Arbitrary decay for a von Karman system with memory

Abstract

In this paper we study the von Karman plate model with long range memory. By using the assumptions on the relaxation function due to Tatar (J. Math. Phys. 52:013502, 2011), we show an arbitrary rate of decay, which is not necessarily of an exponential or polynomial decay. Our result is obtained without imposing the usual relation between the relaxation function h and its derivative.

1 Introduction

Let Î© be an open bounded set of $${\mathbb{R}}^{2}$$ with a sufficiently smooth boundary $$\Gamma =\Gamma _{0} \cup \Gamma _{1}$$, $$\Gamma _{0}$$ and $$\Gamma _{1}$$ are closed and disjoint. Denote by $$\nu = (\nu _{1} , \nu _{2} )$$ the external unit normal to Î“, and by $$\eta = ( - \nu _{2} , \nu _{1} )$$ the unitary tangent positively oriented on Î“. In this paper we consider the following von Karman system with memory:

\begin{aligned}& w_{tt} -k\Delta w_{tt} + \Delta ^{2} w - \int _{0}^{t} h(t-s) \Delta ^{2} w (s)\,d s = [ w, v ] \quad \text{in} \ \Omega \times (0 ,\infty ), \end{aligned}
(1.1)
\begin{aligned}& \Delta ^{2} v = -[w, w] \quad \text{in} \ \Omega \times (0 ,\infty ), \end{aligned}
(1.2)
\begin{aligned}& v = \frac{\partial v }{\partial \nu} = 0 \quad \text{on} \ \Gamma \times (0, \infty ), \end{aligned}
(1.3)
\begin{aligned}& w = \frac{\partial w }{\partial \nu} = 0 \quad \text{on} \ \Gamma _{0} \times (0, \infty ), \end{aligned}
(1.4)
\begin{aligned}& {\mathcal {B}}_{1} w - {\mathcal {B}}_{1} \biggl\{ \int _{0}^{t} h(t-s ) w(s )\,d s \biggr\} =0 \quad \text{on} \ \Gamma _{1} \times (0 ,\infty ), \end{aligned}
(1.5)
\begin{aligned}& {\mathcal {B}}_{2} w- k\frac{\partial w_{tt}}{\partial \nu}- { \mathcal {B}}_{2} \biggl\{ \int _{0}^{t} h(t-s) w(s )\,d s \biggr\} =0 \quad \text{on} \ \Gamma _{1} \times (0, \infty ), \end{aligned}
(1.6)
\begin{aligned}& w( x,y,0) = w_{0} (x,y) , \qquad w_{t} (x,y,0) = w_{1} (x,y) \quad \text{in} \ \Omega , \end{aligned}
(1.7)

where the function h satisfies some conditions to be specified later and von Karman bracket is given by

$$[w, v] = w_{xx}v_{yy} - 2 w_{xy} v_{xy}+ w_{yy}v_{xx} .$$

Here

\begin{aligned} {\mathcal {B}}_{1} w = \Delta w + (1-\mu ) B_{1} w \quad \text{and}\quad {\mathcal {B}}_{2} w = \frac{ \partial \Delta w}{\partial \nu } + (1- \mu ) B_{2} w, \end{aligned}

where constant $$\mu ( 0< \mu < \frac{1}{2})$$ is Poissonâ€™s ratio and

\begin{aligned} B_{1} w = 2 \nu _{1} \nu _{2} w_{xy} - \nu _{1}^{2} w_{yy} - \nu _{2}^{2} w_{xx}, \qquad B_{2} w = \frac{\partial }{\partial \eta}\bigl[\bigl(\nu _{1}^{2} - \nu _{2}^{2} \bigr)w_{xy} + \nu _{1} \nu _{2} ( w_{yy}-w_{xx})\bigr]. \end{aligned}

The equations describe small vibrations of a thin plate of uniform thickness. The second term in (1.1) represents rotational inertia.

Munoz Rivera and Menzala [2] discussed the exponential decay of the energy for problem (1.1)â€“(1.7) under the usual condition

\begin{aligned} -c_{0} h(t) \leq h' (t) \leq -c_{1} h(t) , \quad 0 \leq h'' (t) \leq c_{2} h(t) \end{aligned}
(1.8)

for some $$c_{i}$$, $$i=0,1,2$$. Moreover, they showed that when the kernel h decays polynomially, the energy also decays with the same rate. Raposo and Santos [3] generalized the decay result of [2]. They investigated the general decay of the solutions for problem (1.1)â€“(1.7) under a more general condition on h such as

\begin{aligned} h'(t) \leq - \xi (t) h(t), \qquad \xi (t) >0, \qquad \xi '(t) \leq 0 , \quad \forall t \geq 0, \end{aligned}
(1.9)

where Î¾ is a nonincreasing and positive function. Kang [4] proved that the solutions for problem (1.1)â€“(1.7) decay exponentially to zero as time goes to infinity in case

$$h'(t) +\gamma h(t) \geq 0 , \qquad \bigl[h'(t)+ \gamma h(t)\bigr]e^{\alpha t} \in L^{1} (0, \infty ) ,\quad \forall t \geq 0,$$

for some $$\gamma , \alpha >0$$. Lately, Kang [5] improved the decay result of [3] without imposing any restrictive assumptions on the behavior of the relaxation function at infinity. The author considered the general stability result for problem (1.1)â€“(1.7) under a relaxation function satisfying

\begin{aligned} h'(t) \leq -H \bigl( h(t) \bigr), \end{aligned}
(1.10)

where H is a nonnegative function, with $$H(0) =0$$, and H is linear or strictly increasing and strictly convex on $$(0, r]$$ for some $$r >0$$. Recently, Balegh et al. [6] studied the general decay rate of the energy for problem (1.1)â€“(1.7) with nonlinear boundary delay term. The relaxation function h satisfies

\begin{aligned} h'(t) \leq -\xi (t) H \bigl( h(t) \bigr), \end{aligned}
(1.11)

where Î¾ is a positive nonincreasing differentiable function and H satisfies the same conditions as (1.10) for some $$0< r <1$$.

For the case $$h=0$$ in (1.1) with nonlinear boundary dissipation, Horn and Lasiecka [7] and Bradley and Lasiecka [8] proved the uniform decay rates for the solution when t goes to infinity.

Moreover, Cavalcanti et al. [9] considered the following problem (1.1) with the rotational inertia coefficient $$k=0$$:

\begin{aligned} \textstyle\begin{cases} u_{tt} + \Delta ^{2} u -{\int _{0}^{t} h(t-s) \Delta ^{2} u (s)\,d s} = [ u, v ] & \text{in} \ \Omega \times (0 ,\infty ), \\ \Delta ^{2} v = -[u, u] & \text{in} \ \Omega \times (0 ,\infty ), \\ u = \frac{\partial u }{\partial \nu} = 0, \qquad v = \frac{\partial v }{\partial \nu} = 0 & \text{on} \ \Gamma \times (0, \infty ), \end{cases}\displaystyle \end{aligned}
(1.12)

where the relaxation kernel h satisfies (1.10) and H is a positive, strictly increasing, and convex function with $$H(0)=0$$. The rotational inertia ensures the regularity of solutions that is needed in the estimates. They proved the global existence of weak and regular solutions and provided sharp and general decay rate estimates without accounting for regularizing effects of rotational inertia by using the method introduced in [10]. Park [11] established an arbitrary rate of decay for problem (1.12) using the assumptions on the relaxation function due to Tatar [1].

When $$k=h=0$$ in (1.1) with nonlinear boundary dissipation, Favini et al. [12] and Horn and Lasiecka [13] proved global existence, uniqueness, and regularity of solutions and uniform decay rates of weak solutions, respectively.

For the case $$k=h=0$$ in (1.1) with memory-type boundary condition, Feng and Soufyane [14] obtained an optimal explicit and general energy decay result. For more results on von Karman plate equation with memory-type boundary condition, we refer to [15, 16].

On the other hand, for the viscoelastic wave equation, Cavalcanti et al. [17] proved exponential and polynomial decay under the usual condition (1.8). Later, this assumption was relaxed by several authors [18â€“20]. Messaoudi [21] considered general stability for the viscoelastic equation

\begin{aligned} u_{tt} -\Delta u+ \int _{0}^{t} h(t-s)\Delta u(s)\,d s =0 \quad \text{in} \ \Omega \times (0, \infty ) , \end{aligned}
(1.13)

where the relaxation function h satisfies

\begin{aligned} h'(t) \leq - \xi (t) h(t), \qquad \frac{ \vert \xi '(t) \vert }{ \vert \xi (t) \vert } \leq k_{0}, \qquad \xi (t) >0, \qquad \xi '(t) \leq 0 , \quad \forall t \geq 0. \end{aligned}
(1.14)

Tatar [22] investigated polynomial asymptotic stability of solutions for problem (1.13) under the condition

\begin{aligned} h'(t) \leq 0 \quad \text{for almost all} \ t>0. \end{aligned}
(1.15)

Moreover, Tatar [1] established an arbitrary decay rate for problem (1.13) with assumptions as follows:

\begin{aligned} \int _{0}^{\infty }h(s) \gamma (s)\,ds < +\infty , \end{aligned}
(1.16)

where a nondecreasing function $$\gamma (t) >0$$ such that $$\frac{\gamma '(t)}{\gamma (t)}=\eta (t)$$ is a decreasing function. As for problem of decay of the solutions for a viscoelastic system under condition (1.16), we also refer the reader to [11, 23] and the references therein. Later, Mustafa and Messaoudi [24] showed a general decay rate result for problem (1.13) with condition (1.10) on a relaxation function. The stability of the solutions to a viscoelastic system under condition (1.9) was studied in [25â€“28] and the references therein.

Motivated by these works, we study an arbitrary decay of solutions for problem (1.1)â€“(1.7) for relaxation functions satisfying condition (1.16). This result improves earlier ones concerning exponential and polynomial decay for problem (1.1)â€“(1.7).

The plan of the paper is as follows: in Sect.Â 2, we prepare some notation and material needed for our work. In Sect.Â 3, we show an arbitrary decay result of the solutions for problem (1.1)â€“(1.7).

2 Preliminaries

We define

$$V=\bigl\{ w \in H^{1} (\Omega ) ; w =0 \text{ on } \Gamma _{0} \bigr\} ,\qquad W= \biggl\{ w \in H^{2} (\Omega ) ; w = \frac{\partial w }{\partial \nu} =0 \text{ on } \Gamma _{0} \biggr\} .$$

Integration by parts formula yields

\begin{aligned} \bigl( \Delta ^{2} w , v \bigr)= a(w, v) + ({ \mathcal {B}}_{2} w ,v )_{\Gamma}- \biggl({\mathcal {B}}_{1} w , \frac{\partial v }{\partial \nu} \biggr)_{ \Gamma}, \end{aligned}
(2.1)

where the bilinear symmetric form $$a(w, v)$$ is given by

$$a(w, v)= \int _{\Omega} \bigl\{ w_{xx} v_{xx} +w_{yy}v_{yy} +\mu (w_{xx}v_{yy}+w_{yy}v_{xx})+ 2 ( 1 -\mu ) w_{xy} v_{xy} \bigr\} \,d\Omega ,$$

where $$d\Omega =dx\,dy$$. Because $$\Gamma _{0} \neq \emptyset$$, we see that for $$c_{0}>0$$ and $${c_{1}}>0$$,

\begin{aligned} c_{0} \Vert w \Vert ^{2}_{H^{2} (\Omega )} \leq a(w, w) \leq {c_{1}} \Vert w \Vert ^{2}_{H^{2} (\Omega )}. \end{aligned}
(2.2)

The Sobolev imbedding theorem implies that for positive constants $$C_{p}$$ and $$C_{s}$$,

\begin{aligned} \Vert w \Vert ^{2} \leq C_{p} a(w, w) , \qquad \Vert \nabla w \Vert ^{2} \leq C_{s} a(w, w) , \quad \forall w \in W . \end{aligned}
(2.3)

By the symmetry of $$a(\cdot ,\cdot )$$, we get that for any $$w\in C^{1} (0, T; H^{2}(\Omega ))$$,

\begin{aligned} a(h*w, w_{t} ) =&-\frac{1}{2}h(t) a(w, w) +\frac{1}{2}\bigl(h' \square \partial ^{2} w \bigr) (t) \\ &{}-\frac{1}{2} \frac{d}{dt} \biggl\{ \bigl(h \square \partial ^{2} w\bigr) (t) - \biggl( \int _{0}^{t} h(s)\,ds \biggr) a(w, w) \biggr\} , \end{aligned}
(2.4)

where

\begin{aligned}& (h*w) (t) := \int _{0}^{t} h(t- s) w (s )\,d s , \\& \bigl(h \square \partial ^{2} w\bigr) (t) := \int _{0}^{t} h(t-s) a\bigl(w(\cdot , t)-w( \cdot , s),w(\cdot , t)-w(\cdot , s)\bigr)\,ds . \end{aligned}

We introduce relative results of the Airy stress function and von Karman bracket.

Lemma 2.1

([2, 29])

Let $$w, u \in H^{2}(\Omega )$$ and $$v \in H^{2}_{0} (\Omega )$$. Then

\begin{aligned} \int _{\Omega }w[v, u]\,d\Omega = \int _{\Omega }v [w, u]\,d \Omega . \end{aligned}
(2.5)

Lemma 2.2

([12])

If $$w, v \in H^{2}(\Omega )$$, then $$[w, v] \in L^{2}(\Omega )$$ and satisfies

\begin{aligned} \Vert v \Vert _{W^{2, \infty}(\Omega )} \leq c \Vert w \Vert _{H^{2} (\Omega )}^{2} \quad \textit{and}\quad \bigl\Vert [w, v] \bigr\Vert \leq c \Vert w \Vert _{H^{2}(\Omega )} \Vert v \Vert _{W^{2, \infty}( \Omega )} , \end{aligned}
(2.6)

where $$c>0$$.

As in [1], we consider the following hypotheses on the relaxation function $$h(t)$$:

(H1) $$h(t)\geq 0$$ for all $$t\geq 0$$ and

\begin{aligned} 0< l:= \int _{0}^{\infty }h(s)\,ds < 1 . \end{aligned}
(2.7)

(H2) $$h'(t) \leq 0$$ for almost all $$t>0$$.

(H3) There exists a nondecreasing function $$\gamma (t)>0$$ such that

$$\frac{\gamma '(t)}{\gamma (t)}:=\eta (t) \quad \text{is a decreasing function and } \int _{0}^{\infty }h(s) \gamma (s)\,ds < +\infty .$$
(2.8)

By using Galerkinâ€™s approximation, we get the following result for the solution (see [2]). For $$(w_{0}, w_{1}) \in W \times V$$, $$k>0$$, and $$T>0$$, system (1.1)â€“(1.7) has a unique weak solution. For $$(w_{0}, w_{1})$$ is 2-regular, the weak solution satisfies

\begin{aligned}& w \in C\bigl([0, T];W\cap H^{4}(\Omega )\bigr), \qquad w_{t} \in C \bigl([0, T];V\cap H^{3}(\Omega )\bigr) . \end{aligned}

We define the energy of problem (1.1)â€“(1.7) by

\begin{aligned}& E(t) = \frac{1}{2} \bigl\Vert w_{t}(t) \bigr\Vert ^{2}+\frac{k}{2} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} +\frac{1}{2} a \bigl(w(t), w(t)\bigr) + \frac{1}{4} \Vert \Delta v \Vert ^{2}. \end{aligned}
(2.9)

3 Arbitrary decay of the energy

To obtain the stability of problem (1.1)â€“(1.7), we introduce the following notations as in [1, 30]. For every measurable set $${\mathcal {M}} \subset {\mathbb{R}}^{+}$$, we denote the probability measure Ä¥ by

\begin{aligned} \hat{h} ({\mathcal {M}}) = \frac{1}{l} \int _{\mathcal {M}} h(s)\,ds . \end{aligned}
(3.1)

The flatness set of h is defined by

\begin{aligned} F_{h}=\bigl\{ s \in {\mathbb{R}}^{+} : h(s)>0 \text{ and } h'(s)=0 \bigr\} . \end{aligned}
(3.2)

Let $$t_{0}>0$$ be a number such that $${\int _{0}^{t_{0}} h(s)\,ds:=h_{0}>0.}$$ We define the modified energy by

\begin{aligned} {\mathcal {E}}(t) =& \frac{1}{2} \bigl\Vert w_{t}(t) \bigr\Vert ^{2}+\frac{k}{2} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} +\frac{1}{4} \Vert \Delta v \Vert ^{2}\\ &{} +\frac{1}{2} \biggl(1- \int _{0}^{t} h(s)\,ds \biggr) a\bigl(w(t), w(t) \bigr) + \frac{1}{2}\bigl( h \square \partial ^{2} w\bigr) (t). \end{aligned}

Multiplying (1.1) by $$w_{t} (t)$$ and using (2.4), we have

\begin{aligned} {\mathcal {E}}'(t) =-\frac{1}{2}h(t) a \bigl(w(t), w(t)\bigr) +\frac{1}{2}\bigl(h' \square \partial ^{2} w \bigr) (t). \end{aligned}
(3.3)

From (2.7) one sees that

\begin{aligned} E(t) \leq \frac{1}{1-l} {\mathcal {E}}(t), \quad \forall t\geq 0. \end{aligned}
(3.4)

First, we define the standard functionals

\begin{aligned}& \Phi (t) = \int _{\Omega }w_{t}(t) w (t)\,d\Omega + k \int _{\Omega } \nabla w_{t}(t) \nabla w(t)\,d \Omega ,\\& \Psi (t) = \int _{\Omega }\bigl(k \Delta w_{t}(t) - w_{t}(t) \bigr) \int _{0}^{t} h(t-s) \bigl(w(t)-w(s)\bigr)\,d s \,d \Omega , \end{aligned}

and the new one

$$\Xi (t) = \int _{0}^{t} G_{\gamma}(t-s) a \bigl(w(s), w(s)\bigr)\,ds ,$$

where

$$G_{\gamma}(t) = \gamma (t)^{-1} \int _{t}^{\infty }h(s) \gamma (s)\,ds .$$

Now let us define the perturbed modified energy by

\begin{aligned} {\mathcal {F}}(t) = M {\mathcal {E}}(t) +\xi _{1} \Phi (t) + \xi _{2} \Psi (t)+ \xi _{3}\Xi (t), \end{aligned}
(3.5)

where M and $$\xi _{i}(i=1,2,3)$$ are positive constants to be specified later. Using the methods presented in [1, 4, 5], we get the following lemmas.

Lemma 3.1

Assume that (H1) holds. Then, for $$M>0$$ large, there exist $$\alpha _{0}>0$$ and $$\alpha _{1}>0$$ such that

\begin{aligned} \alpha _{0} \bigl({\mathcal {E}}(t)+\Xi (t) \bigr) \leq {\mathcal {F}}(t) \leq \alpha _{1} \bigl( {\mathcal {E}}(t)+\Xi (t) \bigr), \quad \forall t \geq 0. \end{aligned}
(3.6)

Proof

From Youngâ€™s inequality, (2.3), and (2.7), we obtain

\begin{aligned} \bigl\vert \Phi (t) \bigr\vert \leq \frac{1}{2} \bigl\Vert w_{t}(t) \bigr\Vert ^{2} + \frac{k}{2} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} + \frac{C_{p} +C_{s} k}{2} a \bigl(w(t),w(t)\bigr) \leq C_{1} {\mathcal {E}}(t) \end{aligned}
(3.7)

and

\begin{aligned} \bigl\vert \Psi (t) \bigr\vert \leq \frac{1}{2} \bigl\Vert w_{t}(t) \bigr\Vert ^{2} + \frac{k}{2} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} + \frac{(C_{p} + C_{s} k) l}{2} \bigl(h \square \partial ^{2} w \bigr) (t)\leq C_{2} {\mathcal {E}}(t), \end{aligned}
(3.8)

where $$C_{1}=\max \{ 1, \frac{C_{p} +C_{s} k}{1-l} \}$$ and $$C_{2}=\max \{ 1, (C_{p} +C_{s} k )l\}$$. By (3.7) and (3.8), we find that

\begin{aligned} \bigl\vert F(t)- M {\mathcal {E}}(t)-\xi _{3} \Xi (t) \bigr\vert \leq C_{3} {\mathcal {E}}(t), \end{aligned}

where $$C_{3}=\xi _{1} C_{1} +\xi _{2}C_{2}$$. Setting $$\alpha _{0}=\min \{ M-C_{3}, \xi _{3} \}$$, $$\alpha _{1} =\max \{ M+C_{3}, \xi _{3}\}$$ and taking $$M>0$$ large, we complete the proof of LemmaÂ 3.1.â€ƒâ–¡

Lemma 3.2

Assume that (H1)â€“(H3) hold. Then, for each $$t_{0} > 0$$ and all measurable sets $${\mathcal {M}}$$ and $${\mathcal {N}}$$ with $${\mathcal {M}}={\mathbb{R}}^{+} \setminus {\mathcal {N}}$$, it is satisfied that

\begin{aligned} {\mathcal {F}}'(t) \leq& \bigl\{ \xi _{1} +\xi _{2} (\delta _{2}- h_{0} ) \bigr\} \bigl\Vert w_{t}(t) \bigr\Vert ^{2} + k \bigl\{ \xi _{1} +\xi _{2} (\delta _{2}- g_{0} ) \bigr\} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} \\ &{} + \biggl[ \xi _{2} \biggl\{ ( 1- h_{0} ) \biggl( \delta _{1} + \frac{3l\hat{h}({\mathcal {N}})}{2} \biggr) +\delta _{3} C_{*} E^{2}(0) \biggr\} \\ &{}-\xi _{1} \biggl(1-\frac{l}{2} \biggr) +\xi _{3} G_{\gamma}(0) \biggr] a\bigl(w(t), w(t)\bigr) \\ & {} + \xi _{2}l \biggl( \frac{ 1-h_{0} }{4\delta _{1}} + 1+ \frac{1}{\delta _{1}} +\frac{C_{p}}{2\delta _{3}} \biggr) \int _{{ \mathcal {M}}_{t}} h(t-s) a\bigl(w(t)-w(s), w(t)-w(s) \bigr)\,ds \\ & {} +\xi _{2} l \hat{h}({\mathcal {N}}) \biggl( 1+ \delta _{1} + \frac{C_{p}}{2\delta _{3}} \biggr) \int _{{\mathcal {N}}_{t}} h(t-s) a\bigl(w(t)-w(s), w(t)-w(s) \bigr)\,ds \\ & {} - \frac{\xi _{1}}{2} \bigl( h \square \partial ^{2} w\bigr) (t) +\frac{\xi _{2}( 1- h_{0} )}{2} \int _{{\mathcal {N}}_{t}} h(t-s) a\bigl(w(s), w(s)\bigr)\,ds \\ &{} + \biggl( \frac{M}{2}- \frac{\xi _{2}h(0)(C_{s} h +C_{p})}{4\delta _{2}} \biggr) \bigl( h' \square \partial ^{2} w\bigr) (t) \\ & {} + \biggl( \frac{\xi _{1}}{2} -\xi _{3} \biggr) \int _{0}^{t} h(t-s)a\bigl(w(s), w(s)\bigr)\,ds \\ &{} -\xi _{3}\eta (t) \Xi (t)-\xi _{1} \Vert \Delta v \Vert ^{2} , \quad \forall t \geq t_{0} , \end{aligned}
(3.9)

where $$C_{*}$$ is a positive constant.

Proof

From (1.1)â€“(1.6), (2.1), (2.5), and (2.7), we have

\begin{aligned} \Phi '(t) =& \bigl\Vert w_{t}(t) \bigr\Vert ^{2} +k \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} -a\bigl(w(t), w(t)\bigr) + \frac{1}{2} \biggl( \int _{0}^{t} h(s)\,ds \biggr) a\bigl(w(t), w(t) \bigr) \\ & {}+ \frac{1}{2} \int _{0}^{t} h(t-s) a\bigl(w(s), w(s)\bigr)\,ds - \frac{1}{2} \bigl(h \square \partial ^{2} w \bigr) (t) - \Vert \Delta v \Vert ^{2} \\ \leq& \bigl\Vert w_{t}(t) \bigr\Vert ^{2} +k \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} - \biggl(1- \frac{l}{2} \biggr) a\bigl(w(t), w(t) \bigr)\\ & {}+ \frac{1}{2} \int _{0}^{t} h(t-s) a\bigl(w(s), w(s)\bigr)\,ds - \frac{1}{2} \bigl(h \square \partial ^{2} w \bigr) (t) - \Vert \Delta v \Vert ^{2}. \end{aligned}
(3.10)

Similarly, we conclude that

\begin{aligned} \Psi '(t) =& \biggl(1- \int _{0}^{t} h(s)\,ds \biggr) \int _{0}^{t} h(t-s)a \bigl( w(t)-w(s), w(t) \bigr)\,ds \\ & {} + \int _{0}^{t} h(t-s)a \biggl( w(t)-w(s), \int _{0}^{t} h(t-\tau ) \bigl( w(t)-w( \tau ) \bigr)\,d \tau \biggr)\,ds \\ &{} - k \int _{0}^{t} h'(t-s) \bigl( \nabla w(t)-\nabla w(s), \nabla w_{t}(t)\bigr)\,ds \\ &{} - \int _{0}^{t} h'(t-s) \bigl(w(t)-w(s), w_{t}(t)\bigr)\,d s \\ &{} - \int _{0}^{t} h(t-s) \bigl( w(t)-w(s), [w, v] \bigr)\,ds - \biggl( \int _{0}^{t} h(s)\,ds \biggr) \bigl\Vert w_{t}(t) \bigr\Vert ^{2} \\ &{}- k \biggl( \int _{0}^{t} h(s)\,ds \biggr) \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} \\ :=& \biggl( 1- \int _{0}^{t} h(s)\,ds \biggr) I_{1}+I_{2}+\cdots +I_{5} \\ &{} - \biggl( \int _{0}^{t} h(s)\,ds \biggr) \bigl\Vert w_{t}(t) \bigr\Vert ^{2}-k \biggl( \int _{0}^{t} h(s)\,ds \biggr) \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2}. \end{aligned}
(3.11)

For all measurable sets $${\mathcal {M}}$$ and $${\mathcal {N}}$$ such that $${\mathcal {M}}={\mathbb{R}}^{+} \setminus {\mathcal {N}}$$, using Youngâ€™s inequality, (2.7), and (3.1), we obtain that for $$\delta _{1}>0$$,

\begin{aligned} I_{1} =& \int _{{\mathcal {M}}_{t}} h(t-s)a \bigl( w(t)-w(s), w(t) \bigr)\,ds + \biggl( \int _{{\mathcal {N}}_{t}} h(s)\,ds \biggr) a \bigl( w(t), w(t) \bigr) \\ & {}- \int _{{ \mathcal {N}}_{t}} h(t-s)a \bigl( w(s), w(t) \bigr)\,ds \\ \leq &\biggl( \delta _{1} + \frac{3l\hat{h}({\mathcal {N}})}{2} \biggr) a\bigl(w(t), w(t)\bigr) + \frac{l}{4\delta _{1}} \int _{{\mathcal {M}}_{t}} h(t-s)a \bigl(w(t)-w(s), w(t)-w(s) \bigr)\,ds \\ & {} + \frac{1}{2} \int _{{\mathcal {N}}_{t}} h(t-s) a \bigl( w(s), w(s) \bigr)\,ds , \end{aligned}
(3.12)

where $${\mathcal {M}}_{t}:={\mathcal {M}}\cap [0, t]$$ and $${\mathcal {N}}_{t}:={\mathcal {N}}\cap [0, t]$$. Similarly, we have that for $$\delta _{1}>0$$,

\begin{aligned} I_{2} =& a\biggl( \int _{0}^{t} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds , \int _{0}^{t} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds \biggr) \\ =& a\biggl( \int _{{\mathcal {M}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds, \int _{{ \mathcal {M}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds \biggr) \\ & {}+ 2 a\biggl( \int _{{\mathcal {M}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds, \int _{{\mathcal {N}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds \biggr) \\ & {}+ a\biggl( \int _{{\mathcal {N}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds, \int _{{\mathcal {N}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds\biggr) \\ \leq &\biggl(1+\frac{1}{\delta _{1}} \biggr)l \int _{{\mathcal {M}}_{t}} h(t-s) a\bigl( w(t)-w(s) , w(t)-w(s) \bigr)\,ds \\ & {}+ (1+\delta _{1} )l\hat{h}({\mathcal {N}}) \int _{{\mathcal {N}}_{t}} h(t-s) a\bigl( w(t)-w(s) , w(t)-w(s) \bigr)\,ds . \end{aligned}
(3.13)

Applying Youngâ€™s inequality and (2.3), we get that for $$\delta _{2}>0$$,

\begin{aligned}& \begin{aligned}[b] \vert I_{3} \vert &\leq k\delta _{2} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} + \frac{k}{4\delta _{2}} \int _{\Omega } \biggl( \int _{0}^{t} h' (t-s) \bigl\vert \nabla w(t)-\nabla w(s) \bigr\vert \,d s \biggr)^{2}\,d \Omega \\ & \leq k\delta _{2} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} - \frac{ h(0)C_{s} k }{4\delta _{2} } \bigl(h' \square \partial ^{2} w\bigr) (t) , \end{aligned} \end{aligned}
(3.14)
\begin{aligned}& \vert I_{4} \vert \leq \delta _{2} \bigl\Vert w_{t}(t) \bigr\Vert ^{2}- \frac{h(0)C_{p}}{4 \delta _{2}}\bigl( h' \square \partial ^{2} w \bigr) (t). \end{aligned}
(3.15)

By Youngâ€™s inequality, we find that for $$\delta _{3}>0$$,

\begin{aligned} & \vert I_{5} \vert \leq \delta _{3} \bigl\Vert [w,v] \bigr\Vert ^{2}+\frac{1}{4\delta _{3}} \biggl\Vert \int _{0}^{t} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds \biggr\Vert ^{2} . \end{aligned}
(3.16)

Using (2.2), (2.6), (2.9), (3.4) and the fact $${\mathcal {E}}(t) \leq {\mathcal {E}}(0)=E(0)$$, we see that

\begin{aligned} \bigl\Vert [w,v] \bigr\Vert ^{2} \leq& c^{4} \bigl\Vert w(t) \bigr\Vert ^{2}_{H^{2}(\Omega )} \bigl\Vert w(t) \bigr\Vert ^{4}_{H^{2}( \Omega )} \leq \frac{ c^{4} }{c_{0}}a\bigl(w(t),w(t)\bigr) \biggl(\frac{2}{c_{0}} E(t) \biggr)^{2} \\ \leq& \frac{ c^{4} }{c_{0}}a\bigl(w(t),w(t)\bigr) \biggl(\frac{2}{c_{0}(1-l)} { \mathcal {E}}(t) \biggr)^{2} \leq C_{*} E^{2}(0) a\bigl(w(t), w(t)\bigr) , \end{aligned}

where $$C_{*}= \frac{4c^{4}}{c_{0}^{3} (1-l)^{2}}$$. From Youngâ€™s inequality, (2.3), and (3.1), we obtain

\begin{aligned}& \biggl\Vert \int _{0}^{t} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds \biggr\Vert ^{2}\\& \quad = \biggl\Vert \int _{{\mathcal {M}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds + \int _{{ \mathcal {N}}_{t}} h(t-s) \bigl( w(t)-w(s)\bigr)\,ds \biggr\Vert ^{2} \\& \quad \leq 2l \int _{{\mathcal {M}}_{t}} h(t-s) \bigl\Vert w(t)-w(s) \bigr\Vert ^{2}\,ds + 2l \hat{h}({\mathcal {N}}) \int _{{\mathcal {N}}_{t}} h(t-s) \bigl\Vert w(t)-w(s) \bigr\Vert ^{2}\,ds \\& \quad \leq 2l C_{p} \int _{{\mathcal {M}}_{t}} h(t-s) a\bigl( w(t)-w(s), w(t)-w(s) \bigr)\,ds \\& \qquad {}+ 2l \hat{h}({\mathcal {N}})C_{p} \int _{{\mathcal {N}}_{t}} h(t-s) a\bigl( w(t)-w(s), w(t)-w(s)\bigr)\,ds . \end{aligned}

Inserting these estimates into (3.16), we have

\begin{aligned} \vert I_{5} \vert \leq& \delta _{3} C_{*} E^{2}(0) a\bigl(w(t), w(t)\bigr) + \frac{l C_{p}}{2\delta _{3}} \int _{{\mathcal {M}}_{t}} h(t-s) a\bigl( w(t)-w(s), w(t)-w(s) \bigr)\,ds \\ & {}+ \frac{l \hat{h}({\mathcal {N}})C_{p}}{2\delta _{3}} \int _{{ \mathcal {N}}_{t}} h(t-s) a\bigl( w(t)-w(s), w(t)-w(s)\bigr)\,ds . \end{aligned}
(3.17)

Substituting (3.12)â€“(3.15) and (3.17) into (3.11), we arrive at

\begin{aligned} \Psi '(t) \leq& k \biggl( \delta _{2}- \int _{0}^{t} h(s)\,ds \biggr) \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} + \biggl( \delta _{2}- \int _{0}^{t} h(s)\,ds \biggr) \bigl\Vert w_{t}(t) \bigr\Vert ^{2} \\ & {} + \biggl\{ \biggl( 1- \int _{0}^{t} h(s)\,ds \biggr) \biggl( \delta _{1} + \frac{3l\hat{h}({\mathcal {N}})}{2} \biggr) +\delta _{3} C_{*} E^{2}(0) \biggr\} a\bigl(w(t), w(t)\bigr) \\ & {} +l \biggl\{ \biggl( 1- \int _{0}^{t} h(s)\,ds \biggr) \frac{1}{4\delta _{1}} + 1+\frac{1}{\delta _{1}} + \frac{C_{p}}{2\delta _{3}} \biggr\} \\ & {} \times \int _{{\mathcal {M}}_{t}} h(t-s) a\bigl( w(t)-w(s), w(t)-w(s) \bigr)\,ds \\ & {} + l \hat{h}({\mathcal {N}}) \biggl( 1+\delta _{1} + \frac{C_{p}}{2\delta _{3}} \biggr) \int _{{\mathcal {N}}_{t}} h(t-s) a\bigl( w(t)-w(s), w(t)-w(s) \bigr)\,ds \\ & {} +\frac{1}{2} \biggl( 1- \int _{0}^{t} h(s)\,ds \biggr) \int _{{ \mathcal {N}}_{t}} h(t-s) a\bigl(w(s), w(s)\bigr)\,ds \\ & {} - \frac{h(0)(C_{s} k +C_{p})}{4\delta _{2}}\bigl( h' \square \partial ^{2} w \bigr) (t) . \end{aligned}
(3.18)

A differentiation of $$\Xi (t)$$ yields

\begin{aligned} \Xi '(t) =& G_{\gamma}(0)a\bigl(w(t), w(t) \bigr) - \int _{0}^{t} \frac{\gamma '(t-s)}{\gamma (t-s)} G_{\gamma}(t-s) a\bigl(w(s), w(s)\bigr)\,ds\\ &{} - \int _{0}^{t} h(t-s)a\bigl(w(s), w(s)\bigr)\,ds \\ \leq &G_{\gamma}(0)a\bigl(w(t), w(t)\bigr) - \eta (t) \Xi (t) - \int _{0}^{t} h(t-s)a\bigl(w(s), w(s)\bigr)\,ds, \end{aligned}
(3.19)

where we have used the fact that $$\frac{\gamma '(t)}{\gamma (t)} =\eta (t)$$ is a nonincreasing function. Since h is positive, we get $$\int _{0}^{t} h(s)\,ds \geq h_{0}$$ for all $$t\geq t_{0}$$, and combining (3.3), (3.5), (3.10), (3.18), and (3.19), we obtain the desired estimate (3.9).â€ƒâ–¡

Now, we are ready to prove the following arbitrary decay result.

Theorem 3.1

Assume that (H1)â€“(H3), $$E(0)<\frac{l}{\sqrt{C_{*}C_{p}}}$$, and $$\hat{h}({F}_{h})<\frac{1}{8}$$ hold. If $$h_{0}> \frac{3l}{8-l}$$ and $$G_{\gamma}(0)< \frac{(8-l)h_{0} -3l}{16}$$, then there exist positive constants $$t_{0}$$, Ï‰, and C such that

$$E(t) \leq \frac{C}{ \gamma (t)^{\omega}} \quad \textit{for } t \geq t_{0} .$$

Proof

As in [1, 30], we introduce the sets

$${\mathcal {M}}_{n}=\bigl\{ s\in {\mathbb{R}}^{+} : n h'(s)+h(s) \leq 0\bigr\} \quad \text{and} \quad {\mathcal {N}}_{n} ={\mathbb{R}}^{+} \setminus {\mathcal {M}}_{n} , \quad n\in{\mathbb{N}}.$$

Observe that

$$\bigcup_{n=1}^{\infty }{\mathcal {M}}_{n} = {\mathbb{R}}^{+} \setminus \{ { F}_{h} \cup {N}_{h} \},$$

where $${N}_{h}$$ is the null set where $$h'$$ is not defined and $${F}_{h}$$ is given in (3.2). Because $${\mathcal {N}}_{n +1} \subset {\mathcal {N}}_{n}$$ for all n and $$\cap _{n=1}^{\infty }{\mathcal {N}}_{n} = { F}_{h} \cup{N}_{h}$$, we have

\begin{aligned} \lim_{n\to \infty} \hat{h}({\mathcal {N}}_{n} )=\hat{h}({ F}_{h}) . \end{aligned}
(3.20)

Choosing $${\mathcal {M}}= {\mathcal {M}}_{n}$$, $${\mathcal {N}}={\mathcal {N}}_{n}$$, and $$\delta _{3} =\frac{(2-l)\xi _{1}}{4C_{*}E^{2}(0) \xi _{2}}$$ in (3.9), we find that

\begin{aligned} {\mathcal {F}}'(t) \leq &\bigl\{ \xi _{1} +\xi _{2} (\delta _{2}- h_{0} ) \bigr\} \bigl\Vert w_{t}(t) \bigr\Vert ^{2} + k \bigl\{ \xi _{1} +\xi _{2} (\delta _{2}- h_{0} ) \bigr\} \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} \\ & {}+ \biggl\{ \xi _{2} ( 1- h_{0} ) \biggl( \delta _{1} + \frac{3l\hat{h}({\mathcal {N}}_{n})}{2} \biggr) -\frac{\xi _{1}}{2} \biggl(1- \frac{l}{2} \biggr) +\xi _{3} G_{\gamma}(0) \biggr\} a\bigl(w(t),w(t)\bigr) \\ & {}+ \biggl\{ \xi _{2}l \biggl( \frac{ 1-h_{0} }{4\delta _{1}} + 1+ \frac{1}{\delta _{1}} + \frac{2C_{*}C_{p}E^{2}(0)\xi _{2}}{(2-l)\xi _{1}} \biggr) -\frac{1}{n} \biggl( \frac{M}{2}-\frac{\xi _{2}h(0)(C_{s} k +C_{p})}{4\delta _{2}} \biggr) \biggr\} \\ & {} \times \int _{{\mathcal {M}}_{nt}} h(t-s) a\bigl( w(t)-w(s), w(t)-w(s) \bigr)\,ds \\ & {}+ \biggl\{ \xi _{2} l \hat{h}({\mathcal {N}}_{n}) \biggl( 1+\delta _{1} + \frac{2C_{*}C_{p}E^{2}(0)\xi _{2}}{(2-l)\xi _{1}} \biggr) - \frac{\xi _{1}}{2} \biggr\} \bigl( h \square \partial ^{2} w\bigr) (t) -\xi _{3} \eta (t) \Xi (t) \\ & {} + \biggl\{ \frac{\xi _{2}( 1- h_{0} )}{2} + \frac{\xi _{1}}{2} -\xi _{3} \biggr\} \int _{0}^{t} h(t-s)a\bigl(w(s), w(s)\bigr)\,ds \\ & {}-\xi _{1} \Vert \Delta v \Vert ^{2} , \quad \forall t \geq t_{0} , \end{aligned}
(3.21)

where $${\mathcal {M}}_{nt}={\mathcal {M}}_{n}\cap [0, t]$$. For small $$0<\varepsilon < h_{0}$$, by taking $$\xi _{1} =(h_{0}-\varepsilon )\xi _{2}$$, (3.21) yields

\begin{aligned} {\mathcal {F}}'(t) \leq& \xi _{2} (\delta _{2}- \varepsilon ) \bigl\Vert w_{t}(t) \bigr\Vert ^{2} + k\xi _{2} ( \delta _{2}- \varepsilon ) \bigl\Vert \nabla w_{t}(t) \bigr\Vert ^{2} \\ & {}+ \biggl\{ \xi _{2} ( 1- h_{0} ) \biggl( \delta _{1} + \frac{3l\hat{h}({\mathcal {N}}_{n})}{2} \biggr) -(h_{0}- \varepsilon )\xi _{2} \bigl(\beta +(1-\beta ) \bigr) \biggl( \frac{2-l}{4} \biggr)\\ & {} +\xi _{3} G_{ \gamma}(0) \biggr\} a\bigl(w(t),w(t)\bigr) \\ & {}+ \biggl\{ \xi _{2}l \biggl( \frac{ 1-h_{0} }{4\delta _{1}} + 1+ \frac{1}{\delta _{1}} + \frac{2C_{*}C_{p}E^{2}(0)}{(2-l)(h_{0}-\varepsilon )} \biggr) - \frac{1}{n} \biggl( \frac{M}{2}- \frac{\xi _{2}h(0)(C_{s} k +C_{p})}{4\delta _{2}} \biggr) \biggr\} \\ &{} \times \int _{{\mathcal {M}}_{nt}} h(t-s) a\bigl( w(t)-w(s),w(t)-w(s) \bigr)\,ds \\ & {}+ \xi _{2} \biggl\{ l \hat{h}({\mathcal {B}}_{n}) \biggl( 1+\delta _{1} + \frac{2C_{*}C_{p}E^{2}(0)}{(2-l)(h_{0}-\varepsilon )} \biggr) - \frac{h_{0}-\varepsilon}{2} \biggr\} \bigl( h \square \partial ^{2} w\bigr) (t) - \xi _{3}\eta (t) \Xi (t) \\ & {} + \biggl\{ \frac{\xi _{2}( 1- \varepsilon )}{2} -\xi _{3} \biggr\} \int _{0}^{t} h(t-s)a\bigl(w(s), w(s)\bigr)\,ds \\ & {} -(h_{0}-\varepsilon )\xi _{2} \Vert \Delta v \Vert ^{2} , \quad \forall t \geq t_{0} , \end{aligned}
(3.22)

where $$\beta =\frac{3l(1-h_{0})}{4(2-l)h_{0}}$$. From (3.20) and $$\hat{h}({ F}_{h})<\frac{1}{8}$$, there exists $$n_{0} \in { N}$$ large such that

\begin{aligned} \hat{h}({\mathcal {N}}_{n})< \frac{1}{8} \end{aligned}
(3.23)

for $$n\geq n_{0}$$. By (3.23), we get that for $$n\geq n_{0}$$,

\begin{aligned} ( 1- h_{0} ) \biggl( \frac{3l\hat{h}({\mathcal {N}}_{n})}{2} \biggr) < \beta h_{0} \biggl(\frac{2-l}{4} \biggr) . \end{aligned}

Then we can take a constant $$\varepsilon _{1}>0$$ such that

\begin{aligned} ( 1- h_{0} ) \biggl( \frac{3l\hat{h}({\mathcal {N}}_{n})}{2} \biggr) < \beta (h_{0}-\varepsilon ) \biggl(\frac{2-l}{4} \biggr) \quad \text{for } n \geq n_{0}\ \text{and}\ 0< \varepsilon \leq \varepsilon _{1} . \end{aligned}
(3.24)

Because $$l=\int _{0}^{\infty }h(s)\,ds$$ and $$E(0)< \frac{l}{\sqrt{C_{*}C_{p}}}$$, there exists $$t_{1}>0$$ large such that

$$\frac{l}{2} < h_{0} \quad \text{and} \quad \sqrt{C_{*}C_{p}} E(0) < h_{0} < l \quad \text{for } t_{0} \geq t_{1},$$

and then there exists a positive constant $$\varepsilon _{2}>0$$ with $$\varepsilon _{2} \leq \varepsilon _{1}$$ small such that

\begin{aligned} \frac{l}{2} < h_{0}-\varepsilon \quad \text{and} \quad \sqrt{C_{*}C_{p}} E(0) < h_{0}-\varepsilon < l\quad \text{for } t_{0} \geq t_{1}\ \text{and}\ 0< \varepsilon \leq \varepsilon _{2}. \end{aligned}
(3.25)

By (3.23) and (3.25), we have that for $$t_{0}\geq t_{1}$$, $$\ n\geq n_{0}$$, and $$0<\varepsilon \leq \varepsilon _{2}$$,

\begin{aligned} l \hat{h}({\mathcal {N}}_{n}) \biggl( 1+ \frac{2C_{*}C_{p}E^{2}(0)}{(2-l)(h_{0}-\varepsilon )} \biggr) - \frac{h_{0}-\varepsilon}{2} < & l \hat{h}({\mathcal {N}}_{n}) +\hat{h}({ \mathcal {N}}_{n}) \frac{2C_{*}C_{p}E^{2}(0)}{h_{0}-\varepsilon}- \frac{h_{0}-\varepsilon}{2} \\ < & \frac{l}{8}- \frac{h_{0}-\varepsilon}{4} < 0. \end{aligned}
(3.26)

Then, from (3.24) and (3.26), we can choose $$\delta _{1}>0$$ small enough such that for $$t_{0}\geq t_{1}$$, $$n\geq n_{0}$$, and $$0<\varepsilon \leq \varepsilon _{2}$$,

\begin{aligned} & ( 1- h_{0} ) \biggl( \delta _{1} + \frac{3l\hat{h}({\mathcal {N}}_{n})}{2} \biggr) -\beta (h_{0}- \varepsilon ) \biggl( \frac{2-l}{4} \biggr) < 0 , \end{aligned}
(3.27)
\begin{aligned} & l \hat{h}({\mathcal {N}}_{n}) \biggl( 1+\delta _{1}+ \frac{2C_{*}C_{p}E^{2}(0)}{(2-l)(h_{0}-\varepsilon )} \biggr) - \frac{h_{0}-\varepsilon}{2}< 0 . \end{aligned}
(3.28)

From the fact $$\frac{3l}{8-l} < h_{0} <l$$, we see that $$1-\beta =\frac{(8-l)h_{0}-3l}{4(2-l)h_{0}}>0$$. Once $$n_{0}$$, $$\varepsilon _{2}$$, and $$t_{1}$$ are fixed, we choose $$n=n_{0}$$, $$\varepsilon =\varepsilon _{2}$$, and $$t_{0}=t_{1}$$. Next we take $$\xi _{2}$$ and $$\xi _{3}$$ satisfying

\begin{aligned} \frac{\xi _{2}}{2} < \xi _{3} < \frac{(8-l)h_{0}-3l}{32G_{\gamma }(0)} \xi _{2} . \end{aligned}
(3.29)

This is possible if $$G_{\gamma }(0) < \frac{(8-l)h_{0} -3l}{16}$$. Using (3.25) and (3.29), we obtain

\begin{aligned} \frac{\xi _{2}(1-\varepsilon )}{2} -\xi _{3} < 0 \end{aligned}
(3.30)

and

\begin{aligned} \xi _{3} G_{\gamma}(0) -\xi _{2}(1-\beta ) (h_{0} -\varepsilon ) \biggl( \frac{2-l}{4} \biggr) < \frac{(8-l)h_{0}-3l}{16} \biggl(\frac{1}{2}- \frac{h_{0}-\varepsilon}{h_{0}} \biggr) \xi _{2} < 0 . \end{aligned}
(3.31)

Finally, we select $$\delta _{2}>0$$ small enough and $$M>0$$ large enough so that

\begin{aligned} \delta _{2}-\varepsilon < 0 \end{aligned}
(3.32)

and

\begin{aligned} \xi _{2}l \biggl( \frac{ 1-h_{0} }{4\delta _{1}} + 1+ \frac{1}{\delta _{1}} + \frac{2C_{*}C_{p}E^{2}(0)}{(2-l)(h_{0}-\varepsilon )} \biggr) - \frac{1}{n} \biggl( \frac{M}{2}- \frac{\xi _{2}h(0)(C_{s} k +C_{p})}{4\delta _{2}} \biggr) < 0, \end{aligned}
(3.33)

respectively. Combining (3.22), (3.27), (3.28), (3.30)â€“(3.32), and (3.33), we deduce that

\begin{aligned} {\mathcal {F}}' (t) \leq -C_{4}{\mathcal {E}}(t) -\xi _{3}\eta (t) \Xi (t), \quad t\geq t_{0}, \end{aligned}

for some positive constant $$C_{4}$$. Using the fact that $$\eta (t)$$ is decreasing and LemmaÂ 3.1, we find that

\begin{aligned} {\mathcal {F}}' (t) \leq& -C_{4} \frac{\eta (t)}{\eta (t_{0})}{\mathcal {E}}(t) -\xi _{3}\eta (t) \Xi (t)\leq -C_{5} \eta (t) \bigl( {\mathcal {E}}(t) + \Xi (t) \bigr) \\ \leq& -\omega \eta (t){\mathcal {F}}(t) , \quad t\geq t_{0}, \end{aligned}
(3.34)

where $$C_{5}=\min \{ \frac{C_{4}}{\eta (t_{0})} , \xi _{3} \}$$ and $$\omega =\frac{C_{5}}{\alpha _{1}}$$. From (2.8), (3.6), and (3.34), we conclude that

\begin{aligned} \alpha _{0} \bigl( {\mathcal {E}}(t) +\Xi (t) \bigr) \leq& {\mathcal {F}}(t) \leq {\mathcal {F}}(t_{0}) e^{-\omega \int _{t_{0}}^{t} \eta (s)\,ds } ={ \mathcal {F}}(t_{0})e^{-\omega \int _{t_{0}}^{t} \frac{\gamma '(s)}{\gamma (s)}\,ds } \\ =& {\mathcal {F}}(t_{0})\gamma (t_{0})^{ \omega}\gamma (t)^{-\omega} , \quad t\geq t_{0}. \end{aligned}

By the fact $$\Xi (t)\geq 0$$ and (3.4), we infer that

$$E(t) \leq \frac{C}{\gamma (t)^{\omega}} , \quad t \geq t_{0} ,$$

where $$C= \frac{{\mathcal {F}}(t_{0})\gamma (t_{0})^{\omega}}{\alpha _{0} (1-l)}$$.â€ƒâ–¡

Remark

We give some examples to illustrate the decay of energy given by TheoremÂ 3.1 (see [1, 11]).

(1) $$\gamma (t) =e^{\alpha t}$$, $$\alpha >0$$, gives $$\eta (t)=\alpha$$ and $$E(t) \leq \frac{C}{e^{\omega \alpha t}}$$ for some positive constants C and Ï‰.

(2) $$\gamma (t) =(1+t)^{\alpha}$$, $$\alpha >0$$, leads to $$\eta (t)=\alpha (1+t)^{-1}$$ and $$E(t) \leq \frac{C}{(1+t)^{\omega}}$$ for some positive constants C and Ï‰.

4 Conclusions

In this paper, we study the von Karman plate model with long range memory. Our result is obtained without imposing the usual relation between the relaxation function h and its derivative. Assume that (H1)â€“(H3), $$E(0)<\frac{l}{\sqrt{C_{*}C_{p}}}$$, and $$\hat{h}({F}_{h})<\frac{1}{8}$$ hold. If $$h_{0}> \frac{3l}{8-l}$$ and $$G_{\gamma}(0)< \frac{(8-l)h_{0} -3l}{16}$$, then there exist positive constants $$t_{0}$$, Ï‰, and C such that

$$E(t) \leq \frac{C}{ \gamma (t)^{\omega}} \quad \text{for } t \geq t_{0} .$$

Availability of data and materials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

1. Tatar, N.E.: Arbitrary decays in linear viscoelasticity. J. Math. Phys. 52, 013502 (2011)

2. Munoz Rivera, J.E., Menzala, G.P.: Decay rates of solutions to a von KÃ¡rmÃ¡n system for viscoelastic plates with memory. Q. Appl. Math. LVII, 181â€“200 (1999)

3. Raposo, C.A., Santos, M.L.: General decay to a von KÃ¡rmÃ¡n system with memory. Nonlinear Anal. 74, 937â€“945 (2011)

4. Kang, J.R.: Exponential decay for a von KÃ¡rmÃ¡n equations with memory. J. Math. Phys. 54, 033501 (2013)

5. Kang, J.R.: A general stability for a von KÃ¡rmÃ¡n system with memory. Bound. Value Probl. 2015, 204 (2015)

6. Balegh, M., Chentouf, B., Feng, B., Hajjej, Z.: A general stability result for a von Karman system with memory and nonlinear boundary delay term. Appl. Math. Lett. 138, 108512 (2023)

7. Horn, M.A., Lasiecka, I.: Global stabilization of a dynamic von KÃ¡rmÃ¡n plate with nonlinear boundary feedback. Appl. Math. Optim. 31, 57â€“84 (1995)

8. Bradley, M.E., Lasiecka, I.: Global decay rates for the solutions to a von Karman plate without geometric conditions. J. Math. Anal. Appl. 181(1), 254â€“276 (1994)

9. Cavalcanti, M.M., Cavalcanti, A.D.D., Lasiecka, I., Wang, X.: Existence and sharp decay rate estimates for a von Karman system with long memory. Nonlinear Anal., Real World Appl. 22, 289â€“306 (2015)

10. Lasiecka, I., Tataru, D.: Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differ. Integral Equ. 6(3), 507â€“533 (1993)

11. Park, S.H.: Arbitrary decay rates of energy for a von Karman equation of memory type. Comput. Math. Appl. 70, 1878â€“1886 (2015)

12. Favini, A., Horn, M., Lasiecka, I., Tataru, D.: Global existence, uniqueness and regularity of solutions to a von KÃ¡rmÃ¡n system with nonlinear boundary dissipation. Differ. Integral Equ. 9(2), 267â€“294 (1996)

13. Horn, M.A., Lasiecka, I.: Uniform decay of weak solutions to a von KÃ¡rmÃ¡n plate with nonlinear boundary dissipation. Differ. Integral Equ. 7, 885â€“908 (1994)

14. Feng, B., Soufyane, A.: New general decay results for a von Karman plate equation with memory-type boundary conditions. Discrete Contin. Dyn. Syst. 40(3), 1757â€“1774 (2020)

15. Santos, M.L., Soufyane, A.: General decay to a von KÃ¡rmÃ¡n plate system with memory boundary conditions. Differ. Integral Equ. 24(1â€“2), 69â€“81 (2011)

16. Munoz Rivera, J.E., Portillo Oquendo, H., Santos, M.L.: Asymptotic behavior to a von KÃ¡rmÃ¡n plate with boundary memory conditions. Nonlinear Anal. 62, 1183â€“1205 (2005)

17. Cavalcanti, M.M., Domingos Cavalcanti, V.N., Soriano, J.A.: Exponential decay for the solution of semilinear viscoelastic wave equation with localized damping. Electron. J. Differ. Equ. 2002, 44 (2002)

18. Berrimi, S., Messaoudi, S.A.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. 64, 2314â€“2331 (2006)

19. Liu, W.J.: Uniform decay of solutions for a quasilinear system of viscoelastic equations. Nonlinear Anal. 71, 2257â€“2267 (2009)

20. Messaoudi, S.A., Tatar, N.E.: Exponential and polynomial decay for a quasilinear viscoelastic equation. Nonlinear Anal. 68, 785â€“793 (2008)

21. Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457â€“1467 (2008)

22. Tatar, N.E.: Polynomial stability without polynomial decay of the relaxation function. Math. Methods Appl. Sci. 31, 1874â€“1886 (2008)

23. Liu, W.J.: Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions. Appl. Math. Lett. 38, 155â€“161 (2014)

24. Mustafa, M.I., Messaoudi, S.A.: General stability result for viscoelastic wave equations. J. Math. Phys. 53, 053702 (2012)

25. Ferreira, J., Messaoudi, S.A.: On the general decay of a nonlinear viscoelastic plate equation with a strong damping and $$\overrightarrow{p}(x, t)$$-Laplacian. Nonlinear Anal. 104, 40â€“49 (2014)

26. Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69, 2589â€“2598 (2008)

27. Messaoudi, S.A., Mustafa, M.I.: On convexity for energy decay rates of a viscoelastic equation with boundary feedback. Nonlinear Anal. 72, 3602â€“3611 (2010)

28. Park, J.Y., Park, S.H.: Decay rate estimates for wave equations of memory type with acoustic boundary conditions. Nonlinear Anal. 74, 993â€“998 (2011)

29. Lagnese, J.: Boundary Stabilization of Thin Plates. SIAM, Philadelphia (1989)

30. Pata, V.: Exponential stability in linear viscoelasticity. Q. Appl. Math. 64(3), 499â€“513 (2006)

Acknowledgements

The author is thankful to the honorable reviewers and editors for their valuable comments and suggestions, which improved the paper.

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1I1A3042239).

Author information

Authors

Contributions

The authors declare that the study was realized in collaboration with the same responsibility. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jum-Ran Kang.

Ethics declarations

Competing interests

The author declares that they have no competing interests.

Not applicable.

Rights and permissions

Reprints and permissions

Kang, JR. Arbitrary decay for a von Karman system with memory. Bound Value Probl 2023, 16 (2023). https://doi.org/10.1186/s13661-023-01699-1