Skip to main content

A note on inhomogeneous fractional Schrödinger equations

Abstract

We study some energy well-posedness issues of the Schrödinger equation with an inhomogeneous mixed nonlinearity and radial data

$$ i\dot{u}-(-\Delta )^{s} u \pm \vert x \vert ^{\rho} \vert u \vert ^{p-1}u\pm \vert u \vert ^{q-1}u=0, \quad 0< s< 1, \rho \neq 0, p,q>1. $$

Our aim is to treat the competition between the homogeneous term \(|u|^{q-1}u\) and the inhomogeneous one \(|x|^{\rho}|u|^{p-1}u\). We simultaneously treat two different regimes, \(\rho >0\) and \(\rho <-2s\). We deal with three technical challenges at the same time: the absence of a scaling invariance, the presence of the singular decaying term \(|\cdot |^{\rho}\), and the nonlocality of the fractional differential operator \((-\Delta )^{s}\). We give some sufficient conditions on the datum and the parameters N, s, ρ, p, q to have the global versus nonglobal existence of energy solutions. We use the associated ground states and some sharp Gagliardo–Nirenberg inequalities. Moreover, we investigate the \(L^{2}\) concentration of the mass-critical blowing-up solutions. Finally, in the attractive regime, we prove the scattering of energy global solutions. Since there is a loss of regularity in Strichartz estimates for the fractional Schrödinger problem with nonradial data, in this work, we assume that \(u_{|t=0}\) is spherically symmetric. The blowup results use ideas of the pioneering work by Boulenger el al. (J. Funct. Anal. 271:2569–2603, 2016).

1 Introduction

We consider the fractional nonlinear Schrödinger (FNLS) equation

$$ \textstyle\begin{cases} i\dot{u}-(-\Delta )^{s} u +\lambda _{1} \vert x \vert ^{\rho} \vert u \vert ^{p-1}u+\lambda _{2} \vert u \vert ^{q-1}u=0, \\ u_{|t=0}=u_{0}. \end{cases} $$
(1.1)

Here and hereafter, \(N\geq 2\), \(\lambda _{i}=\pm 1\), \(\rho \neq 0\), \(p,q>1\), and u:=u(t,x):R× R N C. The fractional Laplacian operator is defined via the Fourier transform as follows:

$$ \mathcal {F}\bigl[(-\Delta )^{s}\cdot \bigr]:= \vert \cdot \vert ^{2s}\mathcal {F}\cdot , \quad s\in (0,1). $$

Introduced by Laskin [18, 19], the fractional Schrödinger problem used the theory of functional measures caused by the Levy stochastic process with expansion of the Feynman path integral from the Brownian-like to the Levy-like quantum mechanical paths. The inhomogeneous nonlinear Schrödinger equation \((s=1=1-\lambda _{2})\) models the beam propagation [1, 12, 20, 23] in nonlinear optics and plasma physics.

The well-posedness issues of some particular cases of the above problem were investigated by many authors. Indeed, the fractional nonlinear Schrödinger equation [2, 3, 13, 14, 27, 32] corresponds to \(\lambda _{1}=0\) in (1.1). If \(\lambda _{2}=0\), then problem (1.1) fits the nonlinear Schrodinger equation, called NLS for short [26, 28]. Eventually, the Schrödinger equation with mixed power nonlinearity [8, 21, 22, 30] coincides with \(\rho =0\) and \(s=1\).

The FNLS with a mixed source term was investigated in [7, 9], where the questions of global/nonglobal existence and scattering of solutions were treated.

The aim of this note is to study the competition between the singular inhomogeneous local source term \(|x|^{\rho}|u|^{p-1}u\) and the local homogeneous term \(|u|^{q-1}u\). We try to generalize some results about the fractional Schrödinger problem with a mixed power source term to the inhomogeneous case. Indeed, we obtain a sharp threshold of global/nonglobal existence of energy solutions to problem (1.1). Moreover, we investigate the \(L^{2}\) concentration of the mass-critical nonglobal solutions and obtain a scattering result in the defocusing regime, based on the Morawetz estimate and the decay in some Lebesgue spaces. There are at least three technical difficulties: the absence of scaling invariance, the presence of a singular inhomogeneous term, and a nonlocal fractional differential operator. The spherically symmetric assumption is due to the loss of regularity in Strichartz estimates in the nonradial regime [15]. The blowup results are based on the pioneering work [3], which partially resolves the open problem of nonglobal existence of solutions to FNLS using a localized variance identity. In the present work, we treat simultaneously the two different regimes \(\rho >0\) and \(\rho <-2s\), contrarily to the most papers considering the inhomogeneous Schrödinger problem. A similar problem with a nonlocal source term of Hartree type was treated recently by the first author [29].

The note has the following plan. In Sect. 2, we derive the contribution and some standard estimates. Sections 3 and 4 are devoted to proving some localized variance-type identities. In Sect. 5, we give a nonglobal existence criterion. Section 6 deals with establishing the finite-time blowup of solutions with nonpositive energy. In Sects. 7 and 8, we investigate the \(L^{2}\) concentration of the mass-critical solutions. In Sect. 9, we establish a threshold of global existence versus finite-time blowup of solutions. The scattering of defocusing global solutions in the energy space is proved in Sect. 10. Finally, a compact Sobolev embedding is given in the Appendix.

Let us denote the Lebesgue and Sobolev spaces and their classical norms:

L r : = L r ( R N ) , H s : = H s ( R N ) , H r d s : = { f H s , f ( ) = f ( | | ) } ; : = 2 , H s : = ( 2 + ( Δ ) s 2 2 ) 1 2 .

Eventually, \(x^{\pm}\) are two real numbers close to x satisfying \(x^{+}>x\) and \(x^{-}< x\).

2 Main results and useful estimates

In this section, we collects the main results and some standard estimates.

2.1 Notations

Here and hereafter, we define the real numbers

$$\begin{aligned}& \mathcal {I}_{p}:=\mathcal {I}(N,p,\rho ,s):=\frac{N(p-1)-2\rho}{2s}, \qquad \mathcal {J}_{p}:=\mathcal {J}(N,p,\rho ,s):=1+p-\mathcal {I}_{p}; \\& \mathcal {J}_{q}:=\mathcal {J}(N,q,0,s),\qquad \mathcal {I}_{q}:= \mathcal {I}(N,q,0,s). \end{aligned}$$

The energy critical exponents are

$$ p^{c}:=p^{c}(N,s,\rho )= 1+\frac{2(2s+\rho )}{N-2s}\quad \text{and} \quad q^{c}:=p^{c}(N,s,0). $$

The mass critical exponents are

$$ p_{c}:=p^{c}(N,s,\rho )= 1+\frac{2(2s+\rho )}{N}\quad \text{and}\quad q_{c}:=p^{c}(N,s,0). $$

In the spirit of [3], we denote \(\zeta _{R}:=R^{2}\zeta (\frac{\cdot }{R})\), where ζ C 0 ( R N ) is a radial, and

$$ \zeta :x\longmapsto \textstyle\begin{cases} \frac{1}{2} \vert x \vert ^{2},& \vert x \vert \leq 1 , \\ 0,& \vert x \vert \geq 10, \end{cases}\displaystyle \quad \text{and}\quad \zeta '' \leq 1. $$

By a direct calculus it follows that

$$ \zeta _{R}''\leq 1,\qquad \zeta _{R}'(r)\leq r,\quad \text{and}\quad \Delta \zeta _{R}\leq N. $$

Define also

$$ \zeta _{2}:=N-\Delta \zeta _{R}\geq 0,\qquad \zeta _{1}:=1-\zeta _{R}'' \geq 0, \quad \text{and}\quad \zeta _{3}:=1- \frac{x\cdot \nabla \zeta _{R}}{ \vert x \vert ^{2}}\geq 0. $$

Denote the localized virial

M ζ [u]:=2 R N u ¯ ζudx=2 R N u ¯ k ζ k udx.

Then \(M_{\zeta}[u] =\langle u,\Gamma _{\zeta }u\rangle\), where \(\Gamma _{\zeta }g:=-i [\nabla \cdot (g\nabla \zeta ) + \nabla \zeta \cdot \nabla g ]\). Finally, we introduce the sequence of functions

$$\begin{aligned} u_{n}(t,\cdot ) :=&\sqrt{\frac{\sin (\pi t)}{\pi}}\mathcal {F}^{-1} \biggl(\frac{\mathcal {F}{u}}{n+ \vert \cdot \vert ^{2}} \biggr). \end{aligned}$$

2.2 Preliminaries

First, a sharp Gagliardo–Nirenberg-type inequality related to (1.1) was established in [26, 28].

Proposition 2.1

Let \(\rho >-2s\) and \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\). Then:

  1. 1.

    There is (a best constant) \(C(N,p,\rho ,s)>0\) such that for all \(u\in H^{s}\) if \(\rho \leq 0\) and all \(u\in H^{s}_{rd}\) if \(\rho >0\),

    R N |u | 1 + p |x | ρ dxC(N,p,ρ,s) u J p ( Δ ) s 2 u I p ;
    (2.1)
  2. 2.

    Moreover,

    $$ C(N,p,\rho ,s)=\frac{1+p}{\mathcal {J}_{p}}\biggl( \frac{\mathcal {J}_{p}}{\mathcal {I}_{p}}\biggr)^{\frac{\mathcal {I}_{p}}{2}} \Vert {Q_{p}} \Vert ^{-(p-1)}, $$

    where \({Q_{p}}\) resolves

    $$ (-\Delta )^{s}{Q_{p}} +{Q_{p}} - \vert x \vert ^{\rho} \vert {Q_{p}} \vert ^{p-1}{Q_{p}}=0 , \quad {Q_{p}} \in H^{s}_{rd}-\{0\};$$
    (2.2)
  3. 3.

    Furthermore, we have the Pohozaev identities

    J p ( Δ ) s 2 Q p 2 = I p Q p 2 , J p R N | Q p | 1 + p |x | ρ dx=(1+p) Q p 2 .

Remark 2.2

For AR, the characteristic function \(\chi _{\{A\}}\) is equal to one on A and to zero on the complement of A.

Second, problem (1.1) is locally well-posed in the energy space [26, 28].

Proposition 2.3

Let \(\frac {N}{2N-1}< s<1\), \(\rho >-2s\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\), \(1< q< q^{c}\), and \(u_{0}\in H^{s}_{rd}\). Then there is a unique local solution to (1.1) in the energy space

$$ C\bigl([0,T],H^{s}_{rd}\bigr). $$

Moreover, the following quantities, called respectively the mass and energy, are time invariant:

M ( u ( t ) ) : = u ( t ) 2 ; E ( u ( t ) ) : = ( Δ ) s 2 u ( t ) 2 2 λ 1 1 + p R N | u ( t ) | 1 + p | x | ρ d x 2 λ 2 1 + q R N | u ( t ) | 1 + q d x .

Finally, we give a compact Sobolev embedding established in the Appendix.

Lemma 2.4

Let \(s\in (0,1)\), \(\rho >-2s\), and \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-1}< p< p^{c}\). Then:

H r d s ( R N ) L 1 + p ( | x | ρ d x ) .

Now we give the contribution of this note.

2.3 Main results

To investigate the nonglobal existence of solutions, we need some variance-type estimates.

Theorem 2.5

Let \(s\in (\frac{1}{2},1)\), \(\rho >-2s\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\), and \(1< q< q^{c}\), and let \(u\in C_{T}(H^{s}_{rd})\) be a solution of (1.1). Then, for any \(R>0\), \(0<\varepsilon _{p}<(1-\frac{1}{2s})(p-1)\), and \(0<\varepsilon _{q}<(1-\frac{1}{2s})(q-1)\), on \([0,T)\), we have

M ζ R [ u ] 4 s ( Δ ) s 2 u 2 4 s I p λ 1 1 + p R N | u | 1 + p | x | ρ d x 4 s I q λ 2 1 + q R N | u | 1 + q d x + C R 2 s + C R ( p 1 ) ( N 1 ) 2 s ε p ρ ( Δ ) s 2 u p 1 2 s + ε p + C R ( q 1 ) ( N 1 ) 2 s ε q ( Δ ) s 2 u q 1 2 s + ε q .

In the mass-critical case, we have the following refined version.

Theorem 2.6

Let \(s\in (\frac{1}{2},1)\), \(-2s<\rho <0\), \(1< q< q^{c}\), and \(1< p< p^{c}\), and let \(u\in C_{T}(H^{s}_{rd})\) be a solution of (1.1). Assume that \(\mathcal {I}_{p}=2\) or \(\mathcal {I}_{q}=2\). Then there exists \(C:=C(N,s,\rho )>0\) such that, for all \(\eta ,R>0\), on \([0,T)\), we have

d d t M ζ R [ u ] 4 s E [ u 0 ] 4 0 m s R N ( ζ 1 C η ( ζ 2 N ρ + 2 s + | ρ | ζ 3 N ρ + 2 s + ζ 2 2 q 1 ) ) | u n | 2 d x d m + O ( 1 R 2 s + η ρ + 2 s N ρ 2 s 1 R 2 s + η ( 1 + R 2 + R 4 ) ) .

Remark 2.7

The above localized variance estimates follow the idea of [3].

The next elementary result will be useful.

Proposition 2.8

Let \(s\in (\frac{1}{2},1)\), \(\rho >-2s\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\), and \(1< q< q^{c}\), and let \(u\in C_{T^{*}}(H^{s}_{rd})\) be a maximal solution of (1.1). Assume that \({E[u_{0}]\neq 0}\) and there are \(t_{0},\delta >0\) satisfying

$$ M_{\zeta _{R}}\bigl[u(t)\bigr]\leq -\delta \int _{t_{0}}^{t} \bigl\Vert (-\Delta )^{ \frac {s}{2}}u(\tau ) \bigr\Vert ^{2} \,d\tau \quad \textit{for all } t\in [t_{0},T^{*}). $$

Then \(T^{*}<\infty \).

In the case of negative energy, we give a nonglobal existence result.

Proposition 2.9

Let \(s\in (\frac{1}{2},1)\), \(-2s<\rho <2s(N-2s)\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p<\min \{1+4s, p^{c}\}\), and \(1< q<\min \{1+4s,q^{c}\}\). Then any maximal energy solution to (1.1) with negative energy is nonglobal if one of the following assumptions is satisfied:

  1. 1.

    \(\mathcal {I}_{q}>2\) and \((\mathcal {I}_{q}-\mathcal {I}_{p})\lambda _{1}\leq 0\);

  2. 2.

    \(\mathcal {I}_{p}>2\) and \((\mathcal {I}_{p}-\mathcal {I}_{q})\lambda _{2}\leq 0\).

Remarks 2.10

  1. 1.

    The unnatural condition \(\max \{p,q\}<1+4s\), which seems to be technical, is due to the absence of a classical variance identity.

  2. 2.

    The contribution of the inhomogeneous term appears in the difference \(\mathcal {I}_{p}-\mathcal {I}_{q}=\frac{N(p-q)-2\rho}{2s}\).

In the homogeneous mass-critical case, the situation reads as follows.

Proposition 2.11

Let \(s\in (\frac {N}{2N-1},1)\), \(-2s<\rho <0\), and \(1< p< p^{c}\), and let \(u\in C_{T^{*}}(H^{s}_{rd})\) be a maximal solution to (1.1). Assume that \(\lambda _{1}=-1=-\lambda _{2}\) and \(\mathcal {I}_{q}=2\). Then:

  1. 1.

    \(T^{*}=\infty \) if \(\|u_{0}\|<\|{Q_{q}}\|\);

  2. 2.

    If \(s>\frac{1}{2}\), \(\mathcal {I}_{p}<2\), and \(u_{0}=c\rho ^{\frac {N}{2}}{Q_{q}}(\rho \cdot )\), where \(|c|>1\) and ρ> ( 2 | c | 1 + p R N | x | ρ | Q q | 1 + p d x ( 1 + p ) ( | c | q 1 1 ) ( Δ ) s 2 Q q 2 ) 1 s ( 2 I p ) , then \(T^{*}<\infty \), or there exist \(C>0\) and \(t_{*}>0\) such that

    $$ \bigl\Vert (-\Delta )^{\frac {s}{2}}u(t) \bigr\Vert \geq Ct^{s} \quad \textit{for all } t\geq t_{*}; $$
  3. 3.

    If \(s>\frac{1}{2}\), \(\mathcal {I}_{p}<2\), \(\|u_{0}\|=\|{Q_{q}}\|\), and \(T^{*}<\infty \), then there is θ [ 0 , 2 π ] R such that

    $$ \lim_{t\to T^{*}} \biggl\Vert \biggl( \frac{ \Vert (-\Delta )^{\frac {s}{2}}{Q_{q}} \Vert }{ \Vert (-\Delta )^{\frac {s}{2}}u(t) \Vert } \biggr)^{\frac {N}{2}}e^{i\theta (t)}u \biggl(t,\biggl( \frac{ \Vert (-\Delta )^{\frac {s}{2}}{Q_{q}} \Vert }{ \Vert (-\Delta )^{\frac {s}{2}}u(t) \Vert }\biggr) \cdot \biggr)-{Q_{q}} \biggr\Vert _{H^{s}}=0. $$

Remarks 2.12

  1. 1.

    The above result gives some sufficient conditions to get finite or infinite time blowup in the mass-critical homogeneous regime with small data. In the first case, the finite time blowup holds independently of the first component of the source term;

  2. 2.

    In the second case, which treats the complementary of the first one, there is a competition between the source term components;

  3. 3.

    The proof of the third case is omitted because it follows like and simpler than the last point in the next result.

Next, consider the case of mass-critical inhomogeneous regime. Let us take the open problem property, which is true for \(\rho =0\), see [10].

Assumption 1

There is a unique radial positive ground state to (2.2).

Proposition 2.13

Let \(s\in (\frac {N}{2N-1},1)\), \(-2s<\rho <0\), and \(1< q< q^{c}\), and let \(u\in C_{T^{*}}(H^{s}_{rd})\) be a maximal solution to (1.1). Assume that \(\lambda _{1}=1=-\lambda _{2}\) and \(\mathcal {I}_{p}=2\). Then:

  1. 1.

    \(T^{*}=\infty \) if \(\|u_{0}\|<\|{Q_{p}}\|\);

  2. 2.

    If \(s>\frac{1}{2}\), \(\mathcal {I}_{q}<2\), and \(u_{0}=c\rho ^{\frac {N}{2}}{Q_{p}}(\rho \cdot )\), where ρ> ( 2 | c | 1 + q R N | Q p | 1 + q d x ( 1 + q ) ( | c | p 1 1 ) ( Δ ) s 2 Q p 2 ) 1 s ( 2 I q ) and \(|c|>1\), then \(T^{*}<\infty \), or there exist \(C>0\) and \(t_{*}>0\) such that

    $$ \bigl\Vert (-\Delta )^{\frac {s}{2}}u(t) \bigr\Vert \geq Ct^{s} \quad \textit{for all } t\geq t_{*}; $$
  3. 3.

    Under Assumption 1, if \(s>\frac{1}{2}\), \(\rho <2s(N-1)\), \(\mathcal {I}_{q}<2\), \(\|u_{0}\|=\|{Q_{p}}\|\), and \(T^{*}<\infty \), then there is θ [ 0 , 2 π ] R such that

    $$ \lim_{t\to T^{*}} \biggl\Vert \biggl( \frac{ \Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \Vert }{ \Vert (-\Delta )^{\frac {s}{2}}u \Vert } \biggr)^{ \frac {N}{2}}e^{i\theta (t)}u \biggl(t,\biggl( \frac{ \Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \Vert }{ \Vert (-\Delta )^{\frac {s}{2}}u \Vert }\biggr) \cdot \biggr)-{Q_{p}} \biggr\Vert _{H^{s}}=0. $$

Remarks 2.14

  1. 1.

    The proofs of the first and second points are omitted because they follow the proof of Proposition 2.11;

  2. 2.

    In the last point, we need extra assumptions: Assumption 1 and \(\rho <2s(N-1)\).

Now we investigates the repulsive regime.

Theorem 2.15

Let \(\lambda _{i}=1\), \(\rho >-2s\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\), and \(1< q< q^{c}\), and let \(u\in C_{T^{*}}(H^{s}_{rd})\) be a maximal solution to (1.1).

  1. 1.

    Assume that \(\mathcal {I}_{q}=2<\mathcal {I}_{p}\), \(\|u_{0}\|<\|{Q_{q}}\|\), and \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{p}})(1-(\frac{\|u\|}{\|{Q_{q}}\|})^{ \frac{4s}{N}})r_{0}^{2}\), where \(r_{0}\) is defined in (9.1). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< r_{0}\), then \(T^{*}=\infty \). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|>r_{0}\), then \(T^{*}<\infty \);

  2. 2.

    Assume that \(2<\mathcal {I}_{p}<\mathcal {I}_{q}\) and \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{p}})r_{1}^{2}\), where \(r_{1}\) is defined in (9.2). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< r_{1}\), then \(T^{*}=\infty \). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|>r_{1}\), then \(T^{*}<\infty \);

  3. 3.

    Assume that \(\mathcal {I}_{p}>\mathcal {I}_{q}>2\) and \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{q}})r_{1}^{2}\), where \(r_{1}\) is defined in (9.2). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< r_{1}\), then \(T^{*}=\infty \). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|>r_{1}\), then \(T^{*}<\infty \).

Remarks 2.16

  1. 1.

    The above result is in the spirit of the ground state threshold pioneered by Kenig and Merle [16] in the NLS case.

  2. 2.

    In the first case, where the source term contains a mass-critical component, an extra assumption is needed by comparison with the second and third cases, which are mass-supercritical.

Now let us investigate the case of an attractive and repulsive component in the source term.

Theorem 2.17

Let \(\rho >-2s\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\), and \(1< q< q^{c}\), and let \(u\in C_{T^{*}}(H^{s}_{rd})\) be a maximal solution to (1.1).

  1. 1.

    Take \(\lambda _{1}=1=-\lambda _{2}\), \(\max \{2,\mathcal {I}_{q}\}<\mathcal {I}_{p}\), and \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{p}})x_{p}^{2}\), where \(x_{p}\) is defined in (10.1). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< x_{p}\), then \(T^{*}=\infty \). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|>x_{p}\), then \(T^{*}<\infty \).

  2. 2.

    Take \(\lambda _{1}=-1=-\lambda _{2}\), \(\max \{2,\mathcal {I}_{p}\}<\mathcal {I}_{q}\), and \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{q}})x_{q}^{2}\), where \(x_{q}\) is defined in (10.1). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< x_{q}\), then \(T^{*}=\infty \). If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|>x_{q}\), then \(T^{*}<\infty \).

Remark 2.18

In the above result, where the components of nonlinearity have different kinds, the threshold depends of the term that has the higher exponent.

Finally, we consider the scattering of energy global solutions in the defocusing regime.

Theorem 2.19

Take \(\lambda _{1}=\lambda _{2}=-1\). Let \(\frac {N}{2N-1}\leq s<1\), let \(-2s<\rho <0\), or \(N>6s\) and \(0<\rho <\min \{s,\frac {N}{2}-3s\}\), or \(N>8s\) and \(s<\rho <\frac {N}{2}-3s\), and let \(p_{c}< p< p^{c}\) and \(q_{c}< q< q^{c}\). Let uC(R, H r d s ) be a global solution to (1.1). Then there exist \(u_{\pm}\in H^{s}\) satisfying

$$ \lim_{t\to \pm \infty} \bigl\Vert u(t)-e^{-it(-\Delta )^{s}}u_{\pm} \bigr\Vert _{H^{s}}=0. $$

Remarks 2.20

  1. 1.

    In the case \(\rho >0\), some technical difficulties yield the restriction \(N>6s\), which gives \(N\geq 4\) or \(N>8s\), which in turn gives \(N\geq 5\) because \(s\geq \frac {N}{2N-1}\).

  2. 2.

    The above result is based on a Morawetz estimate and a decay result in the spirit of [31];

  3. 3.

    The previous restrictions are not required in the decay result in Proposition 11.2.

2.4 Useful estimates

Let us give a fractional Strauss-type estimate [4].

Lemma 2.21

Let \(N\geq 2\) and \(\frac{1}{2}<{s}<\frac {N}{2}\). Then

$$ \sup_{x\neq 0} \vert x \vert ^{\frac {N}{2}-{s}} \bigl\vert u(x) \bigr\vert \leq C(N,{s}) \bigl\Vert (-\Delta )^{ \frac{s}{2}}u \bigr\Vert $$
(2.3)

for every u H ˙ s ( R N ), where

$$ C(N,{s})= \biggl( \frac{\Gamma (2{s}-1)\Gamma (\frac {N}{2}-{s})\Gamma (\frac {N}{2})}{2^{2{s}}\pi ^{\frac {N}{2}}\Gamma ^{2}({s})\Gamma (\frac {N}{2}-1+{s})} \biggr)^{\frac{1}{2}}, $$

and Γ is the gamma function.

The next fractional chain rule [5] will be useful.

Lemma 2.22

Let \(s\in (0,1]\), and let \(1< p,p_{i},q_{i}<\infty \) satisfy \(\frac{1}{p}=\frac{1}{p_{i}}+\frac{1}{q_{i}}\) for \(1\leq i\leq 2\). Then:

  1. 1.

    \(\|(-\Delta )^{\frac {s}{2}}G(u)\|_{p}\lesssim \|(-\Delta )^{ \frac {s}{2}}u\|_{q_{1}}\|G'(u)\|_{p_{1}}\) for G C 1 (C);

  2. 2.

    \(\|(-\Delta )^{\frac {s}{2}}(uv)\|_{p}\lesssim \|(-\Delta )^{ \frac {s}{2}} u\|_{p_{1}}\|v\|_{q_{1}}+\|(-\Delta )^{\frac {s}{2}} v \|_{p_{2}}\|u\|_{q_{2}}\).

The next result gives a vector-valued Leibniz rule for fractional derivatives [17].

Lemma 2.23

Let \(s_{1}+s_{2}:=s\in (0,1)\), \(0\leq s_{i}\leq s \), and let \(1< p,p_{i},q,q_{i}<\infty \), \(i\in \{1,2\}\), satisfy \(\frac{1}{p}=\sum_{i=1}^{2}\frac{1}{p_{i}}\) and \(\frac{1}{q}=\sum_{i=1}^{2}\frac{1}{q_{i}}\). Then

$$ \bigl\Vert (-\Delta )^{\frac {s}{2}}(uv)-u(-\Delta )^{\frac {s}{2}}v-v(- \Delta )^{\frac {s}{2}}u \bigr\Vert _{L_{T}^{q}(L^{p})}\lesssim \bigl\Vert (-\Delta )^{ \frac{s_{1}}{2}}v \bigr\Vert _{L_{T}^{q_{1}}(L^{p_{1}})} \bigl\Vert (-\Delta )^{ \frac{s_{2}}{2}}u \bigr\Vert _{L_{T}^{q_{2}}(L^{p_{2}})}. $$

Moreover, for \(s_{1}=0\), the value \(q_{1}=\infty \) is allowed.

Let us recall a generalized Gagliardo–Nirenberg-type estimate [24].

Proposition 2.24

Let \(1\leq q , p \leq \infty \) be such that

$$ \frac{1}{p}=\frac{\lambda }{q}+ (1-\lambda ) \biggl(\frac{1}{2}- \frac {s}{N} \biggr),\quad \lambda \in [0,1]. $$

Then

p q λ H ˙ s 1 λ on  ( L q H ˙ s ) ( R N ) .

The following Gagliardo–Nirenberg-type estimate will be further useful.

Lemma 2.25

Let \(Q_{a}(x_{0})\) be the square with center \(x_{0}\) and edge length a. Then

2 + 2 s N 2 + 2 s N H ˙ s ( sup x R N L 2 ( Q 1 ( x ) ) ) 1 + 2 s N on  H s .
(2.4)

Proof

We cover R N with disjoint \(Q_{1}(x_{j})\). Let \(\sum_{j}\chi _{j}=1 \) be an associated positive unity partition. By Proposition 2.24,

R N | u ( t , x ) | 2 + 2 s N d x = j R N | u ( t , x ) | 2 + 2 s N χ j d x j χ j u ( t ) H ˙ s ( Q 1 ( x j ) ) χ j u ( t ) L 2 ( Q 1 ( x j ) ) 1 + 2 s N u ( t ) H ˙ s ( R N ) sup x R N ( u ( t ) L 2 ( Q 1 ( x ) ) 1 + 2 s N ) .

The proof is finished. □

We end this section by the following Bootstrap-type result [11].

Lemma 2.26

Let \(b>0\), \(\alpha >1\), and \(0< a<(1-\frac{1}{\alpha})(\alpha b)^{\frac{1}{1-\alpha}}\). Take fC([0,T], R + ) satisfying \(f(t)\leq a+b (f(t) )^{\alpha}\) for all \(t\in [0,T]\) and \(f(0)\leq (\alpha b)^{\frac{1}{1-\alpha}}\). Then \(f(t)\leq \frac{\alpha}{\alpha -1}a\) for all \(t\in [0,T]\).

Finally, we recall some Strichartz estimates [15] for the fractional Schrödinger problem.

Definition 2.27

A couple of real numbers \((q,r)\) such that \(q,r\geq 2\) is said to be admissible if

$$ \frac{4N+2}{2N-1}\leq q\leq \infty ,\qquad \frac{2}{q}+\frac{2N-1}{r} \leq N-\frac{1}{2}, $$

or

$$ 2\leq q\leq \frac{4N+2}{2N-1},\qquad \frac{2}{q}+\frac{2N-1}{r}< N- \frac{1}{2}. $$

Proposition 2.28

Let \(N \geq 2\), μR, \(\frac{N}{2N-1}< s\), and \(u_{0}\in H^{\mu}_{rd}\). Then

$$ \Vert u \Vert _{L^{q}_{t}(L^{r})\cap L^{\infty}_{t}(\dot{H}^{\mu})}\lesssim \Vert u_{0} \Vert _{\dot{H}^{\mu}}+ \bigl\Vert i\dot{u}-(-\Delta )^{s} u \bigr\Vert _{L^{\tilde{q}'}_{t}(L^{ \tilde{r}'})} $$

if \((q, r)\) and \((\tilde{q},\tilde{r})\) are admissible pairs such that \((\tilde{q},\tilde{r}, N)\neq (2,\infty , 2)\) or \((q, r, N)\neq (2,\infty , 2)\) and satisfy the condition

$$ \frac{2s}{q}+\mu =N \biggl(\frac{1}{2}-\frac{1}{r} \biggr), \qquad \frac{2s}{\tilde{q}}-\mu =N \biggl(\frac{1}{2}-\frac{1}{\tilde{r}} \biggr). $$

Remarks 2.29

  1. 1.

    For simplicity, we define the set

    $$ \begin{gathered} \Gamma ^{\mu}:= \biggl\{ (q,r), \text{ admissible}, (q, r, N)\neq (2, \infty , 2) \text{ and } \frac{2s}{q}+\mu =N \biggl(\frac{1}{2}- \frac{1}{r} \biggr) \biggr\} ;\\ \Gamma :=\Gamma ^{0}. \end{gathered} $$
  2. 2.

    If we take \(\mu =0\) in the previous inequality, then we obtain the classical Strichartz estimate.

  3. 3.

    In the non-radial case, there is a loss of regularity in Strichartz estimates [15].

3 Localized variance-type identity

This section is devoted to prove Theorem 2.5. Take \(\lambda _{1}=\lambda _{2}=1\) for simplicity and define the nonlinearity

$$ \mathcal {G}:=\mathcal {G}_{p}+\mathcal {G}_{q}:=- \vert x \vert ^{\rho} \vert u \vert ^{p-1}u- \vert u \vert ^{q-1}u. $$

Lemma 3.1

M ζ [ u ( t ) ] = 0 n s R N ( 4 k u n k l 2 ζ l u n Δ 2 ζ | u n | 2 ) d x d n + 4 ρ 1 + p R N x ζ | u | 1 + p | x | ρ 2 d x 2 p 1 1 + p R N Δ ζ | u | 1 + p | x | ρ d x 2 q 1 1 + q R N Δ ζ | u | 1 + q d x .

Proof

Using (1.1) and denoting \([A,B]:= AB-BA\), we compute

$$ M'_{\zeta }\bigl[u(t)\bigr] = \biggl\langle u(t),\biggl[- \frac{\mathcal {G}}{u} ,i\Gamma _{\zeta }\biggr]u(t)\biggr\rangle + \bigl\langle u(t),\bigl[(-\Delta )^{s} ,i\Gamma _{\zeta }\bigr]u(t)\bigr\rangle . $$

According to computation done in [3], we have

u ( t ) , [ ( Δ ) s , i Γ ζ ] u ( t ) = 0 n s R N ( 4 k u n k l 2 ζ l u n Δ 2 ζ | u n | 2 ) dxdn.

Compute

$$\begin{aligned} (N_{p}) :=&\biggl\langle u,\biggl[-\frac{\mathcal {G}_{p}}{u} ,i\Gamma _{\zeta }\biggr]u\biggr\rangle \\ =&\bigl\langle u,\bigl[- \vert u \vert ^{p-1} \vert x \vert ^{\rho} ,i\Gamma _{\zeta }\bigr]u\bigr\rangle \\ =&\bigl\langle u,\bigl[- \vert u \vert ^{p-1} \vert x \vert ^{\rho} ,div(\nabla \zeta \cdot )+\nabla \zeta \nabla \cdot \bigr]u\bigr\rangle \\ =&-\bigl\langle u, \vert x \vert ^{\rho} \vert u \vert ^{p-1}\bigl(div(\nabla \zeta u)+\nabla \zeta \nabla u\bigr)\bigr\rangle + \bigl\langle u,div\bigl( \nabla \zeta \vert x \vert ^{\rho} \vert u \vert ^{p-1}u\bigr) \\ &{}+\nabla \zeta \nabla \bigl( \vert x \vert ^{\rho} \vert u \vert ^{p-1}u\bigr)\bigr\rangle . \end{aligned}$$

So

$$\begin{aligned} (N_{p}) =&-\bigl\langle u, \vert x \vert ^{\rho} \vert u \vert ^{p-1}(\Delta \zeta u+2\nabla \zeta \nabla u)\bigr\rangle +\bigl\langle u,\Delta \zeta \vert x \vert ^{\rho} \vert u \vert ^{p-1}u+2\nabla \zeta \nabla \bigl( \vert x \vert ^{ \rho} \vert u \vert ^{p-1}u\bigr)\bigr\rangle \\ =&\bigl\langle u,\Delta \zeta \vert x \vert ^{\rho} \vert u \vert ^{p-1}u+2\nabla \zeta \nabla \bigl( \vert x \vert ^{ \rho} \vert u \vert ^{p-1}u\bigr)- \vert x \vert ^{\rho} \vert u \vert ^{p-1}(\Delta \zeta u+2\nabla \zeta \nabla u)\bigr\rangle \\ =&2\bigl\langle u,\nabla \zeta \nabla \bigl( \vert x \vert ^{\rho} \vert u \vert ^{p-1}u\bigr)- \vert x \vert ^{\rho} \vert u \vert ^{p-1} \nabla \zeta \nabla u\bigr\rangle \\ =&2\bigl\langle u,\nabla \zeta \bigl(\nabla \bigl( \vert x \vert ^{\rho}\bigr) \vert u \vert ^{p-1}u+ \vert x \vert ^{\rho} \nabla \bigl( \vert u \vert ^{p-1}\bigr)u \bigr)\bigr\rangle . \end{aligned}$$

By integration by parts we have

( N p ) = 2 R N ζ ( | x | ρ ) | u | 1 + p d x + 2 R N | x | ρ ζ ( | u | p 1 ) | u | 2 d x = 2 R N ζ ( | x | ρ ) | u | 1 + p d x + 2 p 1 1 + p R N ζ ( | u | 1 + p ) | x | ρ d x = 2 R N ζ ( | x | ρ ) | u | 1 + p d x 2 p 1 1 + p R N | u | 1 + p ( ( | x | ρ ) ζ + | x | ρ Δ ζ ) d x = 4 1 + p R N ζ ( | x | ρ ) | u | 1 + p d x 2 p 1 1 + p R N Δ ζ | x | ρ | u | 1 + p d x = 4 ρ 1 + p R N x ζ | u | 1 + p | x | ρ 2 d x 2 p 1 1 + p R N Δ ζ | u | 1 + p | x | ρ d x .

Taking \(\rho =0\) in the previous calculation, we get the second term of the source term and finish the proof. □

Now we establish Theorem 2.5. Since \(\Delta \zeta _{R}=N\) on \(|x|< R\), we have

( N p ) 2 : = 2 p 1 1 + p R N Δ ζ R | u | 1 + p | x | ρ d x = 2 p 1 1 + p ( N R N | u | 1 + p | x | ρ d x + | x | > R ( Δ ζ R N ) | u | 1 + p | x | ρ d x ) .

For \(\frac{1}{2}<\alpha <s<\frac {N}{2}\), recall the interpolation inequality

$$ \bigl\Vert (-\Delta )^{\frac{\alpha}{2}}\cdot \bigr\Vert \lesssim \Vert \cdot \Vert ^{1- \frac{\alpha }{s}} \bigl\Vert (-\Delta )^{\frac {s}{2}}\cdot \bigr\Vert ^{ \frac{\alpha }{s}}. $$

So by (2.3) and properties of \(\zeta _{R}\) we get for \(0<\epsilon \ll 1\) and \(\alpha :=\frac{1}{2}+\frac{s\epsilon}{p-1}\),

$$\begin{aligned} \int _{ \vert x \vert >R}(\Delta \zeta _{R}-N) \vert u \vert ^{1+p} \vert x \vert ^{\rho} \,dx \leq & \frac{C(\alpha ,N)}{R^{(p-1)(\frac {N}{2}-\alpha )-\rho}} \bigl\Vert (-\Delta )^{ \frac{\alpha}{2}}u \bigr\Vert ^{p-1} \Vert u \Vert ^{2} \\ \leq &\frac{C(\alpha ,N)}{R^{(p-1)(\frac {N}{2}-\alpha )-\rho}} \bigl\Vert (- \Delta )^{\frac {s}{2}}u \bigr\Vert ^{(p-1)\frac{\alpha}{s}} \\ \leq & \frac{C(N,s,\epsilon )}{R^{\frac{(p-1)(N-1)}{2}-s\epsilon -\rho}} \bigl\Vert (- \Delta )^{\frac {s}{2}}u \bigr\Vert ^{\frac{p-1}{2s}+\epsilon}. \end{aligned}$$

Since \(\nabla \zeta _{R}(x)=x\) on \(|x|< R\), we write

( N p ) 1 : = 4 ρ 1 + p R N x ζ R | u | 1 + p | x | ρ 2 d x = 4 ρ 1 + p ( R N | u | 1 + p | x | ρ d x + | x | > R ( x ζ R | x | 2 1 ) | u | 1 + p | x | ρ d x ) 4 ρ 1 + p R N | u | 1 + p | x | ρ d x + C ( N , s , ϵ ) R ( p 1 ) ( N 1 ) 2 s ϵ ρ ( Δ ) s 2 u p 1 2 s + ϵ .

Thus, thanks to the estimate in [3],

0 n s R N ( 4 k u n k l 2 ζ R l u n Δ 2 ζ R | u n | 2 ) dxdn4s ( Δ ) s 2 u 2 +C 1 R 2 s ,

and by Lemma 3.1 we have

M ζ R [ u ( t ) ] = 0 n s R N ( 4 k u n k l 2 ζ R l u n Δ 2 ζ R | u n | 2 ) d x d n + 4 ρ 1 + p R N x ζ R | u | 1 + p | x | ρ 2 d x 2 p 1 1 + p R N Δ ζ R | u | 1 + p | x | ρ d x 2 q 1 1 + q R N Δ ζ R | u | 1 + q d x 4 s ( Δ ) s 2 u 2 + C 1 R 2 s 4 s I p 1 + p R N | u | 1 + p | x | ρ d x 4 s I q 1 + q R N | u | 1 + q d x + C R ( p 1 ) ( N 1 ) 2 s ϵ p ρ ( Δ ) s 2 u p 1 2 s + ϵ p + C R ( q 1 ) ( N 1 ) 2 s ϵ q ( Δ ) s 2 u q 1 2 s + ϵ q .

The proof is completed.

4 Refined localized variance-type identity

In this section, we take \(\lambda _{1}=\lambda _{2}=1\) for simplicity and establish Theorem 2.6. Recall the identities [3]

0 n s R N k u n k l 2 ζ R l u n d x d n = 0 n s R N r 2 ζ R | u n | 2 d x d n ; s ( Δ ) s 2 u 2 = 0 n s R N | u n | 2 d x d n .

Then Lemma 3.1 gives

M ζ R [ u ( t ) ] = 4 s ( Δ ) s 2 u 2 4 0 n s R N ( 1 r 2 ζ R ) | u n | 2 d x d n 0 n s R N Δ 2 ζ R | u n | 2 d x d n 4 s I p 1 + p R N | u | 1 + p | x | ρ d x 4 s I q 1 + q R N | u | 1 + q d x 2 p 1 1 + p | x | > R ( Δ ζ R N ) | u | 1 + p | x | ρ d x + 4 ρ 1 + p | x | > R ( x ζ R | x | 2 1 ) | u | 1 + p | x | ρ d x 2 q 1 1 + q | x | > R ( Δ ζ R N ) | u | 1 + q d x .

Now, in view of the estimate [3]

| 0 n s R N Δ 2 ζ R | u n | 2 dxdn| C R 2 s ,

we get

M ζ R [ u ( t ) ] = 4 s E [ u 0 ] 4 0 n s R N ζ 1 | u n | 2 d x d n + 4 s 2 I p 1 + p R N | u | 1 + p | x | ρ d x + 4 s 2 I q 1 + q R N | u | 1 + q d x + 2 p 1 1 + p | x | > R ζ 2 | u | 1 + p | x | ρ d x 4 ρ 1 + p | x | > R ζ 3 | x | ρ | u | 1 + p d x + 2 q 1 1 + q | x | > R ζ 2 | u | 1 + q d x + O ( 1 R 2 s ) .

Now, since \(\rho \leq 0\) and \(\mathcal {I}_{p}=2\),

$$\begin{aligned} \int _{ \vert x \vert >R}\zeta _{2} \vert u \vert ^{1+p} \vert x \vert ^{\rho} \,dx =& \int _{ \vert x \vert >R}\bigl( \zeta _{2}^{\frac{1}{p-1}} \vert u \vert \bigr)^{p-1} \vert u \vert ^{2} \vert x \vert ^{\rho} \,dx \\ \leq &R^{\rho} \bigl\Vert \zeta _{2}^{\frac{1}{p-1}}u \bigr\Vert _{L^{\infty}( \vert x \vert >R)}^{p-1} \Vert u \Vert ^{2} \\ \leq &CR^{b-(p-1)(\frac {N}{2}-s)} \bigl\Vert (-\Delta )^{\frac {s}{2}}\bigl(\zeta _{2}^{ \frac{1}{p-1}}u\bigr) \bigr\Vert ^{p-1} \\ =&CR^{b-(\rho +2s)(1-\frac{2s}{N})} \bigl\Vert (-\Delta )^{\frac {s}{2}}\bigl( \zeta _{2}^{\frac{1}{p-1}}u\bigr) \bigr\Vert ^{\frac{2(\rho +2s)}{N}} \\ \leq &\eta \bigl\Vert (-\Delta )^{\frac {s}{2}}\bigl(\zeta _{2}^{\frac{1}{p-1}}u\bigr) \bigr\Vert ^{2}+O\biggl(\eta ^{-\frac{\rho +2s}{N-\rho -2s}}{\frac{1}{R^{2s}}}\biggr), \end{aligned}$$

where we usedthe Young inequality \(ab\leq \frac{\eta a^{q}}{q}+\frac{\eta ^{1-q'}b^{q'}}{q'}\), for \(q\geq 1\) and \(\eta >0\). Thus by the estimate [3]

s ( Δ ) s 2 ( ζ 2 1 p 1 u ) 2 = 0 n s R N ζ 2 2 p 1 | u n | 2 dxdn+O ( 1 + R 2 + R 4 )

we get

| x | > R ζ 2 | u | 1 + p | x | ρ d x η s 0 n s R N ζ 2 2 p 1 | u n | 2 d x d n + O ( η ρ + 2 s N ρ 2 s 1 R 2 s + η ( 1 + R 2 + R 4 ) ) .

Thus there exists \(C:=C(N,s,\rho )>0\) such that

M ζ R [ u ( t ) ] = 4 s E [ u 0 ] 4 0 n s R N ζ 1 | u n | 2 d x d n + 4 s 2 I p 1 + p R N | u | 1 + p | x | ρ d x + 4 s 2 I q 1 + q R N | u | 1 + q d x + 2 p 1 1 + p | x | > R ζ 2 | u | 1 + p | x | ρ d x 4 ρ 1 + p | x | > R ζ 3 | u | 1 + p | x | ρ d x + 2 q 1 1 + q | x | > R ζ 2 | u | 1 + q d x + O ( 1 R 2 s ) 4 s E [ u 0 ] 4 0 n s R N ( ζ 1 C η ( ζ 2 N ρ + 2 s + | ρ | ζ 3 N ρ + 2 s + ζ 2 2 q 1 ) ) | u n | 2 d x d n + O ( 1 R 2 s + η ρ + 2 s N ρ 2 s 1 R 2 s + η ( 1 + R 2 + R 4 ) ) .

This ends the proof.

5 Blowup criterion

In this section, we prove Proposition 2.8. Taking into account the conservation laws, the inequality \(\|\cdot \|_{\dot{H}^{\frac{1}{2}}}\leq \|\cdot \|^{1-\frac{1}{2s}}\| \cdot \|_{\dot{H}^{s}}^{\frac{1}{2s}}\), and Lemma A.1 in [3], we get

$$\begin{aligned} \bigl\vert M_{\zeta _{R}}\bigl[u(t)\bigr] \bigr\vert \leq &C_{R} \bigl( \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{\frac{1}{2}}}^{2}+ \bigl\Vert u(t) \bigr\Vert \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{\frac{1}{2}}} \bigr) \\ \leq &C_{R} \bigl( \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{s}}^{{}{\frac{1}{s}}}+ \bigl\Vert u(t) \bigr\Vert _{ \dot{H}^{s}}^{\frac{1}{2s}} \bigr). \end{aligned}$$

Now we claim that

$$ \inf_{t\geq 0} \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{s}} \geq C>0. $$

By contradiction, assume that there is \(t_{k}\geq 0\) such that \(\|u(t_{k})\|_{\dot{H}^{s}}\to 0\). By the conservation laws we have

R N |u( t k ) | 1 + p |x | ρ dx+ R N |u( t k ) | 1 + q dx0,

which gives the contradiction

$$ {} {0\neq E[u_{0}]}=E\bigl(u(t_{k})\bigr)\to 0. $$

So

$$\begin{aligned}& \bigl\vert M_{\zeta _{R}}\bigl[u(t)\bigr] \bigr\vert \leq C_{R} \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{s}}^{\frac{1}{s}}; \\& M_{\zeta _{R}}\bigl[u(t)\bigr]\leq -C_{R} \int _{t_{0}}^{t} \bigl\vert M_{\zeta _{R}} \bigl[u( \tau )\bigr] \bigr\vert ^{2s} \,d\tau . \end{aligned}$$

Then, for \(s>\frac{1}{2}\) and finite \(t_{1} >0\),

$$ M_{\zeta _{R}}\bigl[u(t)\bigr]\leq -C_{R} \vert t - t_{1} \vert ^{1-2s}\to -\infty \quad \text{as } t\to t_{1}. $$

Finally, \(T^{*} <\infty \).

6 Blowup for negative energy

This section contains a proof of Proposition 2.9, which we do in two steps.

  1. 1.

    Case 1. Since \(\lambda _{1}(\mathcal {I}_{q}-\mathcal {I}_{p})\leq 0\), by Theorem 2.5 we have

    M ζ R [ u ] 2 s I q E [ u 0 ] 2 s ( I q 2 ) ( Δ ) s 2 u 2 + 4 s λ 1 1 + p ( I q I p ) R N | u | 1 + p | x | ρ d x + C R 2 s + C R ( p 1 ) ( N 1 ) 2 s ϵ p ρ ( Δ ) s 2 u p 1 2 s + ϵ + C R ( q 1 ) ( N 1 ) 2 s ϵ q ( Δ ) s 2 u q 1 2 s + ϵ 2 s I q E [ u 0 ] 2 s ( I q 2 ) ( Δ ) s 2 u 2 + C R 2 s + C R ( p 1 ) ( N 1 ) 2 s ϵ p ρ ( Δ ) s 2 u p 1 2 s + ϵ + C R ( q 1 ) ( N 1 ) 2 s ϵ q ( Δ ) s 2 u q 1 2 s + ϵ .

    Thanks to Young inequality, since \(\max \{p,q\}<1+4s\) and \(E[u_{0}]<0\), we get, for large \(R>0\),

    $$\begin{aligned} M'_{\zeta _{R}} [u] \leq &2s\mathcal {I}_{q}E[u_{0}]-2s( \mathcal {I}_{q}-2) \bigl\Vert (-\Delta )^{\frac {s}{2}}u \bigr\Vert ^{2} \\ &{}+\frac {C}{R^{2s}}+ \frac{C}{R^{\frac{(p-1)(N-1)}{2}-s\epsilon _{p}-\rho}} \bigl\Vert (-\Delta )^{ \frac {s}{2}}u \bigr\Vert ^{\frac{p-1}{2s}+\epsilon}+ \frac{C}{R^{\frac{(q-1)(N-1)}{2}-s\epsilon _{q}}} \bigl\Vert (-\Delta )^{ \frac {s}{2}}u \bigr\Vert ^{\frac{q-1}{2s}+\epsilon} \\ \leq &s\mathcal {I}_{q}E[u_{0}]-(\mathcal {I}_{q}-2) \bigl\Vert (-\Delta )^{ \frac {s}{2}}u \bigr\Vert ^{2}. \end{aligned}$$
    (6.1)

    Since \(\mathcal {I}_{q}>2\), \(M_{\zeta _{R}}[u(t)]\leq M_{\zeta _{R}}[u_{0}]+2s\mathcal {I}_{q}E[u_{0}]t\). So there is \(t_{1}>0\) such that \(M_{\zeta _{R}}[u(t)]<0\) for all \(t\geq t_{1}\). Now by integrating (6.1) it follows that

    $$ M_{\zeta _{R}}\bigl[u(t)\bigr]\leq -(\mathcal {I}_{q}-2) \int _{t_{1}}^{t} \bigl\Vert (- \Delta )^{\frac {s}{2}}u(\tau ) \bigr\Vert ^{2} \,d\tau \quad \text{for all } t\geq t_{1}. $$

    We conclude by Proposition 2.8.

  2. 2.

    Case 2. Similar to case 1.

7 Mass-critical blowup

In this section, we prove Proposition 2.11.

7.1 Case 1

Proposition 2.1 gives

E [ u 0 ] = ( Δ ) s 2 u ( t ) 2 + 2 1 + p R N | u ( t ) | 1 + p | x | ρ d x 2 1 + q R N | u ( t ) | 1 + q d x ( Δ ) s 2 u ( t ) 2 ( 1 2 C N , q , s 1 + q u A q ) ( Δ ) s 2 u ( t ) 2 ( 1 [ u Q q ] 4 N ) .

This proves that \(T^{*}=\infty \).

7.2 Case 2

Taking into account Theorem 2.6 and the Pohozaev identity, for any \(\eta ,R>0\), we have

M ζ R [ u ( t ) ] 4 s E [ u 0 ] 4 0 n s R N ( ζ 1 C η ( ζ 2 N ρ + 2 s + | ρ | ζ 3 N ρ + 2 s + ζ 2 2 q 1 ) ) | u n | 2 d x d n + O ( 1 R 2 s + η ρ + 2 s N ρ 2 s 1 R 2 s + η ( 1 + R 2 + R 4 ) ) .

By taking the particular choice of ζ as in [26] there exists \(0<\eta \ll 1\) such that

$$ \zeta _{1}-C\eta \bigl(\zeta _{2}^{\frac {N}{\rho +2s}}+ \vert \rho \vert \zeta _{3}^{ \frac {N}{\rho +2s}}+\zeta _{2}^{\frac{2}{q-1}} \bigr)\geq 0\quad \forall R>0. $$

Thus, taking \(R\ll 1\), we get

$$ M'_{\zeta _{R}} \bigl[u(t)\bigr]< 2sE[u_{0}]< 0. $$

Indeed, with the assumptions, the next term is negative:

E [ u 0 ] = | c ρ s | 2 ( Δ ) s 2 Q q 2 2 | c | 1 + q ρ 2 s 1 + q R N | Q q | 1 + q d x + 2 | c | 1 + p ρ s I p 1 + p R N | x | ρ | Q q | 1 + p d x = | c ρ s | 2 ( Δ ) s 2 Q q 2 | c | 1 + q ρ 2 s ( Δ ) s 2 Q q 2 d x + 2 | c | 1 + p ρ s I p 1 + p R N | x | ρ | Q q | 1 + p d x = ρ s I p c 2 [ ( 1 | c | q 1 ) ρ 2 s s I p ( Δ ) s 2 Q q 2 + 2 | c | 1 + p 1 + p R N | x | ρ | Q q | 1 + p d x ] .

Assume that \(T^{*}=\infty \). Then there exist \(c>0\) and \(t_{0}>0\) such that

$$ M_{\zeta _{R}}\bigl[u(t)\bigr]\leq -ct\quad \forall t\geq t_{0}. $$

Lemma A.1 in [3] and the conservation laws, via the estimate \(\|\cdot \|_{\dot{H}^{\frac{1}{2}}}\leq \|\cdot \|^{1-\frac{1}{2s}}\| \cdot \|_{\dot{H}^{s}}^{\frac{1}{2s}}\), give

$$\begin{aligned} \bigl\vert M_{\zeta _{R}}\bigl[u(t)\bigr] \bigr\vert \leq &C_{R} \bigl( \bigl\Vert u(t) \bigr\Vert \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{ \frac{1}{2}}}+ \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{\frac{1}{2}}}^{2} \bigr) \\ \leq &C_{R} \bigl( \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{\frac{1}{2}}}^{2}+1 \bigr) \\ \leq &C_{R} \bigl( \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{s}}^{\frac{1}{s}}+1 \bigr). \end{aligned}$$

So

$$ \bigl\Vert u(t) \bigr\Vert _{\dot{H}^{s}}\gtrsim t^{s}\quad \text{for all } t\geq t_{1}>0. $$

This ends the proof.

8 Inhomogeneous mass-critical blowup

In this section, we establish the third point of Proposition 2.13. Let us start with a compactness result [25].

Lemma 8.1

Let a sequence of \(v_{n}\in H^{s}_{rd}\) be such that \(\sup_{n}\|v_{n}\|_{H^{s}}<\infty \). Assume that

lim sup n ( Δ ) s 2 v n M, lim sup n R N |x | ρ | v n | 1 + p c dx m 1 + p c .

Then a subsequence, denoted also by \((v_{n})\), satisfies

$$\begin{aligned} &v_{n}\rightharpoonup V\quad \textit{in } H^{s}_{rd}; \\ & \Vert V \Vert \geq \biggl(\frac{2}{(1+p)M^{2}} \biggr)^{\frac {N}{2(\rho +2s)}}m^{1+ \frac {N}{\rho +2s}} \Vert {Q_{p}} \Vert . \end{aligned}$$

As a consequence, we prove the next concentration result.

Lemma 8.2

If \(\lim_{t\to T^{*}}f(t)\|(-\Delta )^{\frac {s}{2}}u(t)\|^{\frac{1}{s}}= \infty \), then

$$ \liminf_{t\to T^{*}} \int _{ \vert x \vert \leq f(t)} \bigl\vert u(t,x) \bigr\vert ^{2} \,dx\geq \Vert {Q_{p}} \Vert ^{2}. $$

Proof

Define the quantities

$$\begin{aligned} &\alpha := \biggl( \frac{ \Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \Vert }{ \Vert (-\Delta )^{\frac {s}{2}}u \Vert } \biggr)^{\frac{1}{s}}; \\ &v:=\alpha ^{\frac {N}{2}}u(\cdot ,\alpha \cdot ); \\ &t_{n}\to T^{*},\qquad \alpha _{n}:=\alpha (t_{n}),\qquad v_{n}:=v(t_{n}). \end{aligned}$$

Thus

$$\begin{aligned} & \Vert v_{n} \Vert ^{2}=M(u); \\ & \bigl\Vert (-\Delta )^{\frac {s}{2}}v_{n} \bigr\Vert = \bigl\Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \bigr\Vert . \end{aligned}$$

Using the identity \(\mathcal {I}_{p}=2>\mathcal {I}_{q}\) and Proposition 2.1, we have

( Δ ) s 2 Q p 2 2 1 + p R N | v n | 1 + p | x | ρ d x = ( Δ ) s 2 v n 2 2 1 + p R N | v n | 1 + p | x | ρ d x = α n 2 s ( ( Δ ) s 2 u ( t n ) 2 2 1 + p R N | u ( t n ) | 1 + p | x | ρ d x ) = α n 2 s ( E ( u ) 2 1 + q R N | u ( t n ) | 1 + q d x ) α n 2 s ( E ( u ) + C ( Δ ) s 2 u ( t n ) I q ) 0 .

Thus

R N | v n | 1 + p |x | ρ dx 1 + p 2 ( Δ ) s 2 Q p 2 .

Denote

$$ m^{1+p}:=\frac{1+p}{2} \bigl\Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \bigr\Vert ^{2},\qquad M:= \bigl\Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \bigr\Vert ^{2}. $$

By Lemma 8.1 it follows that

$$ v_{n}\rightharpoonup V\quad \text{in } H^{s}_{rd}, \qquad \Vert V \Vert \geq \Vert {Q_{p}} \Vert . $$

Moreover,

$$ \frac{f(t_{n})}{\alpha _{n}}={f(t_{n})} \biggl( \frac{ \Vert (-\Delta )^{\frac {s}{2}}u_{n} \Vert }{ \Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \Vert } \biggr)^{\frac{1}{s}}\to \infty . $$

So, for any \(R>0\), there is n 0 N such that \(f(t_{n})>R\alpha _{n}\) for \(n>n_{0}\). Then

$$\begin{aligned} \liminf_{n} \int _{ \vert x \vert \leq f(t_{n})} \bigl\vert u(t_{n},x) \bigr\vert ^{2} \,dx \geq & \liminf_{n} \int _{ \vert x \vert \leq R\alpha _{n}} \bigl\vert u(t_{n},x) \bigr\vert ^{2} \,dx \\ =&\liminf_{n} \int _{ \vert x \vert \leq R} \bigl\vert v(t_{n},x) \bigr\vert ^{2} \,dx \\ \geq &\liminf_{n} \int _{ \vert x \vert \leq R} \bigl\vert V(x) \bigr\vert ^{2} \,dx. \end{aligned}$$

Thus

$$ \liminf_{T^{*}} \int _{ \vert x \vert \leq f(t)} \bigl\vert u(t,x) \bigr\vert ^{2} \,dx\geq \Vert V \Vert ^{2} \geq \Vert {Q_{p}} \Vert ^{2}. $$

This finishes the proof. □

Now we are ready to prove Proposition 2.13. Let us write

$$ \Vert {Q_{p}} \Vert \leq \Vert V \Vert \leq \liminf _{n} \Vert v_{n} \Vert = \Vert u_{0} \Vert = \Vert {Q_{p}} \Vert . $$

Thus with the weak convergence, we have

$$ \lim_{n} \Vert v_{n}-V \Vert =0. $$

Moreover, by Lemma 2.4, via the assumption \(\rho <2s(N-1)\), we have

lim n R N |x | ρ | v n V | 1 + p dx=0.

Now taking into account the previous calculus and Proposition 2.1, we write

0 = lim n ( ( Δ ) s 2 Q p 2 2 1 + p R N | v n | 1 + p | x | ρ d x ) = ( Δ ) s 2 Q p 2 2 1 + p R N | V | 1 + p | x | ρ d x ( Δ ) s 2 Q p 2 ( V Q p ) p 1 ( Δ ) s 2 V 2 ( Δ ) s 2 Q p 2 ( Δ ) s 2 V 2 .

Thus by the lower semicontinuity of \(\|\cdot \|\) we have

$$ \bigl\Vert (-\Delta )^{\frac {s}{2}}v_{n} \bigr\Vert = \bigl\Vert (-\Delta )^{\frac {s}{2}}{Q_{p}} \bigr\Vert = \bigl\Vert (- \Delta )^{\frac {s}{2}}V \bigr\Vert . $$

So we get

$$ v_{n}\to V\quad \text{in } H^{s}. $$

So, by the Pohozaev identities,

( Δ ) s 2 Q p = ( Δ ) s 2 V ; Q p = V ; R N | Q p | 1 + p | x | ρ d x = R N | V | 1 + p | x | ρ d x .

Then V is a minimizer of (2.1). Thus, using the Euler–Lagrange equation and a scaling, by Assumption 1 we have

$$ V=a{Q_{p}}(b\cdot ). $$

So \(V=e^{i\theta}{Q_{p}}\), and

$$ \alpha _{n}e^{-i\theta}u(t_{n},\alpha _{n}\cdot )\to {Q_{p}}\quad \text{in } H^{s}. $$

This finishes the proof.

9 Global/nonglobal existence for \(\lambda _{1}=\lambda _{2}=1\)

In this section, we prove Theorem 2.15. Thanks to Proposition 2.1,

E [ u 0 ] = ( Δ ) s 2 u ( t ) 2 2 1 + p R N | u ( t ) | 1 + p | x | ρ d x 2 1 + q R N | u ( t ) | 1 + q d x ( Δ ) s 2 u ( t ) 2 2 C N , p , ρ , s 1 + p u J p ( Δ ) s 2 u ( t ) I p 2 C N , q , s 1 + q u J q ( Δ ) s 2 u ( t ) I q = ( Δ ) s 2 u ( t ) 2 2 J p ( J p I p ) I p 2 Q p ( p 1 ) u J p ( Δ ) s 2 u ( t ) I p 2 J q ( J q I q ) I q 2 Q q ( q 1 ) u J q ( Δ ) s 2 u ( t ) I q : = g ( ( Δ ) s 2 u ( t ) ) .

Let us consider three cases.

9.1 Case 1

In this case, \(\mathcal {I}_{q}=2\). Then

$$\begin{aligned}& g(X)= \biggl(1-\biggl(\frac{ \Vert u \Vert }{ \Vert {Q_{q}} \Vert }\biggr)^{\frac{4s}{N}} \biggr)X^{2}- \frac{2}{\mathcal {J}_{p}}\biggl(\frac{\mathcal {J}_{p}}{\mathcal {I}_{p}} \biggr)^{ \frac{\mathcal {I}_{p}}{2}} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}X^{ \mathcal {I}_{p}}; \\& g'(X)=2 \biggl(1-\biggl(\frac{ \Vert u \Vert }{ \Vert {Q_{q}} \Vert }\biggr)^{\frac{4s}{N}} \biggr)X-2\biggl( \frac{\mathcal {J}_{p}}{\mathcal {I}_{p}}\biggr)^{\frac{\mathcal {I}_{p}}{2}-1} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}X^{\mathcal {I}_{p}-1}. \end{aligned}$$

Since \(\|u_{0}\|<\|{Q_{q}}\|\), the unique positive root of \(g'\) is

$$ g'(r_{0}):=g' \biggl[ \biggl( \frac{1-(\frac{ \Vert u \Vert }{ \Vert {Q_{q}} \Vert })^{\frac{4s}{N}}}{(\frac{\mathcal {J}_{p}}{\mathcal {I}_{p}})^{\frac{\mathcal {I}_{p}}{2}-1} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}} \biggr)^{\frac{1}{\mathcal {I}_{p}-2}} \biggr]=0. $$
(9.1)

Thus

max R + g=g( r 0 )= I p 2 I p ( 1 ( u Q q ) 4 s N ) r 0 2 .

Thus

$$ g\bigl( \bigl\Vert (-\Delta )^{\frac {s}{2}}u(t) \bigr\Vert \bigr)\leq E[u_{0}]< g(r_{0}). $$
  1. 1.

    Subcase 1. Since \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< r_{0}\), by a continuity argument we get \(\sup_{\{t\geq 0\}}\|(-\Delta )^{\frac {s}{2}}u(t)\|< r_{0}\). So \(T^{*}=\infty \).

  2. 2.

    Subcase 2. Now if \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|>r_{0}\), then, similarly, \(\inf_{t\in [0, T^{*})}\|(-\Delta )^{\frac {s}{2}}u(t)\|> r_{0}\). Thus the Gagliardo–Nirenberg inequality, Theorem 2.5, \(2=\mathcal {I}_{q}<\mathcal {I}_{p}\), and \(\lambda _{2}=1\) give

    M ζ R [ u ] 2 s I p E [ u 0 ] 2 s ( I p 2 ) ( Δ ) s 2 u 2 + 4 s λ 2 1 + q ( I p I q ) R N | u | 1 + q d x + C R 2 s + C R ( p 1 ) ( N 1 ) 2 s ϵ p ρ ( Δ ) s 2 u p 1 2 s + ϵ + C R ( q 1 ) ( N 1 ) 2 s ϵ q ( Δ ) s 2 u q 1 2 s + ϵ 2 s I p E [ u 0 ] 2 s ( I p 2 ) ( 1 ( u Q q ) 4 s N ) ( Δ ) s 2 u 2 + C R 2 s + C R ( p 1 ) ( N 1 ) 2 s ϵ p ρ ( Δ ) s 2 u p 1 2 s + ϵ p + C R ( q 1 ) ( N 1 ) 2 s ϵ q ( Δ ) s 2 u q 1 2 s + ϵ q .

    Since \(\frac{\|u\|}{\|{Q_{q}}\|}<1\), \(\max \{p,q\}<1+4s\), \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{p}}) (1-( \frac{\|u\|}{\|{Q_{q}}\|})^{\frac{4s}{N}} )(1-\epsilon )r_{0}^{2}\) for some \(\epsilon >0\), and \(C(R)\to 0\) as \(R\to \infty \), we have

    $$\begin{aligned} M'_{\zeta _{R}} [u] \leq &2s\mathcal {I}_{p}E[u_{0}]-2s( \mathcal {I}_{p}-2) \biggl(1-\biggl(\frac{ \Vert u \Vert }{ \Vert {Q_{q}} \Vert } \biggr)^{\frac{4s}{N}} \biggr) \bigl\Vert (-\Delta )^{ \frac {s}{2}}u \bigr\Vert ^{2}\\ &{}+C(R) \bigl(1+ \bigl\Vert (-\Delta )^{\frac {s}{2}}u \bigr\Vert ^{2}\bigr) \\ \leq &2s(\mathcal {I}_{p}-2) \biggl(1-\biggl(\frac{ \Vert u \Vert }{ \Vert {Q_{q}} \Vert } \biggr)^{ \frac{4s}{N}} \biggr) \bigl((1-\epsilon )r_{0}^{2}- \bigl\Vert (-\Delta )^{\frac {s}{2}}u \bigr\Vert ^{2}\bigr)\\ &{}+C(R) \bigl(1+ \bigl\Vert (-\Delta )^{\frac {s}{2}}u \bigr\Vert ^{2}\bigr) \\ \leq &-\epsilon s(\mathcal {I}_{p}-2) \biggl(1-\biggl( \frac{ \Vert u \Vert }{ \Vert {Q_{q}} \Vert }\biggr)^{ \frac{4s}{N}} \biggr) \bigl\Vert (-\Delta )^{\frac {s}{2}}u \bigr\Vert ^{2}, \end{aligned}$$

    where we used the inequality \(\|(-\Delta )^{\frac {s}{2}} u\|>r_{0}>0\). This proof is achieved via Proposition 2.8.

9.2 Case 2

Compute

$$\begin{aligned}& g(r) =r^{2}-\frac{2}{\mathcal {J}_{p}}\biggl( \frac{\mathcal {J}_{p}}{\mathcal {I}_{p}} \biggr)^{\frac{\mathcal {I}_{p}}{2}} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}r^{\mathcal {I}_{p}}- \frac{2}{\mathcal {J}_{q}}\biggl( \frac{\mathcal {J}_{q}}{\mathcal {I}_{q}}\biggr)^{ \frac{\mathcal {I}_{q}}{2}} \Vert {Q_{q}} \Vert ^{-(q-1)} \Vert u \Vert ^{\mathcal {J}_{q}}r^{ \mathcal {I}_{q}}; \\& \begin{aligned} h(r)&:=\frac{g'(r)}{2r}\\ &=1-\biggl(\frac{\mathcal {J}_{p}}{\mathcal {I}_{p}}\biggr)^{ \frac{\mathcal {I}_{p}}{2}-1} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}r^{ \mathcal {I}_{p}-2}-\biggl(\frac{\mathcal {J}_{q}}{\mathcal {I}_{q}}\biggr)^{ \frac{\mathcal {I}_{q}}{2}-1} \Vert {Q_{q}} \Vert ^{-(q-1)} \Vert u \Vert ^{\mathcal {J}_{q}}r^{ \mathcal {I}_{q}-2}. \end{aligned} \end{aligned}$$

Thus h is nonincreasing on R + and \(h(0)=1\). So it has a unique root \(r_{1}>0\), that is,

$$ h(r_{1})=0. $$
(9.2)

Thus \(\sup_{r\geq 0}g(r)=g(r_{1})\). So

$$ \biggl(\frac{\mathcal {J}_{p}}{\mathcal {I}_{p}}\biggr)^{\frac{\mathcal {I}_{p}}{2}-1} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}r_{1}^{\mathcal {I}_{p}-2}=1- \biggl( \frac{\mathcal {J}_{q}}{\mathcal {I}_{q}}\biggr)^{\frac{\mathcal {I}_{q}}{2}-1} \Vert {Q_{q}} \Vert ^{-(q-1)} \Vert u \Vert ^{\mathcal {J}_{q}}r_{1}^{\mathcal {I}_{q}-2}. $$

This gives

$$\begin{aligned} g(r_{1}) =&r_{1}^{2} \biggl(1- \frac{2}{\mathcal {I}_{p}}\biggl( \frac{\mathcal {J}_{p}}{\mathcal {I}_{p}}\biggr)^{\frac{\mathcal {I}_{p}}{2}-1} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}r_{1}^{\mathcal {I}_{p}-2}\\ &{}- \frac{2}{\mathcal {I}_{q}}\biggl(\frac{\mathcal {J}_{q}}{\mathcal {I}_{q}}\biggr)^{ \frac{\mathcal {I}_{q}}{2}-1} \Vert {Q_{q}} \Vert ^{-(q-1)} \Vert u \Vert ^{\mathcal {J}_{q}}r_{1}^{ \mathcal {I}_{q}-2} \biggr) \\ =&r_{1}^{2} \biggl(1-\frac{2}{\mathcal {I}_{p}} \biggl(1-\biggl( \frac{\mathcal {J}_{q}}{\mathcal {I}_{q}}\biggr)^{\frac{\mathcal {I}_{q}}{2}-1} \Vert {Q_{q}} \Vert ^{-(q-1)} \Vert u \Vert ^{\mathcal {J}_{q}}r_{1}^{\mathcal {I}_{q}-2} \biggr)\\ &{}- \frac{2}{\mathcal {I}_{q}}\biggl(\frac{\mathcal {J}_{q}}{\mathcal {I}_{q}}\biggr)^{ \frac{\mathcal {I}_{q}}{2}-1} \Vert {Q_{q}} \Vert ^{-(q-1)} \Vert u \Vert ^{\mathcal {J}_{q}}r_{1}^{ \mathcal {I}_{q}-2} \biggr) \\ =&r_{1}^{2} \biggl(1-\frac{2}{\mathcal {I}_{p}} \biggr)+ \biggl( \frac{2}{\mathcal {I}_{p}}-\frac{2}{\mathcal {I}_{q}} \biggr) \biggl( \frac{\mathcal {J}_{q}}{\mathcal {I}_{q}} \biggr)^{\frac{\mathcal {I}_{q}}{2}-1} \Vert {Q_{q}} \Vert ^{-(q-1)} \Vert u \Vert ^{\mathcal {J}_{q}}r_{1}^{\mathcal {I}_{q}}. \end{aligned}$$

By the assumptions \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{p}})r_{1}^{2}\) and \(\mathcal {I}_{p}<\mathcal {I}_{q}\) we get

$$ g\bigl( \bigl\Vert (-\Delta )^{\frac {s}{2}}u(t) \bigr\Vert \bigr)\leq E[u_{0}]< \biggl(1- \frac{2}{\mathcal {I}_{p}}\biggr)r_{1}^{2}< g(r_{1}). $$
  1. 1.

    Subcase 1. If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< r_{1}\), then, by the time continuity, \(\sup_{t\geq 0}\|(-\Delta )^{\frac {s}{2}}u(t)\|< r_{1}\), and the solution is global.

  2. 2.

    Subcase 2. If \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|>r_{1}\), then \(\inf_{\{t\in [0, T^{*})\}}\|(-\Delta )^{\frac {s}{2}}u(t)\|>r_{1}\). Since \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{p}})(1-\epsilon )r_{1}^{2}\), \(\epsilon >0\), and \(\mathcal {I}_{p}<\mathcal {I}_{q}\), by Theorem 2.5 it follows that for \(C(R)\to 0\) as \(R\to \infty \),

    M ζ R [ u ] 2 s I p E [ u 0 ] 2 s ( I p 2 ) ( Δ ) s 2 u 2 + 4 s 1 + q ( I p I q ) R N | u | 1 + q d x + C R 2 s + C R ( p 1 ) ( N 1 ) 2 s ϵ p ρ ( Δ ) s 2 u p 1 2 s + ϵ + C R ( q 1 ) ( N 1 ) 2 s ϵ q ( Δ ) s 2 u q 1 2 s + ϵ < 2 s ( I p 2 ) ( ( 1 ϵ ) r 1 2 ( Δ ) s 2 u 2 ) + ( 1 + C ( R ) ) ( Δ ) s 2 u 2 < s ( I p 2 ) ϵ ( Δ ) s 2 u 2 ,

    where we used \(\|(-\Delta )^{\frac {s}{2}}u\|^{2}>r_{1}>0\) via choosing \(R\ll 1\). Proposition 2.8 closes the proof.

9.3 Case 3

It follows similarly to the case 2.

10 Global/nonglobal existence for \(\lambda _{1}\lambda _{2}=-1\)

In this section, we prove Theorem 2.17.

10.1 Case 1

  1. 1.

    Subcase 1. Proposition 2.1 gives

    E [ u 0 ] = ( Δ ) s 2 u ( t ) 2 2 1 + p R N | u ( t ) | 1 + p | x | ρ d x + 2 1 + q R N | u ( t ) | 1 + q d x ( Δ ) s 2 u ( t ) 2 2 C N , p , ρ , s 1 + p u J p ( Δ ) s 2 u ( t ) I p ( Δ ) s 2 u ( t ) 2 2 J p ( J p I p ) I p 2 Q p ( p 1 ) u J p ( Δ ) s 2 u ( t ) I p : = f p ( ( Δ ) s 2 u ( t ) ) .

    Compute

    $$ f_{p}'(y)=2y \biggl(1-\biggl(\frac{\mathcal {J}_{p}}{\mathcal {I}_{p}} \biggr)^{ \frac{\mathcal {I}_{p}}{2}-1} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}}y^{ \mathcal {I}_{p}-2} \biggr). $$

    So \(f'\) has the unique positive root such that \(f_{p}(x_{p})=(1-\frac{2}{\mathcal {I}_{p}})x_{p}^{2}\) and

    $$ x_{p}= \biggl(\biggl(\frac{\mathcal {J}_{p}}{\mathcal {I}_{p}} \biggr)^{ \frac{\mathcal {I}_{p}}{2}-1} \Vert {Q_{p}} \Vert ^{-(p-1)} \Vert u \Vert ^{\mathcal {J}_{p}} \biggr)^{-\frac{1}{\mathcal {I}_{p}-2}}. $$
    (10.1)

    Then \(f_{p}(\|(-\Delta )^{\frac {s}{2}}u(t)\|)\leq E[u_{0}]< f(x_{p})\). So \(\|(-\Delta )^{\frac {s}{2}}u_{0}\|< x_{p}\). Then, as previously, \(\sup_{t\geq 0}\|(-\Delta )^{\frac {s}{2}}u(t)\|\leq x_{p}\), and the solution is global.

  2. 2.

    Subcase 2. Like before, \(\inf_{t\geq 0}\|(-\Delta )^{\frac {s}{2}}u(t)\|>x_{p}\). Since \(\lambda _{2}=-1\), \(\mathcal {I}_{p}>\max \{2,\mathcal {I}_{q}\}\), and \(E[u_{0}]<(1-\frac{2}{\mathcal {I}_{p}})(1-\epsilon )x_{p}^{2}\), where \(\epsilon >0\), Theorem 2.5 gives for \(R\ll 1\) and \(C(R)\to 0\) as \(R\to \infty \),

    M ζ R [ u ] 2 s I p E [ u 0 ] 2 s ( I p 2 ) ( Δ ) s 2 u 2 + 4 s λ 2 1 + q ( I p I q ) R N | u | 1 + q d x + C R 2 s + C R ( p 1 ) ( N 1 ) 2 s ϵ p ρ ( Δ ) s 2 u p 1 2 s + ϵ + C R ( q 1 ) ( N 1 ) 2 s ϵ q ( Δ ) s 2 u q 1 2 s + ϵ 2 s ( I p 2 ) ( ( 1 ϵ ) x p 2 ( Δ ) s 2 u 2 ) + ( 1 + C ( R ) ( Δ ) s 2 u 2 ) < s ϵ ( I p 2 ) ( Δ ) s 2 u 2 ,

    where one used \(\|(-\Delta )^{\frac {s}{2}}u\|^{2}>r_{p}>0\). Proposition 2.8 finishes the proof.

10.2 Case 2

It follows as in case 1.

11 Scattering

In this section, we prove Theorem 2.19. In the rest of this section, \(\lambda _{1}=\lambda _{2}=-1\). Let us start with a Morawetz identity.

11.1 Morawetz estimate

The next estimate is essential for proving the scattering.

Lemma 11.1

Let \(-2s<\rho <1\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\), and \(1< q< q^{c}\), and let uC(R, H r d s ) be a global solution to (1.1). Then

R R N |u | 1 + p 2 ( ρ 1 ) N 2 s dxdt+ R R N |u | 1 + q + 2 N 2 s dxdtE[ u 0 ].

Proof

Using Lemma 3.1, we have

M ζ [ u ( t ) ] = 0 n s R N ( 4 k u n k l 2 ζ l u n Δ 2 ζ | u n | 2 ) d x d n 4 ρ 1 + p R N x ζ | u | 1 + p | x | ρ 2 d x + 2 p 1 1 + p R N Δ ζ | u | 1 + p | x | ρ d x + 2 q 1 1 + q R N Δ ζ | u | 1 + q d x .

We pick \(\zeta :=|\cdot |\) and compute \(\nabla \zeta =\frac{\cdot}{|\cdot |}\), \(\Delta \zeta =\frac{N-1}{|\cdot |}\), and

$$ \Delta ^{2}\zeta =\textstyle\begin{cases} -4\pi \delta (x-y)&\text{if } N=3, \\ -(N-1)(N-3) \vert x-y \vert ^{-3}&\text{if } N\geq 4. \end{cases} $$

So

d d t M | | [ u ( t ) ] 4 ρ 1 + p R N | u | 1 + p | x | ρ 1 d x + 2 ( p 1 ) ( N 1 ) 1 + p R N | u | 1 + p | x | ρ 1 d x + 2 ( q 1 ) ( N 1 ) 1 + q R N | u | 1 + q | x | d x 2 ( ( p 1 ) ( N 1 ) 2 ρ 1 + p ) R N | u | 1 + p | x | ρ 1 d x + 2 ( q 1 ) ( N 1 ) 1 + q R N | u | 1 + q | x | d x .

Now by Strauss inequality (2.3), if \(\rho -1<0\) and \((p-1)(N-1)-2\rho >0\), then

d d t M | | [ u ( t ) ] 2 ( ( p 1 ) ( N 1 ) 2 ρ 1 + p ) R N | u | 1 + p | x | ρ 1 d x + 2 ( q 1 ) ( N 1 ) 1 + q R N | u | 1 + q | x | d x R N | u | 1 + p 2 ( ρ 1 ) N 2 s d x + R N | u | 1 + q + 2 N 2 s d x .

Lemma 2.3 in [6] gives \(|M_{|\cdot |} [u]|\lesssim \|u\|_{\dot{H}^{\frac{1}{2}}}^{2}\lesssim \|u\|_{H^{s}}^{2}\). Thus

u ( t ) H s 2 M | | [ u ( t ) ] R R N | u | 1 + p 2 ( ρ 1 ) N 2 s d x d t + R R N | u | 1 + q + 2 N 2 s d x d t .

 □

11.2 Decay of global solutions

Let us establish the extinction of global solutions.

Proposition 11.2

Let \(\frac {N}{2N-1}\leq s<1\), \(-2s<\rho <1\), \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\), and \(1< q< q^{c}\). Let uC(R, H r d s ) be a global solution to (1.1). Then

$$ \lim_{t\rightarrow \infty} \bigl\Vert u(t) \bigr\Vert _{r}=0 \quad \textit{for all } 2< r< \frac{2N}{N-2s}. $$

The proof is based on the next result.

Lemma 11.3

Let χ C 0 ( R N ). Take a sequence of functions such that

$$ \sup_{n} \Vert \varphi _{n} \Vert _{H^{s}}< \infty ,\qquad \varphi _{n} \rightharpoonup \varphi \quad \textit{in } H^{s}. $$

Let \(u_{n}\), u be solutions to (1.1) such that \(u_{n}(0,\cdot )=\varphi _{n}\) and \(u(0,\cdot )=\varphi \). Then for any \(\varepsilon >0\), there are \(T_{\varepsilon}>0\) and n ε N satisfying

χ ( u n u ) L T ε ( L 2 ( R N ) ) <εn> n ε .

Proof of Lemma 11.3

Denote \(v:=\chi u\), \(v_{n}:=\chi u_{n}\), \(w_{n}:=v_{n}-v\), and \(z_{n}:=u_{n}-u\). Then

$$\begin{aligned} i\dot{v}-(-\Delta )^{s} v =&\chi \bigl(i\dot{u}-(-\Delta )^{s} u\bigr)+\chi (- \Delta )^{s} u-(-\Delta )^{s} v \\ =&\chi \vert x \vert ^{\rho} \vert u \vert ^{p-1}u+ \vert u \vert ^{q-1}u+\chi (-\Delta )^{s} u-(- \Delta )^{s} v. \end{aligned}$$

By the Strichartz estimate, for some admissible couples \((\alpha ,\beta ), (\alpha _{1},\beta _{1})\in \Gamma \), we get

$$\begin{aligned} \Vert w_{n} \Vert _{L_{T}^{\infty}(L^{2})\cap L_{T}^{\alpha}(L^{\beta})} \lesssim & \bigl\Vert \chi (\varphi _{n}-\varphi ) \bigr\Vert + \bigl\Vert \chi \bigl( \vert u_{n} \vert ^{q-1}u_{n}- \vert u \vert ^{q-1}u\bigr) \bigr\Vert _{L_{T}^{\alpha '}(L^{\beta '})} \\ &{}+ \bigl\Vert \vert x \vert ^{\rho}\chi \bigl( \vert u_{n} \vert ^{p-1}u_{n}- \vert u \vert ^{p-1}u\bigr) \bigr\Vert _{L_{T}^{\alpha _{1}'}(L^{ \beta _{1}'})} \\ &{}+ \bigl\Vert \chi (-\Delta )^{s} z_{n}-(-\Delta )^{s} w_{n} \bigr\Vert _{L_{T}^{1}(L^{2})}. \end{aligned}$$
(11.1)

The Rellich theorem gives, for a subsequence,

$$ \epsilon _{n}:= \bigl\Vert (\varphi _{n}-\varphi )\chi \bigr\Vert \to 0\quad \text{as } n\to \infty . $$
(11.2)

By Lemma 2.23 we write

χ ( Δ ) s z n ( Δ ) s w n L T 1 ( L 2 ) z n ( Δ ) s χ L T 1 ( L 2 ) + ( Δ ) s χ L T 1 ( L N s ) z n L T ( L 2 N N 2 s ) z n L T 1 ( L 2 ) + T z n L T ( H ˙ s ) ( u L ( R , H s ) + sup n u n L ( R , H s ) ) T : = N T .
(11.3)

Take \((\alpha ,\beta ):=(\frac{8s}{(q-1)(N-2s)},\frac{4N}{2N-(q-1)(N-2s)})\). Since \(\frac{\beta (q-1)}{\beta -2}=\frac{2N}{N-2s}\) and \(q< q^{c}\), by Sobolev embeddings via the Hölder estimate we get

$$\begin{aligned} \bigl\Vert \chi \bigl( \vert u_{n} \vert ^{q-1}u_{n}- \vert u \vert ^{q-1}u\bigr) \bigr\Vert _{L_{T}^{\alpha '}(L^{\beta '})} \lesssim & \bigl( \Vert u_{n} \Vert _{L^{\infty}_{T}L^{ \frac{\beta (q-1)}{\beta -2}}}^{q-1}+ \Vert u \Vert _{L^{\infty}_{T}(L^{ \frac{\beta (q-1)}{\beta -2}})}^{q-1} \bigr) \Vert w_{n} \Vert _{L_{T}^{\alpha '}(L^{ \beta})} \\ \lesssim & T^{\frac{\alpha -2}{\alpha}} \bigl( \Vert u_{n} \Vert _{L^{\infty}_{T}(H^{s})}^{q-1}+ \Vert u \Vert _{L^{\infty}_{T}(H^{s})}^{q-1} \bigr) \Vert w_{n} \Vert _{L_{T}^{\alpha}(L^{ \beta})} \\ \lesssim & T^{\frac{\alpha -2}{\alpha}}N^{q-1} \Vert w_{n} \Vert _{L_{T}^{ \alpha}(L^{\beta})}. \end{aligned}$$
(11.4)

Let us estimate the term \(\||x|^{\rho}\chi (|u_{n}|^{p-1}u_{n}-|u|^{p-1}u)\|_{L_{T}^{\alpha _{1}'}(L^{ \beta _{1}'})}\). If \(\rho \geq 0\), then the estimation follows like for the homogeneous term. Assume that \(-2s<\rho <0\). Without loss of generality, assume also that \(supp(\chi )\subset B(0,1)\). Take \(\gamma := (\frac {N}{|\rho |} )^{-}:=\frac {N}{|\rho |}- \epsilon \) for some \(\epsilon >0\) close to zero and \(\beta _{1}:=\frac{1+p}{1-\frac{1}{\gamma}}\). Since \(p< p^{c}\), we can take \(0<\epsilon \ll 1\) such that \(\beta _{1}\in (2,\frac{2N}{N-2s})\) and \(\alpha _{1}>2\). Thus by the Hölder and Sobolev inequalities,

$$\begin{aligned} \bigl\Vert \vert x \vert ^{\rho}\chi \bigl( \vert u_{n} \vert ^{p-1}u_{n}- \vert u \vert ^{p-1}u\bigr) \bigr\Vert _{L_{T}^{\alpha '_{1}}(L^{ \beta '_{1}})} \lesssim & \bigl\| |x|^{\rho}\bigr\| _{\gamma} \bigl\Vert \bigl( \Vert u_{n} \Vert _{ \beta _{1}}^{p-1}+ \Vert u \Vert _{\beta _{1}}^{p-1} \bigr)\Vert w_{n} \|_{\beta _{1}} \bigr\| _{L_{T}^{\alpha '_{1}}} \\ \lesssim & T^{\frac{\alpha _{1}-2}{\alpha _{1}}} \bigl( \Vert u_{n} \Vert _{L^{ \infty}_{T}(H^{s})}^{q-1}+ \Vert u \Vert _{L^{\infty}_{T}(H^{s})}^{q-1} \bigr) \Vert w_{n} \|_{L_{T}^{\alpha _{1}}(L^{\beta _{1}})} \\ \lesssim & T^{\frac{\alpha _{1}-2}{\alpha _{1}}}N^{q-1} \Vert w_{n} \|_{L_{T}^{ \alpha _{1}}(L^{\beta _{1}})}. \end{aligned}$$
(11.5)

As a consequence of (11.2)–(11.5), we get

$$\begin{aligned} \Vert w_{n} \Vert _{L_{T}^{\infty}(L^{2})\cap L_{T}^{\alpha}(L^{\beta})\cap L_{T}^{ \alpha _{1}}(L^{\beta _{1}})} \lesssim &\epsilon _{n}+NT+ \bigl(T^{ \frac{\alpha -2}{\alpha}}N^{p-1}+T^{\frac{\alpha _{1}-2}{\alpha _{1}}}N^{q-1} \bigr) \Vert w_{n} \Vert _{L_{T}^{\alpha}(L^{\beta})\cap L_{T}^{\alpha _{1}}(L^{ \beta _{1}})} \\ \lesssim & \frac{\epsilon _{n}+NT}{1-T^{\frac{\alpha -2}{\alpha}}N^{p-1}-T^{\frac{\alpha _{1}-2}{\alpha _{1}}}N^{q-1}}. \end{aligned}$$

The proof is achieved. □

Now we prove the decay of global solutions following the method of [31].

Proof of Proposition 11.2

We prove the decay in \(L^{2+\frac{2s}{N}}\) and conclude with the conservation laws.

Suppose that there exist \(t_{n}\to \infty \) and \(\varepsilon >0\) satisfying

u ( t n ) L 2 + 2 s N ( R N ) >εnN.

Thus by (2.4) there are \(\varepsilon >0\) and a sequence x n R N satisfying

u ( t n ) L 2 ( Q 1 ( x n ) ) εnN.

Arguing as in [31], we get, for all \(t\in [t_{n},t_{n}+T]\) and \(n\geq n_{\varepsilon}\),

$$ \bigl\Vert u(t) \bigr\Vert _{L^{2}(Q_{2}(x_{n}))}\geq \frac{\varepsilon}{4}. $$

Since \(\lim_{n\rightarrow \infty}t_{n}=\infty \), assume that \(t_{n+1}-t_{n}>T\) for \(n\geq n_{\varepsilon}\). Thus Proposition 11.1 gives

E [ u 0 ] R R N | u ( t , x ) | 1 + p 2 ( ρ 1 ) N 2 s d x d t + R R N | u ( t , x ) | 1 + q + 2 N 2 s d x d t n t n t n + T Q 2 ( x n ) | u ( t , x ) | q + 2 N 2 s + 1 d x d t n ε 1 + q + 2 N 2 s T = .

This completes the proof of Proposition 11.2. □

11.3 Proof of Theorem 2.19

We define

$$ S(I):=\bigcap_{(q,r)\in \Gamma} L^{q}\bigl(I,L^{r}\bigr)\quad \text{and}\quad \bigl\langle (-\Delta )^{\frac {s}{2}} \bigr\rangle \cdot :=\cdot +(- \Delta )^{\frac {s}{2}}\cdot . $$

We start with some nonlinear estimates.

Lemma 11.4

Let \(\frac {N}{2N-1}\leq s<1\), \(-2s<\rho <0\), or \(N>6s\) and \(0<\rho <\min \{s,\frac {N}{2}-3s\}\), or \(N>8s\) and \(s<\rho <\frac {N}{2}-3s\), \(p_{c}< p< p^{c}\), and \(q_{c}< q< q^{c}\). Let uC(R, H r d s ) be a solution to (1.1). Then there are real numbers \(2< r_{1},r_{2},r_{3}<\frac{2N}{N-2s}\), \(0<\theta _{1}<q-1\), and \(0<\theta _{2},\theta _{3}<p-1\) such that

$$\begin{aligned} & \bigl\Vert \bigl\langle (-\Delta )^{\frac {s}{2}} \bigr\rangle \bigl(u-e^{i. \Delta}u_{0}\bigr) \bigr\Vert _{S(0,T)} \\ &\quad \lesssim \Vert u \Vert _{L^{\infty}_{T}(L^{r_{1}})}^{q-1-\theta _{1}} \bigl\Vert \bigl\langle (-\Delta )^{\frac {s}{2}} \bigr\rangle u \bigr\Vert _{S(0,T)}^{1+ \theta _{1}}+ \Vert u \Vert _{L^{\infty}_{T}(L^{r_{2}})}^{p-1-\theta _{2}} \bigl\Vert \bigl\langle (-\Delta )^{\frac {s}{2}} \bigr\rangle u \bigr\Vert _{S(0,T)}^{1+ \theta 2} \\ &\qquad {}+ \Vert u \Vert _{L^{\infty}_{T}(L^{r_{3}})}^{p-1-\theta _{3}} \bigl\Vert \bigl\langle (-\Delta )^{\frac {s}{2}} \bigr\rangle u \bigr\Vert _{S(0,T)}^{1+ \theta _{3}}. \end{aligned}$$

Proof of Lemma 11.4

Using the Strichartz estimate, we write

$$ \bigl\Vert \bigl\langle (-\Delta )^{\frac {s}{2}} \bigr\rangle \bigl(u(t) - e^{-it(- \Delta )^{s}}u(t_{0})\bigr) \bigr\Vert _{S(I)}\lesssim \bigl\Vert \bigl\langle (-\Delta )^{ \frac {s}{2}} \bigr\rangle \vert u \vert ^{q-1}u \bigr\Vert _{S'(I)}+ \bigl\Vert \bigl\langle (- \Delta )^{\frac {s}{2}} \bigr\rangle \vert x \vert ^{\rho} \vert u \vert ^{p-1}u \bigr\Vert _{S'(I)}. $$

Denote \(I:=(0,T)\) and take the admissible couple \((q_{1},r_{1}):=(\frac{4s(1+q)}{N(q-1)},1+q)\) and \(\theta _{1}:=q_{1}-1\in (1,q)\). Then, because \(q_{c}< q< q^{c}\), we get

$$ 2< r_{1}< \frac{2N}{N-2s}\quad \text{and}\quad \theta _{1}\in (1,q). $$

Thanks to the Hölder estimate, write

$$\begin{aligned} \bigl\Vert u^{q} \bigr\Vert _{L^{\frac{4s(1+q)}{4s(1+q)-N(q-1)}}(I, L^{\frac{1+q}{q}})} =& \bigl\Vert \Vert u\|_{L^{1+q}}^{q-\theta _{1}}\Vert u\|_{L^{1+q}}^{\theta _{1}} \bigr\| _{L^{ \frac{4s(1+q)}{4s(1+q)-N(q-1)}}(I)} \\ \lesssim &\|u\|_{L^{\infty}(I,L^{1+q})}^{q -\theta _{1}}\bigl\| \|u\|_{L^{1+q}}^{ \theta _{1}} \bigr\| _{L^{\frac{4s(1+q)}{4s(1+q)-N(q-1)}}(I)} \\ \lesssim &\|u\|_{L^{\infty}(I, L^{r_{1}})}^{q-\theta _{1}}\|u\|_{L^{q_{1}}(I, L^{r_{1}})}^{\theta _{1}}. \end{aligned}$$

By Lemma 2.22 we get

$$\begin{aligned} (\mathcal{I}) :=& \bigl\Vert (-\Delta )^{s}\bigl( \vert u \vert ^{q-1}u\bigr) \bigr\Vert _{L^{ \frac{4s(1+q)}{4s(1+q)-N(q-1)}}(I, L^{\frac{1+q}{q}})} \\ \lesssim & \bigl\Vert \bigl\Vert (-\Delta )^{s}u\bigr\| _{L^{1+q}} \Vert u\|_{L^{1+q}}^{q-1}\bigr\| _{L^{ \frac{4s(1+q)}{4s(1+q)-N(q-1)}}(I)} \\ \lesssim &\bigl\| (-\Delta )^{s}u\bigr\| _{L^{\frac{4s(1+q)}{N(q-1)}}(I, L^{1+q})} \|u \|_{L^{\infty}(I, L^{1+q})}^{q-\theta _{1}}\|u\|_{L^{ \frac{2s(\theta _{1}-1)(1+q)}{2s(1+q) -N(q-1)}}(I,L^{1+q})}^{\theta _{1}-1} \\ \lesssim &\bigl\| (-\Delta )^{s}u\bigr\| _{L^{\frac{4s(1+q)}{N(q-1)}}(I, L^{1+q})} \|u \|_{L^{\infty}(I, L^{1+q})}^{q-\theta _{1}}\|u\|_{L^{ \frac{4s(1+q)}{N(q-1)}}(I, L^{1+q})}^{\theta _{1}-1} \\ \lesssim &\|u\|_{L^{q_{1}}(I,W^{s,r_{1}})}^{\theta _{1}}\|u\|_{L^{ \infty}(I, L^{r_{1}})}^{q-\theta _{1}}. \end{aligned}$$

To estimate the inhomogeneous term, we discuss three cases.

  1. 1.

    Case 1: \(-2s<\rho <0\).

    Take \(\gamma := (\frac {N}{|\rho |} )^{-}\), \(r_{2}:=\frac{1+p}{1-\frac{1}{\gamma}}\), the admissible couple \((q_{2},r_{2})\), and \(\theta _{2}:=q_{2}-1\). Since \(p_{c}< p< p^{c}\), we get \(2< r_{2}<\frac{2N}{N-2s}\) and \(2< q_{2}=\frac{4s(1+p)}{N(p-1)+2|\rho |^{+}}<1+p\). Thus \(\theta _{2}\in (1,p)\), and by the Hölder estimate,

    $$\begin{aligned} \bigl\Vert \vert \cdot \vert ^{\rho }u^{p} \bigr\Vert _{L^{q_{2}'}(I, L^{r_{2}'})} \leq & \big\Vert \bigl\Vert \vert \cdot \vert ^{\rho}\big\| _{\gamma} \Vert u\|_{r_{2}}^{p-\theta _{2}} \|u\|_{r_{2}}^{ \theta _{2}}\bigr\| _{L^{q_{2}'}(I)} \\ \lesssim &\bigl\| \|u\|_{r_{2}}^{p-\theta _{2}}\|u\|_{r_{2}}^{\theta _{2}} \bigr\| _{L^{q_{2}'}(I)} \\ \lesssim &\|u\|_{L^{\infty}(I,r_{2})}^{p-\theta _{2}}\|u\|_{L^{q_{2}}(I,L^{r_{2}})}^{ \theta _{2}}. \end{aligned}$$

    Now, using the identity on R N , we have

    $$ \bigl\vert (-\Delta )^{\frac {s}{2}}\bigl( \vert \cdot \vert ^{\rho} \vert u \vert ^{p-1}u\bigr) \bigr\vert \lesssim \vert \cdot \vert ^{\rho -s} \vert u \vert ^{p}+ \vert \cdot \vert ^{\rho} \vert u \vert ^{p-1} \bigl\vert (-\Delta )^{ \frac {s}{2}}u \bigr\vert . $$

    It is sufficient to estimate, for \((q_{3},r_{3})\in \Gamma \), the term \(\||\cdot |^{\rho -s} u^{p}\|_{L^{q_{3}'}(I, L^{r_{3}'})}\). Take \(\mu := (\frac {N}{|\rho -s|} )^{-}\), \(r_{3}:=\frac{1+p}{1-\frac{1}{\mu}+\frac {s}{N}}\), the admissible couple \((q_{3},r_{3})\in \Gamma \), and \(\theta _{3}:=q_{3}-2\). Because \(p_{c}< p< p^{c}\), we have

    $$ 2< r_{3}< \frac{2N}{N-2s}\quad \text{and}\quad \theta _{3}:=q_{3}-2\in (0,p-1). $$

    Using the Hölder and Sobolev estimates, write

    $$\begin{aligned} \bigl\Vert \vert \cdot \vert ^{\rho -s} u^{p} \bigr\Vert _{L^{q_{3}'}(I, L^{r_{3}'})} \leq & \bigl\Vert \bigl\Vert \vert \cdot \vert ^{\rho -s}\bigr\| _{\mu} \Vert u\|_{r_{3}}^{p-1-\theta _{3}} \|u\|_{r_{3}}^{ \theta _{3}}\|u\|_{\frac{Nr_{3}}{N-sr_{3}}}\bigr\| _{L^{q_{3}'}(I)} \\ \lesssim &\bigl\| \|u\|_{r_{3}}^{p-1-\theta _{3}}\|u\|_{r_{3}}^{\theta _{3}} \|u\|_{\frac{Nr_{3}}{N-sr_{3}}}\bigr\| _{L^{q_{3}'}(I)} \\ \lesssim &\|u\|_{L^{\infty}(I,L^{r_{3}})}^{p-1-\theta _{3}}\|u\|_{L^{q_{3}}(I, \dot{W}^{s,r_{3}})}\|u \|_{L^{q_{3}}(I,L^{r_{3}})}^{\theta _{3}} \\ \lesssim &\|u\|_{L^{\infty}(I,L^{r_{3}})}^{p-1-\theta _{3}}\|u\|_{L^{q_{3}}(I,W^{s,r_{3}})}^{1+ \theta _{3}}. \end{aligned}$$

    The proof of the first case is achieved by regrouping the previous computation.

  2. 2.

    Case 2: \(0<\rho <\min \{s,\frac {N}{2}-3s\}\).

    Take \((q,r)\in \Gamma \), \(\theta :=q-1\), and \(a>1\) satisfying \(\frac{1}{r'}=\frac{p-1}{r}+\frac{1}{a}\). This necessarily gives \(r>p\) and \(a=\frac {r}{r-p}\). Using the Gagliardo-Nirenberg inequality in Proposition 2.1, we get

    $$\begin{aligned} \bigl\Vert \vert \cdot \vert ^{\rho} u^{p} \bigr\Vert _{L^{q'}(I, L^{r'})} \leq & \bigl\Vert \bigl\Vert \vert \cdot \vert ^{ \rho}u\bigr\| _{a}\Vert u\|_{r}^{p-1-\theta} \|u\|_{r}^{\theta}\bigr\| _{L^{q'}(I)} \\ \lesssim &\|u\|_{L^{\infty}(I,H^{s})}\bigl\| \|u\|_{r}^{p-1-\theta}\|u \|_{r}^{ \theta}\bigr\| _{L^{q'}(I)} \\ \lesssim &\|u\|_{L^{\infty}(I,H^{s})}\|u\|_{L^{\infty}(L^{r})}^{p-1- \theta}\|u \|_{L^{q}(I,L^{r})}^{\theta}. \end{aligned}$$

    Here we need the assumptions

    $$\begin{aligned}& 2+\frac{2a\rho}{N-2s}< a< 2+\frac{2(2s+a\rho )}{N-2s}\quad \Leftrightarrow\quad \frac{2(N-2s)}{N-2s-2\rho}< a< \frac{2N}{N-2s-2\rho}; \\& 2< r< \frac{2N}{N-2s} \quad \Leftrightarrow\quad \frac{2N}{N+2s-2\rho}< a< \frac{2(N-2s)}{N-6s-2\rho}; \\& 1< \theta < p-1\quad \Leftrightarrow\quad \frac{2N}{N+2s-2\rho}< a< \frac{2N}{N+4s-2N\frac{\rho +2s}{N-2s}}. \end{aligned}$$

    A direct computation gives no contradiction in the previous inequalities. The second one gives \(N>6s\) and \(\rho <\frac {N}{2}-3s\). The third one gives

    $$ (N+4s) (N-2s)>2N(\rho +2s)\quad \text{and}\quad N+2s-2\rho > N+4s-2N \frac{\rho +2s}{N-2s}. $$

    This is equivalent to

    $$ (N+4s) (N-2s)>2N(\rho +2s)>2(N-2s) (\rho +s). $$

    So \(N^{2}-2(\rho +s)N-8s^{2}>0\), which is satisfied if \(N>4s\) and \(\rho <\frac {N}{2}-s-\frac{4s^{2}}{N}\). This is weaker than the condition \(0<\rho <\frac {N}{2}-3s\). The quantity \(\||\cdot |^{\rho}(-\Delta )^{\frac {s}{2}}(|u|^{p-1}u)\|_{L^{q'}(I, L^{r'})}\) can be controlled similarly. Moreover, since \(\rho < s\), by the previous calculations,

    $$ \bigl\Vert \vert \cdot \vert ^{\rho -s}u^{p} \bigr\Vert _{L^{q_{3}'}(I, L^{r'_{3}})}\lesssim \Vert u \Vert _{L^{ \infty}(I,L^{r_{3}})}^{p-1-\theta _{3}} \Vert u \Vert _{L^{q_{3}}(I,W^{s,r_{3}})}^{1+ \theta _{3}}. $$
  3. 3.

    Third case: \(s<\rho <\frac {N}{2}-3s\).

    The term \(\||\cdot |^{\rho} u^{p}\|_{L^{q'}(I, L^{r'})}\) can be controlled as in the second case. To estimate \(\||\cdot |^{\rho -s}u^{p}\|\), we have the three previous assumptions for \(\rho -s\) rather than for ρ. Thus the necessary condition is \(0<\rho -s<\frac {N}{2}-3s\) and \(0<\rho <\frac {N}{2}-3s\). Thus \(s<\rho <\frac {N}{2}-3s\).

 □

Now we prove the scattering.

Proof of Theorem 2.19

Using Lemma 11.4, Proposition 11.2, and Lemma 2.26, it follows that ( Δ ) s 2 uS(R). This implies that

( Δ ) s 2 ( u e i . Δ u 0 ) S ( R ) ; ( Δ ) s 2 ( | | ρ | u | p 1 u + | u | q 1 u ) S ( R ) .

Then, as \(t,t'\to \infty \), we have

$$\begin{aligned} \bigl\Vert e^{it(-\Delta )^{s}}u(t)-e^{it'(-\Delta )^{s}}u\bigl(t' \bigr) \bigr\Vert _{H^{s}} \lesssim & \bigl\Vert \bigl\langle (- \Delta )^{\frac {s}{2}} \bigr\rangle \bigl( \vert \cdot \vert ^{\rho} \vert u \vert ^{p-1}u+ \vert u \vert ^{q-1}u\bigr) \bigr\Vert _{S'(t,t')}\to 0. \end{aligned}$$

Taking \(u_{\pm}:=\lim_{t\to \pm \infty}e^{it(-\Delta )^{s}}u(t)\) in \(H^{s}\), we get

$$ \lim_{t\to +\infty} \bigl\Vert u(t)-e^{-it(-\Delta )^{s}}u_{+} \bigr\Vert _{H^{s}}=0. $$

The scattering is proved. □

Availability of data and materials

There is no data associated with the current study.

References

  1. Alkhidhr, H.A.: Closed-form solutions to the perturbed NLSE with Kerr law nonlinearity in optical fibers. Results Phys. 22, 103875 (2021)

    Article  Google Scholar 

  2. Alotaibi, M., Jleli, M., Ragusa, M.A., Samet, B.: On the absence of global weak solutions for a nonlinear time-fractional Schrödinger equation. Appl. Anal. (2022, in press)

  3. Boulenger, T., Himmelsbach, D., Lenzmann, E.: Blow-up for fractional NLS. J. Funct. Anal. 271, 2569–2603 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cho, Y., Ozawa, T.: Sobolev inequalities with symmetry. Commun. Contemp. Math. 11, 355–365 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Christ, M., Weinstein, M.: Dispersion of small amplitude solutions of the generalized Korteweg–de Vries equation. J. Funct. Anal. 100, 87–109 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on R 3 . Commun. Pure Appl. Math. 57, 987–1014 (2004)

    Article  MATH  Google Scholar 

  7. Dinh, V.D., Feng, B.: On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete Contin. Dyn. Syst. 39(8), 4565–4612 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feng, B.: On the blow-up solutions for the nonlinear Schrödinger equation with combined power-type nonlinearities. J. Evol. Equ. 18, 203–220 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Feng, B.: On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Commun. Pure Appl. Anal. 17(5), 1785–1804 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frank, R.L., Lenzmann, E., Silvestre, L.: Uniqueness of radial solutions for the fractional Laplacian. Commun. Pure Appl. Anal. 69(9), 1671–1726 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Ghanmi, R., Saanouni, T.: Asymptotics for a class of heat equations with inhomogeneous non-linearity. Analysis 38(1), 21–36 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gill, T.S.: Optical guiding of laser beam in nonuniform plasma. Pramana J. Phys. 55, 845–852 (2000)

    Article  Google Scholar 

  13. Guo, B., Huo, Z.: Global well-posedness for the fractional nonlinear Schrödinger equation. Commun. Partial Differ. Equ. 36(2), 247–255 (2010)

    Article  MATH  Google Scholar 

  14. Guo, Z., Sire, Y., Wang, Y., Zhao, L.: On the energy-critical fractional Schrödinger equation in the radial case. Dyn. Partial Differ. Equ. 15, 265–282 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to non-linear Schrödinger and wave equations. J. Anal. Math. 124(1), 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kenig, C., Merle, F.: Global well-posedness, scattering and blow up for the energy critical focusing non-linear Schrödinger equation in the radial case. Invent. Math. 166, 645–675 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle. Commun. Pure Appl. Math. 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  20. Liu, C.S., Tripathi, V.K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1(9), 3100–3103 (1994)

    Article  Google Scholar 

  21. Miao, C., Xu, G., Zhao, L.: The dynamics of the 3D radial NLS with the combined terms. Commun. Math. Phys. 318(3), 767–808 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miao, C., Xu, G., Zhao, L.: The dynamics of the NLS with the combined terms in five and higher dimensions. In: Some Topics in Harmonic Analysis and Applications. Advanced Lectures in Mathematics, ALM, vol. 34, pp. 265–298. Higher Education Press/International Press, Beijing (2015)

    Google Scholar 

  23. Mohamed, E.M.A., Ahmed, N.I.A., Hussein, M.I.B., Taha, R.A.E.M., Ahmed, M.I., Abd-Alla, M.D.: Explanation of pressure effect for high temperature superconductors using pressure dependent Schrödinger equation and string theory. Nat. Sci. 12(1), 28–34 (2020)

    Google Scholar 

  24. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 13, 116–162 (1955)

    MathSciNet  MATH  Google Scholar 

  25. Peng, C., Zhang, Y., Ma, C.: Blow-up dynamics of \(L^{2}\)-critical inhomogeneous fractional nonlinear Schrödinger equation. Math. Methods Appl. Sci., 42(18), 6896–6905 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peng, C., Zhao, D.: Global existence and blow-up on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete Contin. Dyn. Syst., Ser. B 24(7), 3335–3356 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Polidoro, S., Ragusa, M.A.: On some Schrödinger type equations. In: More Progr. Anal., pp. 729–736 (2009)

    Chapter  Google Scholar 

  28. Saanouni, T.: Remarks on the inhomogeneous fractional nonlinear Schrödinger equation. J. Math. Phys. 57, 081503 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Saanouni, T., Alharbi, M.G.: Fractional Choquard equations with an inhomogeneous combined non-linearity. Mediterr. J. Math. 19, 108 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tao, T., Visan, M., Zhang, X.: The nonlinear Schrödinger equation with combined power-type non-linearities. Commun. Partial Differ. Equ. 32(7–9), 1281–1343 (2007)

    Article  MATH  Google Scholar 

  31. Visciglia, N.: On the decay of solutions to a class of defocusing NLS. Math. Res. Lett. 16(5), 919–926 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhu, S.: On the blow-up solutions for the nonlinear fractional Schrödinger equation. J. Differ. Equ. 261, 1506–1531 (2016)

    Article  MATH  Google Scholar 

Download references

Funding

There is no applicable fund.

Author information

Authors and Affiliations

Authors

Contributions

Tarek Saanouni: writing original draft, Methodology, Resources, formal analysis, Conceptualization; Salah Boulaaras: Corresponding author, Writing review and editing, Congming Peng: Supervision.. They have all read and approved the final manuscript.

Corresponding author

Correspondence to Salah Boulaaras.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we prove Lemma 2.4. Let \(\epsilon >0\) and \(1+\frac{2\rho \chi _{\{\rho >0\}}}{N-2s}< p< p^{c}\). Take a bounded sequence \((u_{n})\) in \(H^{s}\). Without loss of generality, we assume that \(u_{n}\rightharpoonup 0\) in \(H^{s}\). The purpose is to prove that R N | u n | 1 + p | x | ρ dx0.

  1. A.

    Case 1: \(-2s<\rho <0\). Take \(R>\epsilon ^{\rho}\). By the Hölder inequality, if \((q,q')\) satisfies \(q'|\rho |< N\), then we get

    $$\begin{aligned} \int _{ \vert x \vert \leq R} \vert u_{n} \vert ^{1+p} \vert x \vert ^{\rho} \,dx \leq & \Vert u_{n} \Vert _{L^{(1+p)q}( \vert x \vert < R)}^{1+p} \bigl\| |x|^{\rho}\bigr\| _{L^{q'}( \vert x \vert \leq R)} \\ \leq &C \Vert u_{n} \Vert _{L^{(1+p)q}( \vert x \vert < R)}^{1+p} \int _{0}^{R} \frac{dt}{t^{-q'\rho -N+1}} \\ \leq &C \Vert u_{n} \Vert _{L^{(1+p)q}( \vert x \vert < R)}^{1+p}R^{N+q'\rho}. \end{aligned}$$

    Now, since \(1< p< p^{c}\), we take \(1< q<\frac {N}{\rho +N}\) and get \(2<(1+p)q<\frac{2N}{N-2s}\). Thus by compact Sobolev embeddings it follows that

    $$\begin{aligned} \int _{ \vert x \vert \leq R} \vert u_{n} \vert ^{1+p} \vert x \vert ^{\rho} \,dx \leq &C \Vert u_{n} \Vert _{L^{(1+p)q}( \vert x \vert < R)}^{1+p}R^{N+q' \rho}\to 0. \end{aligned}$$

    Furthermore, by Sobolev embeddings,

    $$ \int _{ \vert x \vert \geq R} \vert u_{n} \vert ^{1+p} \vert x \vert ^{\rho} \,dx \leq R^{\rho} \Vert u_{n} \Vert _{1+p}^{1+p} \leq C\epsilon . $$

    The proof is ended.

  2. B.

    Case 2: \(\rho \geq 0\). Uusing Compact Sobolev embeddings, write

    $$ \int _{ \vert x \vert \leq \epsilon} \vert u_{n} \vert ^{1+p} \vert x \vert ^{\rho} \,dx\leq C \Vert u_{n} \Vert _{1+p}^{1+p} \to 0. $$

    Furthermore, by the Rellich theorem and Strauss inequality we have

    $$ \int _{\epsilon \leq \vert x \vert \leq \frac{1}{\epsilon}} \vert u_{n} \vert ^{1+p} \vert x \vert ^{ \rho} \,dx\leq C \Vert u_{n} \Vert _{L^{\infty}(\epsilon \leq \vert x \vert \leq \frac{1}{\epsilon})}^{p-1} \int _{\epsilon \leq \vert x \vert \leq \frac{1}{\epsilon}} \vert u_{n} \vert ^{2} \,dx\to 0. $$

    Now, by the Strauss inequality,

    $$\begin{aligned} \int _{ \vert x \vert \geq \frac{1}{\epsilon}} \vert u_{n} \vert ^{1+p} \vert x \vert ^{\rho} \,dx =& \int _{ \vert x \vert \geq \frac{1}{\epsilon}} \vert x \vert ^{\rho -(p-1)\frac{N-2s}{2}}\bigl( \vert x \vert ^{ \frac{N-2s}{2}} \vert u_{n} \vert \bigr)^{p-1} \vert u_{n} \vert ^{2} \,dx \\ \leq &C \int _{ \vert x \vert \geq \frac{1}{\epsilon}} \vert x \vert ^{\rho -(p-1) \frac{N-2s}{2}} \vert u_{n} \vert ^{2} \,dx \\ \leq &C\epsilon ^{(p-1)\frac{N-2s}{2}-\rho}. \end{aligned}$$

    Since \({\rho -(p-1)\frac{N-2s}{2}}<0\), the proof is ended.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T., Boulaaras, S. & Peng, C. A note on inhomogeneous fractional Schrödinger equations. Bound Value Probl 2023, 32 (2023). https://doi.org/10.1186/s13661-023-01721-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01721-6

MSC

Keywords