- Research
- Open Access
- Published:
Unique iterative solution for high-order nonlinear fractional q-difference equation based on \(\psi -(h,r)\)-concave operators
Boundary Value Problems volume 2023, Article number: 37 (2023)
Abstract
An objective of this paper is to investigate the boundary value problem of a high-order nonlinear fractional q-difference equation. It was to obtain a unique iterative solution for this problem by means of applying a novel fixed-point theorem of \(\psi -(h,r)\)-concave operator, in which the operator is increasing and defined in ordered sets. Moreover, we construct a monotone explicit iterative scheme to approximate the unique solution. Finally, we give an example to illustrate the use of the main result.
1 Introduction
In the early twentieth century, Jackson discovered a new mathematical direction of q-difference calculus. Its basic definition and properties can be seen in the literature [1, 2]. Since then, due to q-difference calculus having important applications in mathematical physics, quantum mechanics, complex analysis, and other fields, many scholars have studied q-difference equations and obtained a variety of useful results. Fractional q-difference calculus is an extension of q-difference calculus, which originated from Al-Salam [3] and Agarwal [4], and some results can be found in the literature [5, 6]. Up to now, fractional q-difference calculus is still a hot topic of research. In recent years, there has been tremendous interest in developing the solvability of fractional q-difference equations.
It is of great significance to investigate the boundary value problems (BVPs) of fractional q-difference equations. As is known, it can be applied to many aspects of real life, such as engineering, physics, chemistry, mechanics, the electrodynamics of composite media, and so on. More and more researchers devote themselves to the research, and have come up with a great deal of interesting and novel theories and results for various BVPs of fractional q-difference equations, see [7–19] and references therein. However, in spite of BVPs for fractional q-difference equations attracting extensive attention from experts and scholars, relevant conclusions are still few in number. In particular, the solvability theory of higher-order nonlinear fractional q-difference equations needs further exploration.
In [8], Ferreira investigated the BVP for the nonlinear fractional q-difference equation
where \(2<\alpha \leq 3\) and is a nonnegative continuous function. The author obtained the existence of positive solutions for BVP by applying a fixed-point theorem in cones.
Recently, in [11], Zhai and Ren obtained the existence and uniqueness of solutions for the nonlinear fractional q-difference equation with three-point boundary conditions
by using a new fixed-point theorem of increasing \(\psi -(h,r)\)-concave operators defined in ordered sets, where \(0<\beta \eta ^{\alpha -2}<1\), \(0< q<1\), \(b\geq 0\) is a constant, \(D_{q}^{\alpha}\) denotes the Riemann–Liouville-type fractional q-derivative of order α.
On the basis of the above works, we mainly investigate the BVP of the nonlinear fractional q-difference equation
where \(0< q<1\), \(n-1<\gamma \leq n\) (\(n>2\)), \(1\leq \delta \leq n-2\), \(0< \eta <1\), \(0< a\eta ^{\gamma -\delta -1}<1\) and \(\xi \geq 0\) is a constant. Using a novel fixed-point theorem of \(\psi -(h,r)\)-concave operators defined in an ordered set \(P_{h,r}\) ([20]), we discuss the existence and uniqueness of iterative solutions for BVP (1), which is an increasing technique of dealing with nonlinear fractional q-difference BVPs.
The present paper is organized as follows. The second section shows the definitions, lemmas, theorems, and assumptions used in this paper. The third section expounds the main conclusions of this paper and gives the corresponding proof. The fourth section cites an example to verify the main conclusions. The last section of this paper contains a few concluding remarks.
2 Preliminaries
In this section, we first introduce some definitions and results of fractional q-calculus.
The q-integral of a function f in the interval \([0,b]\) is given by
If \(a\in [0,b]\) and f is defined in the interval \([0,b]\), its integral from a to b is defined by
Lemma 2.1
([7])
Let \(\alpha >0\), then we have the following formulas:
Remark 2.2
([8])
If \(\alpha >0\) and \(a\leq b\leq t\), then \((t-a)^{(\alpha )}\geq (t-b)^{(\alpha )}\).
Definition 2.3
([8])
Let \(\beta \geq 0\) and f be a function defined on \([0,1]\). The fractional q-integral of Riemann–Liouville type is
Obviously, \((I_{q}^{\beta}f)(s)=(I_{q}f)(s)\) when \(\beta =1\).
Definition 2.4
([8])
The fractional q-derivative of Riemann–Liouville type of \(\beta \geq 0\) is defined by
where l is the smallest integer greater than or equal to β. In particular, if \(\beta =1\), then \((D_{q}^{\beta}f)(s)=(D_{q}f)(s)\).
Lemma 2.5
([8])
Let \(\alpha ,\beta \geq 0\) and f be a function defined on \([0,1]\). Then, the following formulas hold:
-
1.
\((I_{q}^{\beta}I_{q}^{\alpha}f)(x)=(I_{q}^{\alpha +\beta}f)(x)\),
-
2.
\((D_{q}^{\alpha}I_{q}^{\alpha}f)(x)=f(x)\).
Remark 2.6
Assume that \(g(t)\in [0,1]\) and α, β are two constants such that \(\alpha >2 \geq \beta \geq 1\). Then,
Lemma 2.7
([8])
Let \(\alpha >0\) and p be a positive integer. Then, the following equality holds:
Lemma 2.8
([6])
For \(\lambda \in (-1,\infty )\) and \(\alpha \geq 0\), then the following equality holds:
In particular, for \(\lambda =0\) and \(a=0\), we have \(I_{q}^{\alpha}(1)(t)=\frac{t^{\alpha}}{\Gamma _{q}{(\alpha +1)}}\). In conclusion, we can obtain
Next, we introduce a concave operator that plays an important role in the proof of the main results.
Let \((X,\Arrowvert \cdot \Arrowvert )\) be a real Banach space with a partial order induced by a cone P of X, i.e., \(x\leq y\) if and only if \(y-x\in P\).
Definition 2.9
For any \(x,y\in X\), we define x and y as equivalent, if there exist \(\mu >0\) and \(\nu >0\) such that \(\mu x\leq y\leq \nu x \), denoted by \(x\sim y\).
To formulate our hypotheses, we define two important sets. For given \(h>\theta \), define the set \(P_{h}=\{x\in X\mid x\sim h\}\), and it is obvious that \(P_{h}\) ⊂P. Let \(r\in P\) with \(\theta \leq r\leq h\), we define \(P_{h,r}=\{ x\in X\mid x+r\in P_{h}\}\), namely \(P_{h,r}\) ={\(x\in X\mid\) there exist \(\mu =\mu (h,r,x)>0\), \(\nu =\nu (h,r,x)>0\) such that \(\mu h\leq x+r\leq \nu h\)}. It is easy to see that \(P_{h}=P_{h,\theta}\).
Definition 2.10
([20])
Suppose \(T:P_{h,r}\to E\) is a given operator that satisfies: for any \(x\in P_{h,r}\), \(\lambda \in (0,1)\), there exists \(\psi (\lambda )>\lambda \) such that
Then, T is called a \(\psi -(h,r)\)-concave operator.
Lemma 2.11
([20])
Assume that T is an increasing \(\psi -(h,r)\)-concave operator and P is normal, \(Th\in P_{h,r}\). Then, T has a unique fixed point \(x^{*}\) in \(P_{h,r}\). Further, for any \(v_{0}\in P_{h,r}\), the sequence \(v_{n}=Av_{n-1}\), \(n=1,2,\dots \), then \(\Arrowvert v_{n}-x^{*}\Arrowvert \to 0\) as \(n\to \infty \).
Lemma 2.12
([21])
Assume that T is an increasing \(\psi -(h,\theta )\)-concave operator and P is normal, \(Th\in P_{h}\). Then, T has a unique fixed point \(x^{*}\) in \(P_{h}\). Further, for any \(v_{0}\in P_{h}\), the sequence \(v_{n}=Av_{n-1}\), \(n=1,2,\dots \), then \(\Arrowvert v_{n}-x^{*}\Arrowvert \to 0\) as \(n\to \infty \).
Now, we propose some assumptions that will be used in this paper, as shown below:
- \((H_{1})\):
-
\(f\in C([0,1]\times [-\hat{r},+\infty ),(-\infty ,+\infty ))\) and \(f(t,u)\leq f(t,v)\) for \(-\hat{r}\leq u\leq v<+\infty \);
- \((H_{2})\):
-
\(\forall \lambda \in (0,1)\) and \(y\in [0,\hat{r}]\), there exists \(\psi (\lambda )>\lambda \) such that
$$\begin{aligned} f\bigl(t, \lambda x+(\lambda -1)y\bigr)\geq \psi (\lambda )f(t,x), \quad \forall t \in [0,1], x\in (-\infty ,+\infty ); \end{aligned}$$ - \((H_{3})\):
-
\(f(t,0)\geq 0\) with \(f(t,0)\not \equiv 0\) for every \(t\in [0,1]\);
- \((H_{4})\):
-
\(f\in C([0,1]\times [0,+\infty ),[0,+\infty ))\) and \(f(t,0)\not \equiv 0\) for every \(t\in [0,1]\);
- \((H_{5})\):
-
\(\forall t\in [0,1], f(t,x)\) is increasing with respect to x;
- \((H_{6})\):
-
\(\forall \lambda \in (0,1)\), there exists \(\psi (\lambda )>\lambda \) such that
$$\begin{aligned} f(t,\lambda x)\geq \psi (\lambda )f(t,x), \quad \forall t\in [0,1], x\in [0,+ \infty ). \end{aligned}$$
3 Result of existence and uniqueness
Let \(X=C[0,1]\) be the Banach space endowed with the norm \(\|\varpi \|=\sup \{|\varpi (t)|: t\in [0,1]\}\) and define the standard normal cone P by \(P=\{\varpi \in X\mid \varpi (t)\geq 0, t\in [0,1]\}\).
If \(\xi >0\), \(\forall t\in [0,1]\), we note that
and
where
Lemma 3.1
Let \(y\in C[0,1], a\eta ^{\gamma -\delta -1}\ne 1\) and \(\eta \in (0,1)\). Then, the BVP
has a unique solution
where
Proof
Let \(\varpi (t)\) be a solution of (4). In view of Lemma 2.5 and Lemma 2.7, we have
where \(c_{1}, c_{2}, \ldots , c_{n}\) are some constants to be determined. Since \((D_{q}^{i}\varpi )(0)=0\) (\(0\leq i\leq n-2\)), it follows that \(c_{2}=c_{3}=\cdots =c_{n}=0\). Thus,
By Remark 2.6, we have
Using the boundary condition \((D_{q}^{\delta}\varpi )(1)=a(D_{q}^{\delta}\varpi )(\eta )\), we obtain
Hence,
Namely,
The proof is completed. □
Remark 3.2
When \(\delta =1\), the function \(\overline{G}(t,s)\) can be reduced to the following form:
which appeared in [11].
Remark 3.3
When \(\delta =1\), then \(\overline{H}(t,s)={{}_{t}}D_{q}\overline{G}(t,s)\), which is the relationship between \(G(t,s)\) and \(H(t,s)\) in [11].
Lemma 3.4
The function \(\overline{G}(t,qs)\) is continuous on \([0,1]\times [0,1]\) and satisfies
-
(1)
\(\overline{G}(t,qs)\geq 0\), for any \(t,s\in [0,1]\);
-
(2)
\(\overline{G}(t,qs)\) is strictly increasing in t;
-
(3)
\(\overline{G}(t,qs)\leq \frac{1}{\Gamma _{q}(\gamma )}(1-qs)^{( \gamma -\delta -1)}t^{\gamma -1}\leq \frac{1}{\Gamma _{q}(\gamma )}\), for any \(t,s\in [0,1]\).
Proof
Let \(g_{1}(t,qs)=(1-qs)^{(\gamma -\delta -1)}t^{\gamma -1}-(t-qs)^{( \gamma -1)}\), \(g_{2}(t,qs)=(1-qs)^{(\gamma -\delta -1)}t^{\gamma -1}\).
(1) For \(t,s\in [0,1]\), obviously, \(g_{2}(t,qs)\geq 0\). We just need to prove \(g_{1}(t,qs)\geq 0\), for \(t\neq 0\),
Consequently, \(\overline{G}(t,qs)\geq 0\).
(2) For \(s\in [0,1]\), \(t\neq 0\),
Therefore, \(\overline{G}(t,qs)\) is an increasing function in the first variable.
(3) It is easy to see that this conclusion is correct. The proof is completed. □
Remark 3.5
According to Remark 3.3, \(\overline{H}(t,qs)\) has common properties with \(\overline{G}(t,qs)\), that is \(\overline{H}(t,qs)\geq 0\) and \(\overline{H}(t,qs)\leq \frac{[\gamma -1]_{q}}{\Gamma _{q}(\gamma )}(1-qs)^{( \gamma -\delta -1)}t^{\gamma -\delta -1}\leq \frac{[\gamma -1]_{q}}{\Gamma _{q}(\gamma )}\).
Theorem 3.6
Suppose that \((H_{1})\)–\((H_{3})\) hold, then the BVP (1) has a unique solution \(\varpi ^{*}\in P_{h,r}\). Moreover, define a sequence to be
for any given \(\varphi _{0}\in P_{h,r}\), we have \(\varphi _{n}(t)\to \varpi ^{*}(t)\) as \(n\to \infty \).
Proof
For \(t\in [0,1]\), we obtain
and
Thus, \(0\leq r(t)\leq h(t)\), we have \(r\in P\). In addition, \(P_{h,r}=\{\varpi \in C[0,1]\mid \varpi +r\in P_{h}\}\).
According to Lemmas 2.8 and 3.1, if ϖ is a solution of the BVP (1), then
Therefore, for any \(\varpi \in P_{h,r}\) and \(t\in [0,1]\), we define the operator
It is easy to see \(\varpi (t)\) is the solution of the BVP (1) if and only if ϖ is the fixed point of T.
Initially, we show that T is a \(\psi -(h,r)\)-concave operator. For any \(\lambda \in (0,1)\), \(\varpi \in P_{h,r}\), from the condition \((H_{2})\), we can obtain that
Thus, we have \(T(\lambda \varpi +(\lambda -1)r)\geq \psi (\lambda )T\varpi + [ \psi (\lambda )-1 ]r\), \(\lambda \in (0,1)\), \(\varpi \in P_{h,r}\). It follows that T is a \(\psi -(h,r)\)-concave operator.
On the other hand, we prove that \(T:P_{h,r}\to X\) is increasing. Due to \(\varpi \in P_{h,r}\), we have \(\varpi +r\in P_{h}\), and there exists \(\iota >0\) such that \(\varpi (t)+r(t)\geq \iota h(t)\), thus we obtain
By condition \((H_{1})\), we know \(T:P_{h,r}\to X\) is increasing.
Now, we prove that \(Th\in P_{h,r}\), which is what we need to prove \(Th+r\in P_{h}\). By Lemma 3.4 and \((H_{1})\), we obtain
and
Let
Under the conditions of \(\Gamma _{q}(\gamma )>0\), \(\mathcal{H}>0\), and assumptions \((H_{1})\), \((H_{3})\), we can obtain
that is \(\mu \geq \nu >0\) holds. Therefore, we have \(Th+r\in P_{h}\).
Eventually, by Lemma 2.11, we obtain that the operator T has a unique fixed point \(\varpi ^{*}\in P_{h,r}\), and
Consequently, \(\varpi ^{*}(t)\) is the unique solution of the BVP (1) in \(P_{h,r}\). For any \(\varphi _{0}\in P_{h,r}\), the sequence \(\varphi _{n}=T\varphi _{n-1}\), \(n=1,2,\dots \), satisfies \(\varphi _{n}\to \varpi ^{*}\) as \(n\to \infty \). That is,
where \(n=1,2,\dots \), and \(\varphi _{n}(t)\to \varpi ^{*}(t)\) as \(n\to \infty \). The proof is completed. □
Remark 3.7
Suppose the conditions of Theorem 3.6 hold and
Then, the BVP (1) has a unique nontrivial solution in \(P_{h,r}\). Meanwhile, we can construct an iterative scheme approximating the unique solution.
Corollary 3.8
Suppose that \((H_{1})\)–\((H_{3})\) hold, then the BVP
has a unique solution \(\varpi ^{*}\in P_{h,r}\), where h, r are given as in (2) and (3). Further, for any \(\varphi _{0}\in P_{h,r}\), making an iterative sequence
we have \(\varphi _{n}(t)\to \varpi ^{*}(t)\) as \(n\to \infty \).
If \(\xi =0\), we can obtain the uniqueness of positive solutions for the BVP (1) by using Lemma 2.12. The proof is similar to Theorem 3.6.
Theorem 3.9
Suppose that \((H_{4})\)–\((H_{6})\) are satisfied, and \(\xi =0\). Then, the BVP (1) has a unique positive solution \(\varpi ^{*}\) in \(P_{h}\), where \(h(t)=t^{\gamma -1}\), \(t\in [0,1]\). Moreover, for any initial value \(\varphi _{0}\in P_{h}\), from the sequence
we obtain \(\varphi _{n}(t)\to \varpi ^{*}(t)\) as \(n\to \infty \).
4 Application example
To illustrate the main result, we present in this section one significant example.
Example 4.1
Consider the following BVP:
where
and \(q=\frac{1}{2}\), \(\gamma =\frac{9}{2}\), \(\delta =\frac{5}{2}\), \(a=\eta = \frac{1}{2}\), \(\xi =1\). It can be easily seen that
where \(\mathcal{H}\geq \frac{448+28\sqrt{2}}{1143\Gamma _{q}(\frac{7}{2})}\), for any \(t\in (0,1)\).
Then, we obtain
and
Moreover, \(\hat{r}(t)=\frac{448+28\sqrt{2}}{1143\Gamma _{q}(\frac{7}{2})}\) for \(t\in [0,1]\). We see that \(f:[0,1]\times [- \frac{448+28\sqrt{2}}{1143\Gamma _{q}(\frac{7}{2})},+\infty ) \to (-\infty ,+\infty )\) is continuous and increasing with respect to the second variable, and
with \(f(t,0)\not \equiv 0\), \(t\in [0,1]\). Thus, the conditions \((H_{1})\) and \((H_{3})\) are satisfied.
It is apparent that
and
Using Remark 4 in [20], we have
where \(\psi (\lambda )=\lambda ^{\frac{1}{3}}>\lambda \), \(\lambda \in (0,1)\), it follows that the condition \((H_{2})\) is satisfied. According to Theorem 3.6, the BVP (5) has a unique solution \(\varpi ^{*}\in P_{h,r}\). For \(\varphi _{0}\in P_{h,r}\), if
we have \(\varphi _{n}(t)\to \varpi ^{*}(t)\) as \(n\to \infty \), \(t\in [0,1]\).
5 Conclusion
This research establishes the existence and uniqueness results of solutions for the BVPs of a high-order nonlinear fractional q-difference equation, according to a novel fixed-point theorem of increasingly \(\psi -(h,r)\)-concave operators defined in ordered sets, we approach the unique solution by constructing an iterative sequence, which enriches the methods to solve the boundary value problems of fractional q-difference equations, and provides the theoretical guarantee for the application of fractional q-difference equations in fields such as aerodynamics, the electrodynamics of complex medium, capacitor theory, electrical circuits, control theory, and so on. This paper does not need to limit the existence of upper and lower solutions, which is the advantage of this paper compared with other articles. In the future, we are committed to finding new ways to continue our research.
Availability of data and materials
Not applicable.
References
Jackson, F.H.: On q-functions and a certain difference operator. Earth Enw. Sci. Trans. Roy. Soc. Edin. 46(2), 253–281 (1909)
Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)
Al-Salam, W.A.: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15(2), 135–140 (1966)
Agarwal, R.P.: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365–370 (1969)
Atici, F.M., Eloe, P.W.: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14, 341–352 (2007)
Rajković, P.M., Marinković, S.D., Stanković, M.S.: Fractional integrals and derivatives in q-calculus. Appl. Anal. Discrete Math. 1, 311–323 (2007)
Ferreira, R.A.C.: Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. Theory Differ. Equ. 2010, 70 (2010)
Ferreira, R.A.C.: Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 61, 367–373 (2011)
Liang, S., Zhang, J.: Existence and uniqueness of positive solutions for three-point boundary value problem with fractional q-differences. J. Appl. Math. Comput. 40, 277–288 (2012)
Yu, C., Wang, J.: Positive solutions of nonlocal boundary value problem for high-order nonlinear fractional q-difference equations. Abstr. Appl. Anal. 2013, Article ID 928147 (2013)
Zhai, C., Ren, J.: The unique solution for a fractional q-difference equation with three-point boundary conditions. Indag. Math. 29, 948–961 (2018)
Wang, G.: Twin iterative positive solutions of fractional q-difference Schrödinger equations. Appl. Math. Lett. 76, 103–109 (2018)
Chen, Y.: Positive solutions for a three-point boundary value problem of fractional q-difference equations. Symmetry 10, 358 (2018)
Ma, K., Li, X., Sun, S.: Boundary value problems of fractional q-difference equations on the half-line. Bound. Value Probl. 2019, 46 (2019)
Mao, J., Zhao, Z., Wang, C.: The unique iterative positive solution of fractional boundary value problem with q-difference. Appl. Math. Lett. 100, 1–8 (2020)
Boutiara, A., Benbachir, M., Kaabar, M.K.A.: Explicit iteration and unbounded solutions for fractional q-difference equations with boundary conditions on an infinite interval. J. Inequal. Appl. 2022, 29 (2022)
Boutiara, A., Benbachir, M.: Existence and uniqueness results to a fractional q-difference coupled system with integral boundary conditions via topological degree theory. Int. J. Nonlinear Anal. Appl. 13(1), 3197–3211 (2022)
Wang, J., Yu, C., Zhang, B., Wang, S.: Positive solutions for eigenvalue problems of fractional q-difference equation with ϕ-Laplacian. Adv. Differ. Equ. 2021, 499 (2021)
Samei, M.E., Karimi, L., Kaabar, M.K.A.: To investigate a class of multi-singular pointwise defined fractional q-integro-differential equation with applications. AIMS Math. 7(5), 7781–7816 (2022)
Zhai, C., Wang, L.: \(\varphi -(h,e)\)-Concave operators and applications. J. Math. Anal. Appl. 454, 571–584 (2017)
Zhai, C., Wang, F.: Properties of positive solutions for the operator equation \(Ax=\lambda x\) and applications to fractional differential equations with integral boundary conditions. Adv. Differ. Equ. 2015, 366 (2015)
Acknowledgements
The authors would like to thank the administration of their institutions for their support.
Funding
This research was supported by the National Natural Science Foundation of China (11772007), the Beijing Natural Science Foundation (1172002, Z180005), the Natural Science Foundation of Hebei Province (A2015208114), and the Foundation of Hebei Education Department (QN2017063).
Author information
Authors and Affiliations
Contributions
Conceptualization, JW and CY; methodology, CY; data curation, JW and SW; original draft preparation, SW; review and editing, CY. All authors have read and agreed with the published version of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Wang, J., Wang, S. & Yu, C. Unique iterative solution for high-order nonlinear fractional q-difference equation based on \(\psi -(h,r)\)-concave operators. Bound Value Probl 2023, 37 (2023). https://doi.org/10.1186/s13661-023-01718-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01718-1
MSC
- 39A13
- 39A27
- 34B40
Keywords
- Fractional q-difference equations
- Monotone iterative scheme
- \(\psi -(h,r)\)-concave operator
- Fixed-point theorem
- Boundary value problem