1}S_{p^{+}} \Vert \phi \Vert ^{p^{+}-1}_{L^{1}( \mathbb{R}^{N})}\sum_{i=1}^{N} \Vert v \Vert ^{p_{i}}_{W_{0}^{1,p_{i}}(\Omega )} \\& \qquad {} -c_{2}\overset{N}{\underset{i=1}{\sum}} S'_{p_{i}} \Vert \phi \Vert ^{p_{i}-1}_{L^{1}(\mathbb{R}^{N})} \Vert v \Vert _{W_{0}^{1,{p_{i}}}( \Omega )}^{p_{i}} \\& \quad \leq \mu \overset{N}{\underset{i=1}{\sum}} \vert \Omega \vert ^{ \frac{p_{i}-q_{i}}{p_{i}}} \Vert v \Vert _{W_{0}^{1,{p_{i}}}(\Omega )}^{q_{i}}+S_{ \gamma} \Vert \sigma \Vert _{L^{\gamma ^{\prime}}(\Omega )} \Vert v \Vert _{W_{0}^{1, \overrightarrow{p}}(\Omega )}. \end{aligned}$$

Since \(p_{i}>q_{i}>1\) and \(p^{+}>q^{+}>1\), for \(i=1,\ldots ,N\), then (1.4) shows that \(\{u_{n}\}_{n\geq 1}\) is bounded in \(W_{0}^{1,\overrightarrow{p}}(\Omega )\). □

Now, we can prove the existence of the solution of problem (1.1), i.e., we present the proof of Theorem 1.1.

Proof

Assume \(\{u_{n}\}_{n\geq 1}\subset W_{0}^{1,\overrightarrow{p}}(\Omega )\) is given by Proposition 3.2 that is bounded in \(W_{0}^{1,\overrightarrow{p}}(\Omega )\) and the reflexively, there exists a subsequence still denoted by \(\{u_{n}\}_{n\geq 1}\) that is bounded and

$$ u_{n}\rightharpoonup u \quad \text{in } W_{0}^{1,\overrightarrow{p}}( \Omega ) $$
(3.7)

with some \(u\in W_{0}^{1,\overrightarrow{p}}(\Omega )\). The continuity of the operator in (3.3), shows that the sequence \(\{f(\cdot ,\phi \star u_{n},\nabla (\phi \star u_{n}))\}_{n\geq 1}\) is bounded in \(L^{\overrightarrow{p}^{\prime}}\). Suppose

$$ -\Delta _{\overrightarrow{p}}u_{n}+\mu \Delta _{\overrightarrow{q}}u_{n}-f\bigl( \cdot ,\phi \star u_{n},\nabla (\phi \star u_{n})\bigr)\rightharpoonup \eta\quad \text{in } W^{-1,\overrightarrow{p}^{\prime}}(\Omega ) $$
(3.8)

with some \(\eta \in W^{-1,\overrightarrow{p}^{\prime}}(\Omega )\), by the reflexivity of \(W^{-1,\overrightarrow{p}^{\prime}}(\Omega )\).

Assume \(v\in \bigcup_{n\geq 1}X_{n}\). Fix an integer \(m\geq 1\) such that \(v\in X_{m}\). Proposition 3.2 provides that (3.4) holds for all \(n\geq m\). Letting \(n\to \infty \) in (3.4), by means of (3.8) we obtain

$$ \langle \eta ,v\rangle\geq 0 \quad \text{for all} v\in \bigcup _{n\geq 1}X_{n}. $$

By the density of \(\bigcup_{n\geq 1}X_{n}\) in \(W^{1,\overrightarrow{p}}_{0}(\Omega )\) (see (iii) in the definition of the Galerkin basis), it turns out that \(\eta =0\) and so in \(W^{-1,\overrightarrow{p}^{\prime}}(\Omega )\) we have

$$ -\Delta _{\overrightarrow{p}}u_{n}+\mu \Delta _{\overrightarrow{q}}u_{n}-f\bigl( \cdot ,\phi \star u_{n},\nabla (\phi \star u_{n})\bigr)\rightharpoonup 0. $$
(3.9)

Letting \(v=u_{n}\) in (3.4), we obtain

$$ \langle -\Delta _{\overrightarrow{p}}u_{n}+\mu \Delta _{ \overrightarrow{q}}u_{n},u_{n}\rangle - \int _{\Omega }f\bigl( \cdot ,\phi \star u_{n},\nabla ( \phi \star u_{n})\bigr)\,dx=0 $$
(3.10)

for all \(n\geq 1\), while (3.9) gives

$$ \langle -\Delta _{\overrightarrow{p}}u_{n}+\mu \Delta _{ \overrightarrow{q}}u_{n},u_{n}\rangle - \int _{\Omega }f\bigl( \cdot ,\phi \star u_{n},\nabla ( \phi \star u_{n})\bigr)\,dx\to 0 $$
(3.11)

as \(n\to \infty \). Together, (3.10) and (3.11) yield

$$ \langle -\Delta _{\overrightarrow{p}}u_{n}+\mu \Delta _{ \overrightarrow{q}}u_{n},u_{n}-u\rangle - \int _{\Omega }f\bigl( \cdot ,\phi \star u_{n},\nabla ( \phi \star u_{n})\bigr) (u_{n}-u)\,dx\to 0 $$
(3.12)

as \(n\to \infty \). Theorem 2.1 and (3.7) imply that \(u_{n}\to u\) strongly in \(L^{p}(\Omega )\), and since \(\{f(\cdot ,\phi \star u_{n},\nabla (\phi \star u_{n}))\}\) is bounded, then

$$ \lim_{n\to \infty} \int _{\Omega }f\bigl(\cdot ,\phi \star u_{n},\nabla ( \phi \star u_{n})\bigr) (u_{n}-u)\,dx= 0. $$
(3.13)

By inserting (3.13) into (3.12) we obtain

$$ \lim_{n\to \infty}\langle -\Delta _{\overrightarrow{p}}u_{n}+ \mu \Delta _{\overrightarrow{q}}u_{n},u_{n}-u\rangle =0. $$
(3.14)

Thus, the conditions of Definition 2.3 are satisfied and this implies that \(u\in W_{0}^{1,\overrightarrow{p}}(\Omega )\) is a generalized solution to problem (1.1).

Now, we prove the existence of a weak solution in the case \(\mu \leq 0\). Assume u is a generalized solution to problem (1.1) and \(\{u_{n}\}_{n\geq 1}\) satisfy the conditions of Definition 2.3 with respect to u. We obtain

$$ \begin{aligned} &\langle -\Delta _{\overrightarrow{p}}u_{n},u_{n}-u \rangle _{W_{0}^{1,\overrightarrow{p}}(\Omega )} \\ &\quad \leq \langle -\Delta _{\overrightarrow{p}}u_{n},u_{n}-u\rangle _{W_{0}^{1, \overrightarrow{p}}(\Omega )} -\mu \langle -\Delta _{ \overrightarrow{q}}u_{n}+\Delta _{\overrightarrow{q}}u,u_{n}-u \rangle _{W_{0}^{1,\overrightarrow{p}}(\Omega )} \\ &\quad = \langle -\Delta _{\overrightarrow{p}}u_{n}+\mu \Delta _{ \overrightarrow{q}}u_{n},u_{n}-u\rangle _{W_{0}^{1,\overrightarrow{p}}( \Omega )} -\mu \langle \Delta _{\overrightarrow{q}}u,u_{n}-u\rangle _{W_{0}^{1, \overrightarrow{p}}(\Omega )} \end{aligned} $$

by the monotonicity of \(-\Delta _{\overrightarrow{q}}\) and hence,

$$ \limsup_{n\to \infty}\langle \Delta _{\overrightarrow{p}}u_{n},u_{n}-u \rangle _{W_{0}^{1,\overrightarrow{p}}(\Omega )}\leq 0. $$

Then, \(u_{n}\to u\) strongly in \(W^{1,\overrightarrow{p}}(\Omega )\) (see, e.g., [21, Proposition 2.72]). The continuity of A (Lemma 3.1), shows \(A(u_{n})\to A(u)\) in \(W^{-1,\overrightarrow{p}^{\prime}}(\Omega )\) and condition (II) of Definition 2.3, shows \(A(u) = 0\). This shows that

$$ \bigl\langle (-\Delta _{\overrightarrow{p}}+\mu \Delta _{ \overrightarrow{q}} ) (u),v\bigr\rangle _{W_{0}^{1,\overrightarrow{p}}( \Omega )}= \int _{\Omega }f\bigl(x,\phi \star u(x),\nabla \bigl(\phi \star u(x) \bigr)\bigr)v(x)\,dx $$

for all \(v\in W^{1,\overrightarrow{p}}_{0}(\Omega )\), which means u is a weak solution to problem (1.1). □

Availability of data and materials

Not applicable.

References

  1. Ambrosio, V., Rădulescu, V.D.: Fractional double-phase patterns: concentration and multiplicity of solutions. J. Math. Pures Appl. (9) 142, 101–145 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonanno, G., D’Aguì, G., Sciammetta, A.: Existence of two positive solutions for anisotropic nonlinear elliptic equations. Adv. Differ. Equ. 26(5–6), 229–258 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York (2011)

    Book  MATH  Google Scholar 

  4. Ciani, S., Figueiredo, G.M., Suàrez, A.: Existence of positive eigenfunctions to an anisotropic elliptic operator via sub-supersolution method. Arch. Math. 116(1), 85–95 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cowan, C., Razani, A.: Singular solutions of a p-Laplace equation involving the gradient. J. Differ. Equ. 269, 3914–3942 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cowan, C., Razani, A.: Singular solutions of a Lane-Emden system. Discrete Contin. Dyn. Syst. 41(2), 621–656 (2021). https://doi.org/10.3934/dcds.2020291

    Article  MathSciNet  MATH  Google Scholar 

  7. Cowan, C., Razani, A.: Singular solutions of a Hénon equation involving a nonlinear gradient term. Commun. Pure Appl. Anal. 21(1), 141–158 (2022). https://doi.org/10.3934/cpaa.2021172

    Article  MathSciNet  MATH  Google Scholar 

  8. DiBenedetto, E., Gianazza, U., Vespri, V.: Remarks on local boundedness and local Holder continuity of local weak solutions to anisotropic p-Laplacian type equations. J. Elliptic Parabolic Equ. 2, 157–169 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dos Santos, G.C.G., Figueiredo, G.M., Silva, J.R.: Multiplicity of positive solutions for an anisotropic problem via sub-supersolution method and Mountain Pass Theorem. J. Convex Anal. 27(4), 1363–1374 (2020)

    MathSciNet  MATH  Google Scholar 

  10. Figueiredo, G., Santos Junior, J.R., Suarez, A.: Multiplicity results for an anisotropic equation with subcritical or critical growth. Adv. Nonlinear Stud. 15, 377–394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Figueiredo, G.M., Dos Santos, G.C.G., Tavares, L.S.: Existence of solutions for a class of non-local problems driven by an anisotropic operator via sub-supersolutions. J. Convex Anal. 29(1), 291–320 (2022)

    MathSciNet  MATH  Google Scholar 

  12. Figueiredo, G.M., Santos, G.C.G., Tavares, L.: Existence results for some anisotropic singular problems via sub-supersolutions. Milan J. Math. 87, 249–272 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Figueiredo, G.M., Silva, J.R.: A critical anisotropic problem with discontinuous nonlinearities. Nonlinear Anal. 47, 364–372 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Figueiredo, G.M., Silva, J.R.: Solutions to an anisotropic system via sub-supersolution method and Mountain Pass Theorem. Electron. J. Qual. Theory Differ. Equ. 46, 1 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fragala, I., Gazzola, F., Kawohl, B.: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 21(5), 715–734 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasnoselskii, M.K.: Topological Methods in the Theory of Nonlinear Integral Equations. Pergamon, New York (1964)

    Google Scholar 

  17. Mihăilescu, M., Pucci, P., Rădulescu, V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Motreanu, D.: Quasilinear Dirichlet problems with competing operators and convection. Open Math. 18, 1510–1517 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Motreanu, D.: Degenerated and competing Dirichlet problems with weights and convection. Axioms 10(4), 271 (2021). https://doi.org/10.3390/axioms10040271

    Article  Google Scholar 

  20. Motreanu, D., Motreanu, V.V.: Nonstandard Dirichlet problems with competing \((p, q)\)-Laplacian, convection, and convolution. Stud. Univ. Babeş–Bolyai, Math. 66, 95–103 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Motreanu, D., Motreanu, V.V., Papageorgiou, N.S.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems. Springer, New York (2014)

    Book  MATH  Google Scholar 

  22. Motreanu, D., Nashed, M.Z.: Degenerated \((p, q)\)-Laplacian with weights and related equations with convection. Numer. Funct. Anal. Optim. 14(15), 1757–1767 (2021). https://doi.org/10.1080/01630563.2021.2006697

    Article  MathSciNet  MATH  Google Scholar 

  23. Ragusa, M.A., Tachikawa, A.: Regularity for minimizers for functionals of double phase with variable exponents. Adv. Nonlinear Anal. 9(1), 710–728 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Razani, A.: Two weak solutions for fully nonlinear Kirchhoff-type problem. Filomat 35(10), 3267–3278 (2021). https://doi.org/10.2298/FIL2110267R

    Article  MathSciNet  Google Scholar 

  25. Razani, A.: Game-theoretic p-Laplace operator involving the gradient. Miskolc Math. Notes 23(2), 867–879 (2022). https://doi.org/10.18514/MMN.2022.3467

    Article  Google Scholar 

  26. Razani, A., Figueiredo, G.M.: A positive solution for an anisotropic \(p\&q\)-Laplacian. Discrete Contin. Dyn. Syst., Ser. S (2022). https://doi.org/10.3934/dcdss.2022147

    Article  Google Scholar 

  27. Razani, A., Figueiredo, G.M.: Existence of infinitely many solutions for an anisotropic equation using genus theory. Math. Methods Appl. Sci. (2022). https://doi.org/10.1002/mma.8264

    Article  MathSciNet  Google Scholar 

  28. Razani, A., Figueiredo, G.M.: Degenerated and competing anisotropic \((p,q)\)-Laplacians with weights. Appl. Anal. (2022). https://doi.org/10.1080/00036811.2022.2119137

    Article  Google Scholar 

  29. Showalter, R.E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations. Mathematical Surveys and Monographs, vol. 49. Am. Math. Soc., Providence (1997)

    MATH  Google Scholar 

  30. Xia, C.: On a class of anisotropic problems, Doctorla Dissertation, Albert-Ludwigs-University of Freiburg in the Breisgau (2012)

  31. Zeng, S., Bai, Y., Yunru, G., Leszek, W.: Patrick convergence analysis for double phase obstacle problems with multivalued convection term. Adv. Nonlinear Anal. 10(1), 659–672 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, J., Zhang, W., Rădulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301(4), 4037–4078 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

There are no funders to report for this submission.

Author information

Authors and Affiliations

Authors

Contributions

Abdolrahman Razani wrote the main manuscript text and reviewed the manuscript.

Corresponding author

Correspondence to A. Razani.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razani, A. Nonstandard competing anisotropic \((p,q)\)-Laplacians with convolution. Bound Value Probl 2022, 87 (2022). https://doi.org/10.1186/s13661-022-01669-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-022-01669-z

MSC

Keywords