Skip to main content

The existence of discrete solitons for the discrete coupled nonlinear Schrödinger system

Abstract

In this paper, we investigate the nonlinear coupled discrete Schrödinger equations with unbounded potentials. We find simple sufficient conditions for the existence of discrete soliton solution by using the Nehari manifold approach and the compact embedding theorem. Furthermore, by comparing the value of the action functional at the discrete soliton solution with those at nonzero solutions of one component zero, we demonstrate that both components of the discrete soliton solution are nontrivial.

1 Introduction

The discrete nonlinear Schrödinger equation appears in a number of areas in physics such as nonlinear optics [1], biomolecular chains [2], and Bose–Einstein condensates [3]. In these areas and many others, it often emerges as a tight-binding approximation for the underlying continuum description (e.g., Bose–Einstein condensates trapped in optical lattices), or via an envelope wave expansion of the physical field (e.g., the electromagnetic wave in an optical system). In the past decades, due to wide applications of difference equations [47], extensive efforts have been devoted to the study of the existence of discrete solitons (also called discrete breathers) for the equation. Several sufficient conditions for the existence have been found by means of the continuation method [811], which is a powerful tool for both theoretical analysis and numerical computations [1215], and the variational methods relying on the critical point techniques (Nehari manifold [16, 17], linking theorems [1822]).

In this paper, we consider a system of two linearly coupled discrete nonlinear Schrödinger equations. Our interest in the two-component system has been motivated particularly by the experimental realization and control of mixtures of Bose–Einstein condensates composed either by two hyperfine states [23, 24] or by two species [25, 26]. For the binary Bose–Einstein condensate mixture confined in a one-dimensional lattice, the system of the two coupled discrete nonlinear Schrödinger equations takes the form

$$\begin{aligned} \begin{gathered} i \frac{d{u}_{n}}{dt}=-(\Delta u)_{n}+ b_{1n}u_{n}-a_{1} \vert u_{n} \vert ^{2}u_{n}-a_{3} \vert v_{n} \vert ^{2}u_{n}-a_{4} v_{n}, \\ i \frac{d{v}_{n}}{dt}=-(\Delta v)_{n}+b_{2n}v_{n}-a_{2} \vert v_{n} \vert ^{2}v_{n}-a_{3} \vert u_{n} \vert ^{2}v_{n}-a_{4} u_{n}, \end{gathered} \end{aligned}$$
(1.1)

where \(a_{1}\), \(a_{2}\), \(a_{3}\), and \(a_{4}\) are positive constants, \(\{b_{1n}\}\) and \(\{b_{2n}\}\) are real-valued sequences, and Δ is the discrete Laplacian operator defined as \((\Delta u)_{n}=u_{n+1}+u_{n-1}-2u_{n}\). In applications to Bose–Einstein condensates (the condensation for a mixture of two interacting species), \(u_{n} (v_{n})\) denotes the wavefunction of condensate \(u (v)\) on site n, \(a_{i}\) plays the role of intraspecies \((a_{1}, a_{2})\) and interspecies \((a_{3})\), respectively, \(a_{4}\) is the strength of the electromagnetic field, and \(\{b_{in}\}\) is the external potential. In this paper, the potential \(V_{i}=\{b_{in}\}_{n\in \mathbb{Z}}\) is bounded below and satisfies

$$\begin{aligned} \lim_{|n|\rightarrow{\infty}}b_{in}=+\infty ,\quad i=1,2. \end{aligned}$$
(1.2)

In this paper, we study the discrete solitons of (1.1), i.e., the solutions of (1.1) of the special form

$$\begin{aligned} u_{n}=\exp{(-i\omega t)}\phi _{n}, \qquad v_{n}= \exp{(-i\omega t)}\psi _{n},\quad n\in \mathbb{Z}, \end{aligned}$$
(1.3)

with real amplitudes \(\phi _{n}\) and \(\psi _{n}\), and

$$\begin{aligned} \lim_{|n|\rightarrow \infty}u_{n}=0,\qquad \lim_{|n|\rightarrow \infty}v_{n}=0. \end{aligned}$$
(1.4)

Inserting the ansatz of the discrete solitons (1.3) into (1.1), we obtain the following equivalent algebraic system:

$$\begin{aligned} \begin{gathered} -(\Delta \phi )_{n}-\omega \phi _{n}+ b_{1n}\phi _{n}-a_{1} \vert \phi _{n} \vert ^{2} \phi _{n}-a_{3} \vert \psi _{n} \vert ^{2}\phi _{n}-a_{4} \psi _{n}=0, \\ -(\Delta \psi )_{n}-\omega \psi _{n}+ b_{2n}\psi _{n}-a_{2} \vert \psi _{n} \vert ^{2} \psi _{n}-a_{3} \vert \phi _{n} \vert ^{2}\psi _{n}-a_{4} \phi _{n}=0, \end{gathered} \end{aligned}$$
(1.5)

and (1.4) becomes

$$\begin{aligned} \lim_{|n|\rightarrow \infty}\phi _{n}=0,\quad{ \text{and}}\quad \lim_{|n| \rightarrow \infty}\psi _{n}=0. \end{aligned}$$
(1.6)

We are thus led to the study on the existence of solutions for system (1.5) with conditions (1.6). Indeed, our approach covers the problem for a slightly more general system

$$\begin{aligned} \begin{gathered} (L_{1}\phi )_{n}-\omega _{1}\phi _{n}-a_{1} \vert \phi _{n} \vert ^{2}\phi _{n}-a_{3} \vert \psi _{n} \vert ^{2}\phi _{n}-a_{4}\psi _{n}=0, \\ {(L_{2}\psi )_{n}}-\omega _{2}\psi _{n}-a_{2} \vert \psi _{n} \vert ^{2}\psi _{n}-a_{3} \vert \phi _{n} \vert ^{2}\psi _{n}-a_{4}\phi _{n}=0, \end{gathered} \end{aligned}$$
(1.7)

with the same boundary conditions as (1.6), where \(\phi _{n}\), \(\psi _{n}\), \(\omega _{1}\), and \(\omega _{2}\) are the unknowns. Here \(L_{1}\) and \(L_{2}\) are the second-order difference operators defined by

$$ L_{1}\phi _{n}=-(\Delta \phi )_{n}+b_{1n} \phi _{n}\quad{\text{and}} \quad L_{2}\psi _{n}=-( \Delta \psi )_{n}+b_{2n}\phi _{n}. $$

Hence (1.5) is a particular case of (1.7) with \(\omega _{1}=\omega _{2}\).

The soliton dynamics of (1.1) was studied in [27], where the authors performed a unitary transformation to remove the linear coupling. It helped them determine the soliton dynamics by using the known results for a single-component discrete nonlinear Schrödinger equation and showed that the soliton solutions oscillate from one species to the other. In [28] the authors claimed the existence of a standing wave of (1.1). However, they did not justify whether the solution has both nonzero components. In fact, if one of \((u_{n}, v_{n})\) is identically zero, then (1.1) reduces to a single equation. In this paper, we not only obtain the existence of discrete soliton solutions for system (1.7), but also show that both components of the discrete soliton solution are nontrivial. For the case \(a_{4}=0\), the discrete soliton solutions of (1.1) were discussed in [29].

The main idea of this paper is as follows. First, by using the Nehari manifold approach we obtain that the sequence \(\{(\phi ^{(k)}, \psi ^{(k)})\}\subset N\) is bounded in \(E_{1}\times{E_{2}}\). Then we prove that the limit of \(\{(\phi ^{(k)}, \psi ^{(k)})\}\) exists and is the solution of (1.7) in \(l^{2}\times{l^{2}}\) by using the compact embedding theorem. Finally, we show that both components of the discrete soliton solution are not zero.

This paper is organized as follows. In Sect. 2, we introduce some preliminaries, including a discrete version of compact embedding theorem. In Sect. 3, we prove some key lemmas on the Nehari manifold. In Sect. 4, we present and prove our main result on the existence of a nontrivial discrete soliton solution that minimizes the corresponding action functional of (1.6) and (1.7). Moreover, we prove that both components of the discrete soliton solution are not zero.

2 Preliminaries

In this section, we describe the functional setting that will be used for our treatment of the infinite nonlinear system (1.7). We first introduce a compact embedding theorem.

Consider the real sequence spaces

$$ l^{p}= \biggl\{ \phi =\{\phi _{n}\}_{n\in \mathbb{Z}}: \Vert \phi \Vert _{{p}}= \biggl(\sum_{n\in \mathbb{Z}} \vert \phi _{n} \vert ^{p} \biggr)^{\frac{1}{p}}< \infty ,\phi _{n}\in \mathbb{R},\forall{n}\in \mathbb{Z} \biggr\} . $$

Among \(l^{p}\) spaces, we have the following elementary embedding relation:

$$ l^{q}\subset{l^{p}},\qquad \Vert \phi \Vert _{{p}} \leq{ \Vert \phi \Vert _{{q}}},\quad 1\leq{q} \leq{p}\leq{\infty}. $$

When \(p=2\), it becomes the usual Hilbert space \(l^{2}\) endowed with the scalar product

$$ (\phi ,\psi )=\sum_{n\in \mathbb{Z}}\phi _{n}\psi _{n}, \quad \phi ,\psi \in{l^{2}}. $$

The spectrum of −Δ in \(l^{2}\) coincides with the interval \([0,4]\). It is known that

$$ 0\leq{(-\Delta \phi ,\phi )}\leq{4 \Vert \phi \Vert _{{2}}^{2}} \quad \forall{\phi \in{l^{2}}}. $$

Define

$$ E_{i}=\bigl\{ \phi \in{l^{2}}: (L_{i}\phi ,\phi )< \infty \bigr\} , \qquad \Vert \phi \Vert _{E_{i}}=(L_{i} \phi , \phi )^{\frac{1}{2}},\quad i=1,2. $$

The following lemma can be found in [17].

Lemma 2.1

If \(V_{1}\) and \(V_{2}\) satisfy (1.2), then \(E_{i}\), \(i=1, 2\), is compactly embedded into \(l^{p}\) for each \(2\leq{p}\leq{\infty}\), with the best embedding constant \(\alpha _{ip}=\max_{\|\phi \|_{{p}}=1}{1/\|\phi \|_{E_{i}}}\). Furthermore, the spectrum \(\sigma{(L_{i})}\) is discrete.

We define the action functional on \(E_{1} \times E_{2}\) as

$$\begin{aligned} \begin{aligned} J(\phi ,\psi )&= \frac{1}{2} \bigl((L_{1}-\omega _{1})\phi , \phi \bigr)+\frac{1}{2} \bigl((L_{2}-\omega _{2})\psi ,\psi \bigr) \\ &\quad {} -a_{4}(\phi ,\psi )- \frac{1}{4}\sum _{n\in \mathbb{Z}}\bigl(a_{1} \phi _{n}^{4}+a_{2} \psi _{n}^{4}+2a_{3}\phi _{n}^{2} \psi _{n}^{2}\bigr). \end{aligned} \end{aligned}$$
(2.1)

By Lemma 2.1 it follows that the action functional \(J(\phi ,\psi )\in{C^{1}(E_{1}\times{E_{2}},\mathbb{R})}\) and (1.7) corresponds to \(J'(\phi , \psi )=0\). So we define

$$\begin{aligned} \begin{aligned} I(\phi ,\psi )&= \bigl(J'( \phi ,\psi ), (\phi ,\psi )\bigr) \\ &= \bigl((L_{1}-\omega _{1})\phi ,\phi \bigr)+ \bigl((L_{2}-\omega _{2})\psi ,\psi \bigr) \\ &\quad {} -2a_{4}(\phi ,\psi )- \sum_{n\in \mathbb{Z}} \bigl(a_{1} \phi _{n}^{4}+a_{2}\psi _{n}^{4}+2a_{3}\phi _{n}^{2} \psi _{n}^{2}\bigr) \end{aligned} \end{aligned}$$
(2.2)

and the Nehari manifold

$$\begin{aligned} N=\bigl\{ (\phi ,\psi )\in{E_{1}\times{E_{2}}}:I(\phi ,\psi )=0, (\phi , \psi )\neq 0\bigr\} . \end{aligned}$$
(2.3)

3 Some lemmas on the Nehari manifold

Let

$$ \lambda _{i}=\inf{\bigl\{ \sigma (L_{i})\bigr\} },\quad i=1,2. $$

Throughout the paper, we will assume the following hypothesis on \(\omega _{i}\):

\((H)\):

\(\omega _{i}<\min{\{\lambda _{1}-a_{4}, \lambda _{2}-a_{4} \}}\), \(i=1,2\).

To prove the main result, we need the following lemmas on the Nehari manifold.

Lemma 3.1

Assume that \((H)\) and (1.2) hold. Then the Nehari manifold N is a nonempty closed \(C^{1}\) submanifold in \(E_{1}\times{E_{2}}\). Moreover, for any \((\phi , \psi )\in{E_{1}\times E_{2}}-\{(0,0)\}\), there is a unique point \(\tau (\phi , \psi )\in (0, \infty )\) such that \((\tau (\phi , \psi )\phi , \tau (\phi , \psi )\psi )\in N \), and \(t=\tau (\phi , \psi )\) is the unique maximum value point of \(J(t\phi , t\psi )\) in \(t\in (0, \infty )\). We have the following equality:

$$\begin{aligned} J\bigl(\tau (\phi , \psi )\phi , \tau (\phi , \psi )\psi \bigr)= \frac{I_{1}^{2}(\phi , \psi )}{4I_{2}(\phi , \psi )}, \end{aligned}$$
(3.1)

where

$$\begin{aligned}& I_{1}(\phi , \psi )= \Vert \phi \Vert _{E_{1}}^{2}- \omega _{1} \Vert \phi \Vert ^{2}_{{2}}+ \Vert \psi \Vert _{E_{2}}^{2} -\omega _{2} \Vert \psi \Vert ^{2}_{{2}}-2a_{4}(\phi , \psi ),\\& I_{2}(\phi , \psi )= \sum_{n\in \mathbb{Z}} \bigl(a_{1}\phi _{n}^{4}+a_{2} \psi _{n}^{4} +2a_{3}\phi _{n}^{2} \psi _{n}^{2}\bigr). \end{aligned}$$

Proof

We first show that \(N\neq{\emptyset}\). We rewrite (2.1) and (2.2) as

$$\begin{aligned} J(\phi ,\psi )=\frac{1}{2}I_{1}(\phi , \psi )- \frac{1}{4}I_{2}(\phi , \psi ) \end{aligned}$$
(3.2)

and

$$\begin{aligned} I(\phi ,\psi )=I_{1}(\phi , \psi )-I_{2}(\phi , \psi ), \end{aligned}$$
(3.3)

respectively. Then

$$\begin{aligned} I(t\phi ,t\psi )=t^{2} I_{1}(\phi , \psi )-t^{4} I_{2}(\phi , \psi ). \end{aligned}$$
(3.4)

Since \(a_{4}<\min{\{\lambda _{1}-\omega _{1}, \lambda _{2}-\omega _{2}\}}\), we have

$$\begin{aligned} \begin{aligned} I_{1}(\phi , \psi )&= \Vert \phi \Vert _{E_{1}}^{2}-\omega _{1} \Vert \phi \Vert ^{2}_{{2}}+ \Vert \psi \Vert _{E_{2}}^{2} -\omega _{2} \Vert \psi \Vert ^{2}_{{2}}-2a_{4}(\phi , \psi ) \\ &\geq \Vert \phi \Vert _{E_{1}}^{2}-\omega _{1} \Vert \phi \Vert ^{2}_{{2}}+ \Vert \psi \Vert _{E_{2}}^{2} -\omega _{2} \Vert \psi \Vert ^{2}_{{2}}-a_{4} \Vert \phi \Vert ^{2}_{{2}}-a_{4} \Vert \psi \Vert ^{2}_{{2}} \\ &\geq (\lambda _{1}-\omega _{1}-a_{4}) \Vert \phi \Vert ^{2}_{{2}}+(\lambda _{2}- \omega _{2}-a_{4}) \Vert \psi \Vert ^{2}_{{2}} \\ &> 0. \end{aligned} \end{aligned}$$
(3.5)

Clearly, \(I_{2}(\phi , \psi )>0\). Therefore by (3.4) and (3.5) we see that \(I(t\phi ,t\psi )>0\) for \(t>0\) small enough and \(I(t\phi ,t\psi )<0\) for \(t>0\) large enough. As a consequence, there exists \(\tau (\phi ,\psi )>0\) such that \(I(\tau (\phi ,\psi )\phi , \tau (\phi ,\psi )\psi )=0\), that is, \((\tau (\phi ,\psi )\phi , \tau (\phi ,\psi )\psi )\in{N}\). In fact, from (3.4) we have

$$\begin{aligned} \tau (\phi , \psi )= \biggl( \frac{I_{1}(\phi , \psi )}{I_{2}(\phi , \psi )} \biggr)^{\frac{1}{2}}. \end{aligned}$$
(3.6)

Moreover, in view of (2.1), we have

$$ J\bigl(\tau (\phi ,\psi )\phi , \tau (\phi ,\psi )\psi \bigr)=\frac{1}{2} \tau ^{2}( \phi ,\psi )I_{1}(\phi ,\psi )-\frac{1}{4} \tau ^{4}(\phi ,\psi ) I_{2}( \phi ,\psi )=\frac{I_{1}^{2}(\phi , \psi )}{4I_{2}(\phi , \psi )}. $$

Let \((\phi ,\psi )\in{N}\). By (2.2) and the definition of N we obtain

$$\begin{aligned} \begin{aligned} \bigl(I'(\phi , \psi ), (\phi , \psi ) \bigr)&= \bigl(I'(\phi , \psi ), (\phi , \psi )\bigr)-2I( \phi , \psi ) \\ &= -2 \sum_{n\in \mathbb{Z} }\bigl(a_{1}(\phi _{n})^{4}+a_{2}( \psi _{n})^{4}+2a_{3}( \phi _{n})^{2}(\psi _{n})^{2}\bigr) \\ &< 0. \end{aligned} \end{aligned}$$

Hence \(I^{\prime }\neq 0\), and the implicit function theorem implies that N is a closed \(C^{1}\) submanifold in \(E_{1}\times{E_{2}}\). □

Lemma 3.2

Assume that \((H)\) and (1.2) hold. Then there exists \(\eta >0\) such that \(J(\phi ,\psi )\geq{\eta}\) for all \((\phi ,\psi )\in{N}\).

Proof

Since \(\lambda _{1}\) is the smallest eigenvalue of \(L_{1}\) and \(\lambda _{2}\) is the smallest eigenvalue of \(L_{2}\), from the definition of the constants \(\alpha _{1p}\) and \(\alpha _{2p}\) we get \(\lambda _{1}=1/\alpha _{12}^{2}\) and \(\lambda _{2}=1/\alpha _{22}^{2}\). For any \((\phi ,\psi )\in{N}\), we have

$$\begin{aligned} \begin{aligned} & \Vert \phi \Vert _{E_{1}}^{2}-\omega _{1} \Vert \phi \Vert ^{2}_{{2}}+ \Vert \psi \Vert _{E_{2}}^{2}- \omega _{2} \Vert \psi \Vert ^{2}_{{2}}-2a_{4}( \phi ,\psi ) \\ &\quad= \sum_{n\in \mathbb{Z}}\bigl(a_{1}\phi _{n}^{4}+a_{2} \psi _{n}^{4}+2a_{3} \phi _{n}^{2}\psi _{n}^{2}\bigr) \\ &\quad\leq {a^{*}\bigl( \Vert \phi \Vert _{4}^{2}+ \Vert \psi \Vert _{4}^{2}\bigr)^{2}} \\ &\quad\leq {a^{*}\bigl( \Vert \phi \Vert _{2}^{2}+ \Vert \psi \Vert _{2}^{2}\bigr)^{2}} \\ &\quad\leq {a^{*}\bigl(\alpha _{12}^{2} \Vert \phi \Vert _{E_{1}}^{2}+\alpha _{22}^{2} \Vert \psi \Vert _{E_{2}}^{2}\bigr)^{2}} \\ &\quad\leq {a^{*}\gamma ^{2}_{2}\bigl( \Vert \phi \Vert _{E_{1}}^{2}+ \Vert \psi \Vert _{E_{2}}^{2} \bigr)^{2}}, \end{aligned} \end{aligned}$$
(3.7)

where \(a^{*}=\max{\{a_{1},a_{2},a_{3}\}}\) and \(\gamma _{2}=\max{\{\alpha _{12}^{2},\alpha _{22}^{2}\}}\).

Let

$$ \gamma _{1}=\min \biggl\{ 1,1-\frac{\omega _{1}+a_{4}}{\lambda _{1}},1- \frac{\omega _{2}+a_{4}}{ \lambda _{2}} \biggr\} . $$

Then

$$\begin{aligned} \begin{aligned} & \Vert \phi \Vert _{E_{1}}^{2}-\omega _{1} \Vert \phi \Vert ^{2}_{{2}}+ \Vert \psi \Vert _{E_{2}}^{2} -\omega _{2} \Vert \psi \Vert ^{2}_{{2}}-2a_{4}( \phi ,\psi ) \\ &\quad\geq \Vert \phi \Vert _{E_{1}}^{2}-\omega _{1} \Vert \phi \Vert ^{2}_{{2}}+ \Vert \psi \Vert _{E_{2}}^{2} -\omega _{2} \Vert \psi \Vert ^{2}_{{2}}-a_{4} \Vert \phi \Vert ^{2}_{{2}}-a_{4} \Vert \psi \Vert ^{2}_{{2}} \\ &\quad\geq \gamma _{1}\bigl( \Vert \phi \Vert _{E_{1}}^{2}+ \Vert \psi \Vert _{E_{2}}^{2}\bigr). \end{aligned} \end{aligned}$$
(3.8)

By (3.7) and (3.8) we easily see that

$$\begin{aligned} \gamma _{1}\bigl( \Vert \phi \Vert _{E_{1}}^{2}+ \Vert \psi \Vert _{E_{2}}^{2}\bigr)\leq{a^{*} \gamma ^{2}_{2}\bigl( \Vert \phi \Vert _{E_{1}}^{2}+ \Vert \psi \Vert _{E_{2}}^{2} \bigr)^{2}}, \end{aligned}$$
(3.9)

which implies that

$$\begin{aligned} \Vert \phi \Vert _{E_{1}}^{2}+ \Vert \psi \Vert _{E_{2}}^{2}\geq{ \frac{\gamma _{1}}{a^{*}\gamma ^{2}_{2}}}. \end{aligned}$$
(3.10)

Moreover, we have

$$\begin{aligned} \begin{aligned} J(\phi ,\psi )&= J(\phi ,\psi )- \frac{1}{4}I(\phi , \psi ) \\ &= \frac{1}{4}\bigl( \Vert \phi \Vert _{E_{1}}^{2}- \omega _{1} \Vert \phi \Vert ^{2}_{{2}}+ \Vert \psi \Vert _{E_{2}}^{2}-\omega _{2} \Vert \psi \Vert ^{2}_{{2}}-2a_{4}( \phi ,\psi )\bigr) \\ &\geq { \frac{\gamma _{1}}{4}\bigl( \Vert \phi \Vert _{E_{1}}^{2}+ \Vert \psi \Vert _{E_{2}}^{2}\bigr)} \\ &\geq { \frac{\gamma _{1}^{2}}{4a^{*}\gamma ^{2}_{2}}}. \end{aligned} \end{aligned}$$
(3.11)

Let \(\eta =\gamma _{1}^{2}/({4a^{*}\gamma ^{2}_{2}})\). Then we get \(J(\phi ,\psi )\geq{\eta}\) for all \((\phi ,\psi )\in{N}\). □

4 Main results

Now we state the main result of this paper.

Theorem 4.1

Assume that \((H)\) and (1.2) hold. Then system (1.7) has at least one nontrivial discrete soliton solution \((\phi ^{*},\psi ^{*})\) in \(E_{1}\times E_{2}\) with \(\phi ^{*}\neq 0\) and \(\psi ^{*}\neq 0\).

By a discrete soliton solution of system (1.7) we mean a minimizer of the following constrained minimization problem:

$$\begin{aligned} d\equiv{\inf_{(\phi ,\psi )\in{N}}J(\phi ,\psi )}. \end{aligned}$$
(4.1)

We will prove that minimizers of problem (4.1) are solutions of system (1.7) with (1.6). Such solutions give the lowest possible value of the action functional J among nontrivial solutions of system (1.7) in \(E_{1}\times E_{2}\).

Remark 4.1

If \((\phi , \psi )\in E_{1}\times E_{2}\), then (1.6) holds naturally.

Remark 4.2

In system (1.7) the positive constant \(a_{4}\) can be replaced by a negative one, say \(a_{5}\). In this case, we replace \(\psi _{n}\) by \(-\psi _{n}\) and \(-a_{5}\) by \(a_{4}\), and the conclusion of Theorem 4.1 still holds.

Now we are ready to prove Theorem 4.1.

Proof

Let d be given by (4.1). By Lemma 3.1, N is nonempty, and there exists a sequence \(\{(\phi ^{(k)},\psi ^{(k)})\}\subset{N}\) such that

$$\begin{aligned} d=\lim_{k\rightarrow{\infty}}J\bigl(\phi ^{(k)},\psi ^{(k)} \bigr). \end{aligned}$$
(4.2)

By Lemma 3.2, \(d>0\) and \(d\leq{\tilde{d}=\max_{k}{\{J(\phi ^{(k)},\psi ^{(k)})\}}}<\infty \). By (3.11) we have

$$ \bigl\Vert \phi ^{(k)} \bigr\Vert _{E_{1}}^{2}+ \bigl\Vert \psi ^{(k)} \bigr\Vert _{E_{2}}^{2}\leq{ \frac{4}{\gamma _{1}}}J\bigl(\phi ^{(k)},\psi ^{(k)}\bigr)\leq{ \frac{4\tilde{d}}{\gamma _{1}}}< \infty . $$

Thus the sequences \(\{\phi ^{(k)}\}\) and \(\{\psi ^{(k)}\}\) are bounded in the Hilbert spaces \(E_{1}\) and \(E_{2}\), respectively. Therefore there exist a subsequence of \(\{\phi ^{(k)}\}\) and a subsequence of \(\{\psi ^{(k)}\}\), denoted again by \(\{\phi ^{(k)}\}\) and \(\{\psi ^{(k)}\}\) for simplicity, that converge weakly to some \(\phi ^{*}\in E_{1}\) and \(\psi ^{*}\in{E_{2}}\), respectively. By Lemma 2.1 we get, for each \(2\leq{p}\leq{\infty}\),

$$\begin{aligned} \lim_{k\rightarrow{\infty}}\phi ^{(k)}=\phi ^{*}, \qquad \lim _{k \rightarrow{\infty}}\psi ^{(k)}=\psi ^{*}, \quad \text{in } l^{p}. \end{aligned}$$
(4.3)

By (2.1) and (2.3) we know that

$$\begin{aligned} J\bigl(\phi ^{(k)},\psi ^{(k)}\bigr) = \frac{1}{4}\sum _{n\in \mathbb{Z}}\bigl(a_{1}\bigl(\phi ^{(k)}_{n}\bigr)^{4}+a_{2}\bigl(\psi ^{(k)}_{n}\bigr)^{4}+2a_{3}\bigl( \phi ^{(k)}_{n}\bigr)^{2}\bigl(\psi ^{(k)}_{n} \bigr)^{2}\bigr). \end{aligned}$$

Now we claim that

$$ \begin{aligned} & \lim_{k\rightarrow{\infty}}\sum _{n\in \mathbb{Z}}\bigl(a_{1}\bigl( \phi ^{(k)}_{n}\bigr)^{4} +a_{2}\bigl(\psi ^{(k)}_{n}\bigr)^{4}+2a_{3}\bigl(\phi ^{(k)}_{n}\bigr)^{2}\bigl( \psi ^{(k)}_{n} \bigr)^{2}\bigr) \\ &\quad = \sum_{n\in \mathbb{Z}}\bigl(a_{1}\bigl(\phi ^{*}_{n}\bigr)^{4}+a_{2}\bigl( \psi ^{*}_{n}\bigr)^{4}+2a_{3}\bigl(\phi ^{*}_{n}\bigr)^{2}\bigl(\psi ^{*}_{n} \bigr)^{2}\bigr). \end{aligned} $$
(4.4)

According to (4.3), it suffices to show that

$$ \lim_{k\rightarrow{\infty}}\sum_{n\in \mathbb{Z}} \bigl( \phi ^{(k)}_{n}\bigr)^{2}\bigl(\psi ^{(k)}_{n}\bigr)^{2} =\sum _{n\in \mathbb{Z}}\bigl( \phi ^{*}_{n} \bigr)^{2}\bigl(\psi ^{*}_{n}\bigr)^{2}. $$
(4.5)

Indeed,

$$\begin{aligned} \begin{aligned} & \biggl\vert \sum_{n\in \mathbb{Z}} \bigl(\phi ^{(k)}_{n}\bigr)^{2}\bigl( \psi ^{(k)}_{n}\bigr)^{2}-\sum _{n\in \mathbb{Z}}\bigl(\phi ^{*}_{n} \bigr)^{2}\bigl(\psi ^{*}_{n}\bigr)^{2} \biggr\vert \\ &\quad \leq \sum_{n\in \mathbb{Z}} \bigl\vert \phi ^{(k)}_{n}-\phi ^{*}_{n} \bigr\vert \bigl\vert \phi ^{(k)}_{n}+\phi ^{*}_{n} \bigr\vert \bigl(\psi ^{(k)}_{n}\bigr)^{2} + \sum _{n\in \mathbb{Z}} \bigl\vert \psi ^{(k)}_{n}- \psi ^{*}_{n} \bigr\vert \bigl\vert \psi ^{(k)}_{n}+ \psi ^{*}_{n} \bigr\vert \bigl(\phi ^{*}_{n}\bigr)^{2}. \end{aligned} \end{aligned}$$

Thus the Hölder inequality and (4.3) imply (4.5).

Next, we will show that \((\phi ^{*},\psi ^{*})\in{N}\) and \(J(\phi ^{*},\psi ^{*})=d\). Since \(E_{i}\) is a Hilbert space for \(i=1,2\), by (4.4) we have

$$\begin{aligned} & \bigl\Vert \phi ^{*} \bigr\Vert _{E_{1}}^{2}+ \bigl\Vert \psi ^{*} \bigr\Vert _{E_{2}}^{2} \\ &\quad = \Bigl\Vert \text{weak-}\lim_{k\rightarrow{\infty}}\phi ^{(k)} \Bigr\Vert _{E_{1}}^{2}+ \Bigl\Vert \text{weak-}\lim _{k\rightarrow{\infty}}\psi ^{(k)} \Bigr\Vert _{E_{2}}^{2} \\ &\quad \leq \liminf_{k\rightarrow{\infty}} \bigl\Vert \phi ^{(k)} \bigr\Vert _{E_{1}}^{2}+ \liminf_{k\rightarrow{\infty}} \bigl\Vert \psi ^{(k)} \bigr\Vert _{E_{2}}^{2} \\ &\quad \leq \liminf_{k\rightarrow{\infty}}\bigl( \bigl\Vert \phi ^{(k)} \bigr\Vert _{E_{1}}^{2}+ \bigl\Vert \psi ^{(k)} \bigr\Vert _{E_{2}}^{2}\bigr) \\ &\quad =\liminf_{k\rightarrow{\infty}}\sum_{n\in \mathbb{Z}} \bigl(a_{1}\bigl( \phi ^{(k)}_{n} \bigr)^{4}+a_{2}\bigl(\psi ^{(k)}_{n} \bigr)^{4}+ 2a_{3}\bigl(\phi ^{(k)}_{n} \bigr)^{2}\bigl( \psi ^{(k)}_{n}\bigr)^{2} \bigr) \\ & \qquad {} +\liminf_{k\rightarrow{\infty}}\bigl(\omega _{1} \bigl\Vert \phi ^{(k)} \bigr\Vert _{{2}}^{2} +\omega _{2} \bigl\Vert \psi ^{(k)} \bigr\Vert _{{2}}^{2}+2a_{4} \bigl(\phi ^{(k)},\psi ^{(k)}\bigr)\bigr) \\ &\quad =\sum_{n\in \mathbb{Z}} \bigl(a_{1}\bigl(\phi ^{*}_{n}\bigr)^{4}+a_{2}\bigl(\psi ^{*}_{n}\bigr)^{4}+2a_{3}\bigl( \phi ^{*}_{n}\bigr)^{2}\bigl(\psi ^{*}_{n} \bigr)^{2} \bigr) \\ & \qquad {}+\omega _{1} \bigl\Vert \phi ^{*} \bigr\Vert _{{2}}^{2}+\omega _{2} \bigl\Vert \psi ^{*} \bigr\Vert _{{2}}^{2}+2a_{4}\bigl( \phi ^{*},\psi ^{*}\bigr), \end{aligned}$$

which implies

$$ \begin{aligned} I\bigl(\phi ^{*},\psi ^{*} \bigr)&= \bigl\Vert \phi ^{*} \bigr\Vert _{E_{1}}^{2}- \omega _{1} \bigl\Vert \phi ^{*} \bigr\Vert _{{2}}^{2}+ \bigl\Vert \psi ^{*} \bigr\Vert _{E_{2}}^{2} -\omega _{2} \bigl\Vert \psi ^{*} \bigr\Vert _{{2}}^{2}-2a_{4}\bigl( \phi ^{*},\psi ^{*}\bigr) \\ &\quad {} -\sum_{n\in \mathbb{Z}}\bigl(a_{1}\bigl(\phi ^{*}_{n}\bigr)^{4}+a_{2}\bigl( \psi ^{*}_{n}\bigr)^{4}+2a_{3}\bigl(\phi ^{*}_{n}\bigr)^{2}\bigl(\psi ^{*}_{n} \bigr)^{2}\bigr) \\ &\leq 0. \end{aligned} $$

Through an argument similar to the proof of Lemma 3.1, we know that \(I(t\phi ^{*},t\psi ^{*})\) is positive as t is small enough. Therefore there exists \(t^{*}\in{(0,1]}\) such that \(I(t^{*}\phi ^{*},t^{*}\psi ^{*})=0\), which implies \((t^{*}\phi ^{*},t^{*}\psi ^{*})\in{N}\). Thus we have \(J(t^{*}\phi ^{*},t^{*}\psi ^{*})=({1}/{4})W(t^{*})\) and by ( 4.4), \(W(1)=4d\), where

$$ W(t)=t^{4}\sum_{n\in \mathbb{Z}}\bigl(a_{1} \bigl(\phi ^{*}_{n}\bigr)^{4}+a_{2} \bigl( \psi ^{*}_{n}\bigr)^{4}+2a_{3} \bigl(\phi ^{*}_{n}\bigr)^{2}\bigl(\psi ^{*}_{n}\bigr)^{2}\bigr). $$

Clearly, \(W(t)\) is strictly increasing on \(0< t<\infty \). Therefore by (4.1)

$$ d\leq{J\bigl(t^{*}\phi ^{*},t^{*}\psi ^{*}\bigr)}=\frac{1}{4}W\bigl(t^{*}\bigr)\leq{ \frac{1}{4}W(1)}=d. $$

This implies that \(t^{*}=1\) and \(J(\phi ^{*},\psi ^{*})=d\).

Now let us prove that \((\phi ^{*},\psi ^{*})\) is a nontrivial solution to system (1.7). Since \((\phi ^{*},\psi ^{*})\) is an energy minimizer on the Nehari manifold N, there exists a Lagrange multiplier Λ such that

$$\begin{aligned} \bigl(J'\bigl(\phi ^{*}, \psi ^{*}\bigr)+ \Lambda I'\bigl(\phi ^{*}, \psi ^{*}\bigr), ( \phi , \psi )\bigr)=0 \end{aligned}$$
(4.6)

for all \((\phi , \psi )\in E_{1}\times E_{2}\). Let \((\phi , \psi )=(\phi ^{*}, \psi ^{*})\) in (4.6). Then \((J'(\phi ^{*}, \psi ^{*}), (\phi ^{*}, \psi ^{*}))=I(\phi ^{*}, \psi ^{*})=0\) implies that

$$ \Lambda \bigl(I'\bigl(\phi ^{*}, \psi ^{*} \bigr), \bigl(\phi ^{*}, \psi ^{*}\bigr)\bigr)=0. $$

However,

$$\begin{aligned} \begin{aligned} & \bigl(I'\bigl(\phi ^{*}, \psi ^{*}\bigr), \bigl(\phi ^{*}, \psi ^{*}\bigr)\bigr) \\ &\quad= 2\bigl((L_{1}-\omega _{1})\phi ^{*}, \phi ^{*}\bigr)+2\bigl((L_{2}-\omega _{2}) \psi ^{*}, \psi ^{*}\bigr)-4a_{4}\bigl(\phi ^{*},\psi ^{*}\bigr) \\ &\qquad{} -4 \sum_{n\in \mathbb{Z} }\bigl(a_{1}\bigl(\phi ^{*}_{n}\bigr)^{4}+a_{2}\bigl( \psi ^{*}_{n}\bigr)^{4}+2a_{3}\bigl(\phi ^{*}_{n}\bigr)^{2}\bigl(\psi ^{*}_{n} \bigr)^{2}\bigr) \\ &\quad= -2 \sum_{n\in \mathbb{Z} }\bigl(a_{1}\bigl(\phi ^{*}_{n}\bigr)^{4}+a_{2}\bigl( \psi ^{*}_{n}\bigr)^{4}+2a_{3}\bigl(\phi ^{*}_{n}\bigr)^{2}\bigl(\psi ^{*}_{n} \bigr)^{2}\bigr)< 0. \end{aligned} \end{aligned}$$
(4.7)

Thus \(\Lambda =0\), and

$$ \bigl(J'\bigl(\phi ^{*}, \psi ^{*}\bigr), (\phi , \psi )\bigr)=0 $$
(4.8)

for all \((\phi , \psi )\in E_{1}\times E_{2}\). Take \((\phi , \psi )=(e^{(k)}, 0)\) and \((\phi , \psi )=(0, e^{(k)})\) in (4.8) for \(k\in \mathbb{Z}\mathbbm{,}\) where

$$ e^{(k)}_{n}=\textstyle\begin{cases} 1,& n=k, \\ 0,& n\neq k. \end{cases} $$

We see that \(J'(\phi ^{*},\psi ^{*})=0\). Thus \((\phi ^{*},\psi ^{*})\) is a nontrivial solution to system (1.7).

Finally, we will show that \(\phi ^{*}\neq 0\) and \(\psi ^{*}\neq 0\). In fact, if one of the components of \((\phi ^{*},\psi ^{*})\), say \(\psi ^{*}=0\), then \(\phi ^{*}\neq 0\). Since \(\phi ^{*}\neq 0\), there exists an integer K such that \(\phi ^{*}_{K}\neq 0\). Let \(\varphi =\{\varphi _{n}\}_{n\in{\mathbb{Z}}}\), where

$$ \varphi _{n}=\textstyle\begin{cases} \phi ^{*}_{n},& \vert n \vert \le \vert K \vert , \\ 0,& \vert n \vert \ge \vert K \vert +1. \end{cases} $$

Obviously, \(\varphi \in E_{2}-\{0\}\).

For ϵ small enough, we consider \((\phi ^{*},\epsilon \varphi )\in{(E_{1}-\{0\})\times (E_{2}-\{0\})}\).

For simplicity, let

$$ B=\sum_{n\in{\mathbb{Z}}}\bigl(\phi ^{*}_{n} \bigr)^{4},\qquad B_{K}=\sum_{n=-K}^{K} \bigl( \phi ^{*}_{n}\bigr)^{4},\qquad D= \bigl((L_{2}-\omega _{2}){\varphi},{\varphi}\bigr). $$

Then, for ϵ small enough, we have

$$\begin{aligned} \begin{aligned} I_{1}^{2}\bigl( \phi ^{*},\epsilon \varphi \bigr) &= \bigl(\bigl((L_{1}- \omega _{1}){ \phi ^{*}},{\phi ^{*}}\bigr)+ \bigl((L_{2}-\omega _{2}){\epsilon \varphi},{ \epsilon \varphi}\bigr)-2a_{4}\bigl(\phi ^{*},\epsilon \varphi \bigr) \bigr)^{2} \\ &= \bigl(a_{1}B+D \epsilon ^{2}-2a_{4} \Vert \varphi \Vert ^{2}_{2}\epsilon \bigr)^{2} \\ &= a_{1}^{2}B^{2}-4a_{1}a_{4}B \Vert \varphi \Vert ^{2}_{2}\epsilon + \bigl(2a_{1} BD+4a_{4}^{2} \Vert \varphi \Vert ^{4}_{2}\bigr)\epsilon ^{2} \\ &\qquad {} -4a_{4} D \Vert \varphi \Vert ^{2}_{2} \epsilon ^{3}+D^{2} \epsilon ^{4} \\ &< a_{1}^{2}B^{2}+2a_{1}a_{3}B B_{K}\epsilon ^{2}+a_{1}a_{2}B B_{K} \epsilon ^{4} \\ &= a_{1}B\bigl(a_{1}B+a_{2} B_{K} \epsilon ^{4}+2a_{3}B_{K}\epsilon ^{2} \bigr) \\ &= I_{2}\bigl(\phi ^{*},0\bigr)I_{2}\bigl(\phi ^{*},\epsilon \varphi \bigr). \end{aligned} \end{aligned}$$
(4.9)

By Lemma 3.1, \((\tau (\phi ^{*},\epsilon \varphi )\phi ^{*}, \tau (\phi ^{*}, \epsilon \varphi )\epsilon \varphi )\in N\), and by (4.9) we have

$$\begin{aligned} \begin{aligned} J\bigl(\tau \bigl(\phi ^{*},\epsilon \varphi \bigr)\phi ^{*}, \tau \bigl(\phi ^{*}, \epsilon \varphi \bigr)\epsilon \varphi \bigr) &= \frac{I_{1}^{2}(\phi ^{*},\epsilon \varphi )}{4I_{2}(\phi ^{*},\epsilon \varphi )} \\ &< \frac{1}{4}I_{2}\bigl({\phi ^{*}},0\bigr) \\ &= J\bigl({\phi ^{*}},0\bigr) \\ &= \inf_{(\phi ,\psi )\in{N}}J(\phi ,\psi ). \end{aligned} \end{aligned}$$

This is a contradiction. So, \({\psi ^{*}}\neq 0\). □

5 Conclusion

We have studied the discrete solitons in the discrete coupled nonlinear Schrödinger equations with unbounded potentials. These solutions are obtained by using the Nehari manifold approach and the compact embedding theorem. However, we do not know if both components of the discrete soliton solution are nontrivial. Fortunately, we successfully found a way to prove that both components are nontrivial, namely, by comparing the value of the action functional at the discrete soliton solution with ones at nonzero solutions of one component zero. We think that our method can be applied to a variety of discrete models, especially to the N-component discrete coupled nonlinear Schrödinger equations. However, this method seems hard for the coupled discrete nonlinear Schrödinger equations with general nonlinear terms, because a formula of the action functional is not obtained and is left for our future work.

Availability of data and materials

Data sharing is not applicable to this paper as no data sets were generated or analyzed during the current study.

References

  1. Christodoulides, D., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424(6950), 817–823 (2003)

    Article  Google Scholar 

  2. Kopidakis, G., Aubry, S., Tsironis, G.: Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett. 87(16), 165501 (2001)

    Article  Google Scholar 

  3. Livi, R., Franzosi, R., Oppo, G.: Self-localization of Bose–Einstein condensates in optical lattices via boundary dissipation. Phys. Rev. Lett. 97(6), 060401 (2006)

    Article  Google Scholar 

  4. Zheng, B., Li, J., Yu, J.: Existence and stability of periodic solutions in a mosquito population suppression model with time delay. J. Differ. Equ. 315, 159–178 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  5. Yu, J., Li, J.: A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period. J. Math. Biol. 84(3), 14 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zheng, B., Yu, J.: At most two periodic solutions for a switching mosquito population suppression model. J. Dyn. Differ. Equ. 1–13 (2022)

  7. Zheng, B.: Impact of releasing period and magnitude on mosquito population in a sterile release model with delay. J. Math. Biol. 85(2), 18 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hennig, D.: Existence of breathing patterns in globally coupled finite-size nonlinear lattices. Appl. Anal. 98(14), 2511–2524 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D, Nonlinear Phenom. 103(1–4), 201–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Wei, J., Lin, X., Tang, X.: Ground state solutions for planar coupled system involving nonlinear Schrödinger equations with critical exponential growth. Math. Methods Appl. Sci. 44(11), 9062–9078 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tang, X., Lin, X.: Existence of ground state solutions of Nehari–Pankov type to Schrödinger systems. Sci. China Math. 63(1), 113–134 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kevrekidis, P.: The Discrete Nonlinear Schrödinger Equation. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  13. Zhu, Q., Zhou, Z., Wang, L.: Existence and stability of discrete solitons in nonlinear Schrödinger lattices with hard potentials. Phys. D, Nonlinear Phenom. 403, 132326 (2020)

    Article  MATH  Google Scholar 

  14. Tang, X., Chen, S., Lin, X., et al.: Ground state solutions of Nehari–Pankov type for Schrödinger equations with local super-quadratic conditions. J. Differ. Equ. 268(8), 4663–4690 (2020)

    Article  MATH  Google Scholar 

  15. Chen, S., Tang, X.: On the planar Schrödinger equation with indefinite linear part and critical growth nonlinearity. Calc. Var. Partial Differ. Equ. 60(3), 1–27 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pankov, A., Rothos, V.: Periodic and decaying solutions in discrete nonlinear Schrödinger equation with saturable nonlinearity. Proc. R. Soc. A, Math. Phys. Eng. Sci. 464(2100), 3219–3236 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, G., Pankov, A.: Standing waves of the discrete nonlinear Schrödinger equations with growing potentials. Commun. Math. Anal. 5(2), 38–49 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Zhang, G., Pankov, A.: Standing wave solutions of the discrete non-linear Schrödinger equations with unbounded potentials, II. Appl. Anal. 89(9), 1541–1557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, Z., Yu, J., Chen, Y.: On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity. Nonlinearity 23(7), 1727–1740 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, Z., Yu, J.: On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J. Differ. Equ. 249(5), 1199–1212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Du, S., Zhou, Z.: On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator. Adv. Nonlinear Anal. 11(1), 198–211 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mei, P., Zhou, Z.: Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities. Appl. Math. Lett. 130, 108006 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zeng, X., Zhang, Y., Zhou, H.: Existence and stability of standing waves for a coupled nonlinear Schrödinger system. Acta Math. Sci. 35(1), 45–70 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. do Ó, J., de Albuquerque, J.: On coupled systems of nonlinear Schrödinger equations with critical exponential growth. Appl. Anal. 97(6), 1000–1015 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shchesnovich, V., Kamchatnov, A., Kraenkel, R.: Mixed-isotope Bose–Einstein condensates in rubidium. Phys. Rev. A 69(3), 033601 (2004)

    Article  Google Scholar 

  26. Ivanov, V., Khramov, A., Hansen, A., et al.: Sympathetic cooling in an optically trapped mixture of alkali and spin-singlet atoms. Phys. Rev. Lett. 106(15), 153201 (2011)

    Article  Google Scholar 

  27. Trombettoni, A., Nistazakis, H., Rapti, Z., et al.: Soliton dynamics in linearly coupled discrete nonlinear Schrödinger equations. Math. Comput. Simul. 80(4), 814–824 (2009)

    Article  MATH  Google Scholar 

  28. Liu, L., Yan, W., Zhao, X.: The existence of standing wave for the discrete coupled nonlinear Schrödinger lattice. Phys. Lett. A 374(15–16), 1690–1693 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Huang, M., Zhou, Z.: Standing wave solutions for the discrete coupled nonlinear Schrödinger equations with unbounded potentials. Abstr. Appl. Anal. 2013, Article ID 842594 (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11971126) and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT 16R16).

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 11971126) and the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT 16R16).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhan Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Zhou, Z. The existence of discrete solitons for the discrete coupled nonlinear Schrödinger system. Bound Value Probl 2023, 24 (2023). https://doi.org/10.1186/s13661-023-01712-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01712-7

Keywords