Skip to main content

Blow-up of solutions to the semilinear wave equation with scale invariant damping on exterior domain

Abstract

This paper is concerned with the blow-up of solutions to the initial boundary value problem for the wave equation with scale invariant damping term on the exterior domain, where the nonlinear terms are power nonlinearity \(|u|^{p} \), derivative nonlinearity \(|u_{t}|^{p} \) and combined nonlinearities \(|u_{t}|^{p}+ |u|^{q} \), respectively. Upper bound lifespan estimates of solutions to the problem are obtained by constructing suitable test functions and utilizing the test function technique. The main novelty is that lifespan estimates of solutions are associated with the well-known Strauss exponent and Glassey exponent. To the best of our knowledge, the results in Theorems 1.11.3 are new.

1 Introduction

We consider blow-up dynamics of solutions to the initial boundary value problem for the following damped wave equation on exterior domain

$$\begin{aligned} \textstyle\begin{cases} u_{tt} - \Delta u + \frac{\mu}{1+t}u_{t} = f(u,u_{t}), \quad (t,x) \in (0, \infty ) \times \Omega ^{c} , \\ u(0,x)= \varepsilon f(x), \qquad u_{t} (0,x) = \varepsilon g(x), \quad x\in \Omega ^{c}, \\ u(t,x)|_{\partial \Omega}=0,\quad t \geq 0, \end{cases}\displaystyle \end{aligned}$$
(1.1)

where \(f(u,u_{t}) = |u|^{p}, |u_{t}|^{p}, |u_{t}|^{p}+|u|^{q} (1< p, q< \infty )\). μ is a positive constant, \(\frac{\mu}{1+t}u_{t} \) is the scale invariant damping term. \(\Omega = B_{1}(0)= \{x | |x| \leq 1 \}\) and \(\Omega ^{c} = \mathbb{R}^{n} \setminus B_{1}(0)\). Let \(B_{R}(0)=\{x | |x| \leq R \}, R>2\). The initial values \(f(x)\) and \(g(x) \) possess compact supports, which satisfy

$$\begin{aligned} \bigl(f(x), g(x)\bigr) \in H^{1} \bigl(\Omega ^{c}\bigr) \times L^{2} \bigl(\Omega ^{c}\bigr) \end{aligned}$$

and

$$\begin{aligned} \operatorname{supp} \bigl(f(x), g(x)\bigr) \subset B_{R}(0). \end{aligned}$$
(1.2)

Let us recall several results on the Cauchy problem for nonlinear wave equation

$$\begin{aligned} \textstyle\begin{cases} u_{tt} - \Delta u = f(u,u_{t}), \quad (t,x)\in (0, \infty ) \times \mathbb{R}^{n} , \\ u(0,x)= \varepsilon f (x), \qquad u_{t} (0,x) = \varepsilon g (x), \quad x\in \mathbb{R}^{n}, \end{cases}\displaystyle \end{aligned}$$
(1.3)

where \(f(u,u_{t})= |u|^{p}, |u_{t}|^{p}, |u_{t}|^{p}+|u|^{q} \). First, we introduce the related results of problem (1.3) with power-type nonlinear term \(f(u,u_{t}) = |u|^{p} \). In fact, when \(n=1 \), \(p_{S} (1) = \infty \). While \(n\geq 2 \), \(p_{S}(n) \) is the largest root of the quadratic equation

$$\begin{aligned} \gamma (p,n)= -(n-1)p^{2}+(n+1)p +2 =0. \end{aligned}$$
(1.4)

We say that \(p_{S}(n) \) stands for the Strauss critical exponent, which represents the threshold between the blow-up dynamic of solution and the global existence of solution. Glassey [1] verifies the blow-up of solution to the problem in the dimensions \(n=2 \). John [2] proves the non-existence of global solution to the problem for \(1< p < p_{S}(3)= 1+\sqrt{2} \) in the case \(n=3 \). Zhou [3] investigates the existence of global solution to the Cauchy problem in the dimensions \(n=4 \). Blow-up results and lifespan estimates of solution when \(n \geq 4 \) are considered in [4]. Upper bound lifespan estimate of solution to the small initial value problem can be summarized as

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-\frac{2p(p-1)}{\gamma (p,n)}} , & 1< p< p_{S}(n), \\ \exp(C\varepsilon ^{-p(p-1)}), & p=p_{S}(n). \end{cases}\displaystyle \end{aligned}$$
(1.5)

We are in the position to consider problem (1.3) with derivative-type nonlinearity \(|u_{t}|^{p} \). It has been conjectured that the non-existence of global solution occurs for \(p > 1 \) when \(n = 1 \). In addition, there is a critical exponent \(p_{G}(n)= \frac{n+1}{n-1} \) that the solution blows up in finite time if \(1 < p < p_{G}(n)\ ( n\geq 2)\). This is the well-known Glassey conjecture studied by many scholars. John [5] investigates the formation of singularity of solution to the problem when \(n=3 \). Masuda [6] proves that the solution to the problem blows up in finite time when \(n \leq 3 \). Rammaha [7] establishes blow-up results of the problem in the case \(n \geq 4 \) in the sub-critical case using iteration method. Zhou [8] obtains lifespan estimates of solution for \(1 < p < p_{G}(n) (n\geq 2)\) as well as \(1< p< \infty \ (n=1) \). Upper bound lifespan estimate of solution to the problem with small initial values can be summarized as

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-(\frac{1}{p-1}-\frac{n-1}{2})^{-1}} , & 1< p< p_{G}(n), \\ \exp(C\varepsilon ^{-(p-1)}), & p=p_{G}(n), \\ \infty , & p_{G}(n) < p< \frac{n}{n-2}. \end{cases}\displaystyle \end{aligned}$$
(1.6)

The classical wave equation with combined type nonlinear terms \(|u_{t}|^{p} + |u|^{q}\) has also been widely discussed. The problem can be regarded as a material combination of power-type nonlinearity \(|u|^{p} \) and derivative-type nonlinearity \(|u_{t}|^{p} \). When the spatial dimension \(n=1 \), Zhou and Han [9] show non-existence of global solution to the problem for \(1< p, q<\infty \). Upper bound lifespan estimate of solution is derived by utilizing test function method. Han and Zhou [10] prove the blow-up result of solution when \((q-1) ((n-1)p-2) < 4 \). The interested readers may refer to [1113] for more relevant results.

Recently, the research of semilinear damped wave equations attracts more attention (see detailed illustrations in [1422]). Let ũ be a solution for the following linear damped wave equation, namely

$$\begin{aligned} \textstyle\begin{cases} \tilde{u}_{tt} - \Delta \tilde{u} + \frac{\mu}{(1+t)^{\beta}} \tilde{u}_{t} = 0, & (t,x)\in (0, \infty ) \times \mathbb{R}^{n}, \\ \tilde{u}(0,x)= \varepsilon f(x), \qquad \tilde{u}_{t} (0,x) = \varepsilon g(x), & x\in \mathbb{R}^{n}, \end{cases}\displaystyle \end{aligned}$$
(1.7)

where \(\mu >0\), \(\beta \in \mathbb{R}\), \(f,g \in C^{\infty}_{0}(\mathbb{R}^{n})\). We summarize the behaviors of solution as the following four cases.

Scope of β

Corresponding damping

Behavior of solution

β< − 1

Over damping

Solution does not decay to zero

−1 ≤ β<1

Effective

Solution is heat-like

β = 1

Scaling invariant

Behavior of solution depends on μ

β>1

Scattering

Solution is wave-like

The case \(\beta < -1 \) is corresponding to the over damping. The solution does not decay to zero in this case. Ikeda and Wakasugi [14] verify the existence of global solution for \(p>1 \). \(-1 \leq \beta <1 \) is the effective damping case. The solution behaves like that of heat equation, which indicates that the term \(\tilde{u}_{tt} \) has no influence. Lin et al. [23] prove blow-up results of the problem for \(1 < p \leq p_{F}(n)\), where the Fujita exponent \(p_{F}(n)= 1+\frac{2}{n} \). Ikeda and D’Abbicco [24, 25] obtain the precise lifespan estimates of solution to the problem. \(\beta =1 \) is corresponding to the scale invariant case. The equation is an intermediate situation between wave- and heat-like. In this case, behavior of solution is determined by the value of μ, which provides a threshold between the effective and non-effective damping. Fujiwara et al. [26] show blow-up result and lifespan estimate of solution in the critical case. \(\beta >1 \) is the scattering damping case. The solution behaves like that of wave equation. In this case, the damping term has no influence. Lai and Takamura [27] derive the blow-up of solution when \(1< p< p_{S}(n) \).

Now let us come back to our problem (1.1). D’Abbicco [28] shows the existence of global solution when

$$\begin{aligned} \mu \geq \textstyle\begin{cases} \frac{5}{3} , & n =1, \\ 3, & n = 2, \\ n+2,& n \geq 3. \end{cases}\displaystyle \end{aligned}$$
(1.8)

On the other hand, Wakasugi [29] proves the blow-up result when \(1 < p < p_{F} (n) (\mu \geq 1 ) \) and \(1< p<p_{F} (n+\mu -1) (0 < \mu <1) \). The lifespan estimate of solution satisfies

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C \varepsilon ^{-\frac{p-1}{2-n(p-1)}}, & 1 < p < p_{F} (n), \mu \geq 1, \\ C \varepsilon ^{-\frac{p-1}{2-(n+\mu -1)(p-1)}}, & 1< p < 1+ \frac{2}{n+\mu -1}, 0< \mu < 1. \end{cases}\displaystyle \end{aligned}$$
(1.9)

Wakasugi [30] illustrates that the behavior of solution is wave-like when \(\mu >1 \). Takamura [31] obtains the following lifespan estimate of solution

$$\begin{aligned} T(\varepsilon ) \leq C\varepsilon ^{- \frac{2p(p-1)}{\gamma (p,n+2\mu )}}, \quad p< p_{S}(n+2\mu ), 0 < \mu < \frac{n^{2}+n+2}{2(n+2)}. \end{aligned}$$
(1.10)

We observe that the lifespan estimate in (1.10) is better than that in (1.9) when \(n \geq 2 \). Notice that \(\mu = 2 \) is a special case. In general, applying the Liouville transform

$$\begin{aligned} v(t,x)=(1+t)^{\frac{\mu}{2}}u(t,x), \end{aligned}$$

we rewrite problem (1.1) as

$$\begin{aligned} \textstyle\begin{cases} v_{tt} - \Delta v + \frac{\mu (2-\mu )}{4-(1+t)^{2}}v = \frac{ \vert v \vert ^{p}}{(1+t)^{ \frac{\mu (p-1)}{2}}},& (t,x)\in (0, \infty ) \times \mathbb{R}^{n}, \\ v(0,x)= \varepsilon f(x), \qquad v_{t} (0,x) = \varepsilon \{ \frac{\mu}{2} f(x)+g(x) \} , & x\in \mathbb{R}^{n}. \end{cases}\displaystyle \end{aligned}$$
(1.11)

In fact, we expect this exponent to have some relationship with \(p_{S}(n) \). D’Abbicco et al. [32] obtain formation of singularity of solution to the problem. The critical exponent is

$$\begin{aligned} p_{c}(n)= \max\bigl\{ p_{F}(n), p_{S}(n+2) \bigr\} , \quad n \leq 3. \end{aligned}$$

Meanwhile, the authors prove existence of global solution when \(p > p_{c}(n) \ (n=2,3) \) and blow-up of solution when \(1 < p\leq p_{c}(n) \ (n \geq 1)\). D’Abbicco and Lucente [33] obtain the existence of global solution in higher dimensions \(n \geq 5 \) when \(p_{S}(n+2) < p < 1+2 (\max\{ 2,\frac{n-3}{2} \} )^{-1}\).

For problem (1.1) with \(f(u,u_{t})= |u_{t}|^{p} \), Lai and Takamura [34] investigate the blow-up result of solution when \(1< p \leq p_{G}(n+2 \mu ) \). Palmieri and Tu [35] show the formation of singularity of solution when \(1< p \leq p_{G}(n+\sigma ) \), where

$$\begin{aligned} \sigma = \textstyle\begin{cases} 2 \mu , & \mu \in [0,1), \\ 2,& \mu \in [1,2), \\ \mu , & \mu \in [2,\infty ). \end{cases}\displaystyle \end{aligned}$$
(1.12)

In addition, Hamouda and Hamza [36] obtain the blow-up dynamics of problem (1.1) with \(f(u, u_{t})=|u_{t}|^{p} + |u|^{q} \) in \(\mathbb{R}^{n} \) in the case \(\gamma (p,q,n+ \mu )<4 \), where

$$\begin{aligned} \gamma (p,q,n)=(q-1) \bigl((n-1)p-2\bigr). \end{aligned}$$
(1.13)

We refer readers to [35, 37] for more details.

Motivated by the previous works in [9, 27, 34, 3843], our main purpose is to consider lifespan estimates of solutions to problem (1.1) on the exterior domain. We note that there are several results for the wave equation on the exterior domain. Han and Zhou [9, 39, 40] investigate the blow-up results of semilinear wave equations with the variable coefficient on the exterior domain in different dimensions by utilizing the Kato lemma. Employing the test function technique, we generalize the problems studied in [9, 39, 40] to problem (1.1) with the scale invariant damping in the constant coefficient case. We observe that Lai and Takamura [27, 34, 41] derive the lifespan estimates of solutions to the semilinear damped wave equations in the scattering case \((\frac{\mu}{(1+t)^{\beta}}u_{t}, \beta >1) \) with the iteration method, where the nonlinear terms are power nonlinearity \(|u|^{p} \), derivative nonlinearity \(|u_{t}|^{p} \), and combined nonlinearities \(|u_{t}|^{p}+ |u|^{q} \), respectively. Lai et al. [42] consider the blow-up result of solution to the semilinear wave equation with the scale invariant damping term \((\frac{\mu}{1+t}u_{t}) \) when \(0 < \mu < \mu _{0}(n) (n\geq 2) \) with the improved Kato lemma. The novelty in this paper is that we employ the cut-off test function technique \((\Psi =\eta ^{2p'}_{T} \phi _{0}(x), \eta ^{2p'}_{T} \Phi (t,x)) \), which is different from the iteration method and improved Kato lemma in [27, 42] to verify the upper bound lifespan estimate of solution to problem (1.1) with power nonlinearity \(|u|^{p} \) when \(\mu >0 (n\geq 1) \). It is worth mentioning that Lai and Tu [43] investigate the semilinear wave equations with the scattering space dependent damping \((\frac{\mu}{(1+|x|)^{\beta}}u_{t} , \beta >2) \) by making use of the test function method \((\Psi =\eta ^{2p'}_{T} \Phi (t,x), \partial _{t} \psi (t,x)) \). Upper bound lifespan estimates of solutions to the problem with power nonlinearity \(|u|^{p} \) and derivative nonlinearity \(|u_{t}|^{p} \) are obtained, respectively. However, we consider the problem (1.1) that contains the scaling invariant damping term \((\frac{\mu}{1+t}u_{t}) \). Furthermore, we derive lifespan estimates of solution to problem (1.1) with combined nonlinear terms \(|u_{t}|^{p}+|u|^{q}\). Utilizing the test function method, Chen [38] shows the lifespan estimate of solution to the damped wave equation with derivative nonlinearity \(|u_{t}|^{p} \) and combined nonlinearities \(|u_{t}|^{p}+|u|^{q}\), respectively. We extend the problem in \(\mathbb{R}^{n} \) studied in [38] to the exterior domain. In addition, we establish the blow-up result of solution to the initial boundary value problem (1.1) with the power nonlinearity \(|u|^{p} \). To our best knowledge, the results in Theorems 1.11.3 are new.

The main results in this paper are presented as follows.

Theorem 1.1

Let \(p>1 \). Assume that the initial values \(f(x), g(x) \) are non-negative functions and do not vanish identically. It holds that

$$\begin{aligned} \operatorname{supp} u(t,x)\subset \bigl\{ x | \vert x \vert \leq t+R\bigr\} . \end{aligned}$$

Then the solution of problem (1.1) with \(f(u, u_{t})=|u|^{p} \) blows up in a finite time. The upper bound lifespan estimate satisfies

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-\frac{2p(p-1)}{\gamma (p,n+ \mu )}} , & {\gamma (p,n+ \mu )}>0, n \geq 3, \\ C\varepsilon ^{-\frac{2p(p-1)}{\gamma (p,2+ \mu )}},& {\gamma (p,2+ \mu )}>0, n = 2, \\ C \varepsilon ^{-\frac{2p(p-1)}{ -\mu p ^{2} + \mu p +4}}, & { -\mu p ^{2} + \mu p +4}>0, n = 1. \end{cases}\displaystyle \end{aligned}$$
(1.14)

Theorem 1.2

Assume that the initial values \(f(x), g(x) \) are non-negative functions and do not vanish identically. It holds that

$$\begin{aligned} \operatorname{supp} u(t,x)\subset \bigl\{ x | \vert x \vert \leq t+R\bigr\} . \end{aligned}$$

Then the solution of problem (1.1) with \(f(u, u_{t})=|u_{t}|^{p} \) blows up in a finite time. The upper bound lifespan estimate satisfies

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-\frac{p-1}{1-\frac{(n+\mu -1)(p-1)}{2}}} ,& 1< p < \frac{2}{n+\mu -1}+1, n \geq 3, \\ \exp (C \varepsilon ^{-(p-1)}), & p = \frac{2}{n+\mu -1}+1, n \geq 3, \\ C\varepsilon ^{-\frac{p-1}{1-\frac{(3+\mu )(p-1)}{2}}}, & 1< p < \frac{2}{3+\mu}+1, n = 2, \\ \exp (C \varepsilon ^{-(p-1)}), & p = \frac{2}{3+\mu}+1, n = 2, \\ C \varepsilon ^{-\frac{p-1}{1-\frac{(2+\mu )(p-1)}{2}}}, & 1< p < \frac{2}{2+\mu}+1, n = 1, \\ \exp (C \varepsilon ^{-(p-1)}), & p = \frac{2}{2+\mu}+1, n = 1. \end{cases}\displaystyle \end{aligned}$$
(1.15)

Theorem 1.3

Let \(p, q>1 \). Assume that the initial values \(f(x), g(x) \) are non-negative functions and do not vanish identically. It holds that

$$\begin{aligned} \operatorname{supp} u(t,x)\subset \bigl\{ x | \vert x \vert \leq t+R\bigr\} . \end{aligned}$$

Then the solution of problem (1.1) with \(f(u, u_{t})=|u_{t}|^{p} +|u|^{q}\) blows up in a finite time. The upper bound lifespan estimate satisfies

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-\frac{2p(q-1)}{4-\gamma (p,q, n+ \mu )}} , & \gamma (p,q, n+ \mu )< 4, n \geq 3, \\ C\varepsilon ^{-\frac{2p(q-1)}{4-\gamma (p,q,2+ \mu )}},& \gamma (p,q, 2+ \mu )< 4, n = 2, \\ C \varepsilon ^{-\frac{2p(q-1)}{4- \mu p q+\mu p}}, & \mu p q-\mu p< 4, n = 1. \end{cases}\displaystyle \end{aligned}$$
(1.16)

2 Proof of Theorem 1.1

2.1 The case for \(n \geq 3 \)

We present the definition of energy solution and related lemmas.

Definition 2.1

Suppose that u is an energy solution of problem (1.1) on \([0,T) \) if

$$\begin{aligned} u\in C\bigl([0,T), H^{1}\bigl(\Omega ^{c}\bigr)\bigr)\cap C^{1}\bigl([0,T),L^{2}\bigl(\Omega ^{c}\bigr)\bigr) \cap L^{p}_{\mathrm{loc}} \bigl(\Omega ^{c} \times (0, T) \bigr) \end{aligned}$$

and

$$\begin{aligned} & \varepsilon \int _{\Omega ^{c}} g(x) \Psi (0,x) \,dx + \varepsilon \int _{\Omega ^{c}} \mu f(x) \Psi (0,x) \,dx + \int ^{T} _{0} \int _{ \Omega ^{c}} f(u, u_{t}) \Psi (t,x) \,dx\,dt \\ &\quad=- \int ^{T} _{0} \int _{\Omega ^{c}} u_{t} (t,x) \Psi _{t} (t,x) \,dx\,dt + \int ^{T} _{0} \int _{\Omega ^{c}} \nabla u \nabla \Psi (t,x) \,dx\,dt \\ &\qquad{}- \int ^{T} _{0} \int _{\Omega ^{c}} \frac{\mu}{1+t} u(t,x) \Psi _{t} (t,x) \,dx\,dt \\ &\qquad{}+ \int ^{T} _{0} \int _{\Omega ^{c}} \frac{\mu}{(1+t)^{2}} u(t,x) \Psi (t,x) \,dx\,dt, \end{aligned}$$
(2.1)

for all \(\Psi (t,x) \in C^{\infty}_{0} ([0,T)\times \Omega ^{c})\).

Lemma 2.1

([44])

There exists a function \(\phi _{0}(x) \in C^{2} (\Omega ^{c}) \ (n \geq 3)\) satisfying the following boundary value problem

$$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{0} (x)=0, \quad x\in \Omega ^{c}, n\geq 3, \\ \phi _{0}(x)|_{\partial \Omega}=0, \\ \vert x \vert \rightarrow \infty , \qquad \phi _{0} (x)\rightarrow \infty . \end{cases}\displaystyle \end{aligned}$$
(2.2)

Moreover, for all \(x \in \Omega ^{c}\), it holds that \(0 < \phi _{0} (x)<1\).

We introduce the following ordinary differential equation

$$\begin{aligned} \lambda ''(t) - \frac{\mu}{1+t} \lambda '(t) -\lambda (t)=0. \end{aligned}$$
(2.3)

Lemma 2.2

([38])

The ODE (2.3) admits one solution

$$\begin{aligned} \lambda (t) =(1+t)^{\frac{\mu +1}{2}} K_{\frac{\mu +1}{2}}(1+t), \end{aligned}$$

where \(K_{v}(z)\) is the second kind modified Bessel function. In particular, \(\lambda (t) \) is a real and positive function satisfying

$$\begin{aligned} \lambda (0)= K_{\frac{\mu +1}{2}}(1)>0, \qquad\lambda '(0)=-K_{ \frac{\mu -1}{2}}(1)< 0,\qquad \lambda '(t)< 0. \end{aligned}$$

For large t, it holds that

$$\begin{aligned} \lambda (t)= \frac{1}{e}\sqrt{\frac{\pi}{2}}(1+t)^{\frac{\mu}{2}} e ^{-t} \times \biggl(1+ O\biggl(\frac{1}{1+t}\biggr)\biggr)= - \lambda '(t). \end{aligned}$$
(2.4)

Lemma 2.3

([9])

There exists a function \(\phi _{1}(x) \in C^{2} (\Omega ^{c})\ (n \geq 1)\) satisfying the following boundary value problem

$$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{1} (x)=\phi _{1} (x), \quad x\in \Omega ^{c}, n\geq 1, \\ \phi _{1} (x)|_{\partial \Omega}=0, \\ \vert x \vert \rightarrow \infty , \qquad\phi _{1} (x)\rightarrow \int _{\mathbb{S}^{n-1}} e^{x\omega}\,d\omega . \end{cases}\displaystyle \end{aligned}$$
(2.5)

Moreover, there exists a positive constant C, such that \(0 < \phi _{1} (x) \leq C (1+|x|)^{- \frac{n-1}{2}}e^{|x|}\) for all \(x\in \Omega ^{c}\).

We define the test function

$$\begin{aligned} \Phi (t,x)=\lambda (t) \phi _{1} (x). \end{aligned}$$
(2.6)

Lemma 2.4

Let \(p>1\). For all \(t \geq 0\), it holds that

$$\begin{aligned} \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\Phi (t,x)\bigr]^{\frac{p}{p-1}} \,dx \leq C \lambda (t)^{p'} (t+R) ^{n-1- \frac{(n-1)p'}{2}} e^{p't}, \end{aligned}$$

where \(p'=\frac{p}{p-1} \), and C is a positive constant.

Proof

Using Lemma 2.3, we have

$$\begin{aligned} & \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\Phi (t,x)\bigr]^{ \frac{p}{p-1}} \,dx \\ &\quad= \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\lambda (t) \phi _{1} (x) \bigr]^{\frac{p}{p-1}} \,dx \\ &\quad\leq C \operatorname{area}\bigl(\mathbb{S}^{n-1}\bigr) \lambda (t)^{p'} \int ^{t+R}_{0} (1+r)^{n-1- \frac{(n-1)p'}{2}}e^{p'r} \,dr \\ &\quad\leq C \lambda (t)^{p'} (t+R) ^{n-1-\frac{(n-1)p'}{2}} e^{p't}. \end{aligned}$$
(2.7)

This completes the proof of Lemma 2.4. □

Lemma 2.5

Let \(p>1 \). For all \(t \geq 0 \), it holds that

$$\begin{aligned} \int ^{T}_{0} \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\Phi (t,x)\bigr]^{ \frac{p}{p-1}}\phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \,dt \leq C T^{ \frac{\mu p'}{2}+n- \frac{(n-1)p'}{2}}, \end{aligned}$$

where \(p'=\frac{p}{p-1} \), and C is a positive constant.

Proof

The direct computation shows

$$\begin{aligned} & \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\Phi (t,x)\bigr]^{ \frac{p}{p-1}}\phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ &\quad= \int _{\Omega ^{c} \cap B_{R}(0) }\bigl[\Phi (t,x)\bigr]^{\frac{p}{p-1}} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ &\qquad{}+ \int _{(\Omega ^{c} \setminus B_{R}(0)) \cap \{|x| \leq t+R \}} \bigl[\Phi (t,x)\bigr]^{\frac{p}{p-1}} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ &\quad= M_{1}(t) + M_{2}(t). \end{aligned}$$
(2.8)

We bear in mind \(0< \phi _{0} (x) < 1\) for all \(x \in \Omega ^{c}\). There exists a constant \(C \in (0,1) \) such that \(\phi _{0}(x) \geq C \) when \(x \in (\Omega ^{c} \setminus B_{R}(0)) \cap \{|x| \leq t+R\}\). Making use of Lemma 2.4, we acquire

$$\begin{aligned} M_{2}(t)&= \int _{(\Omega ^{c} \setminus B_{R}(0)) \cap \{|x| \leq t+R \}} \bigl[\Phi (t,x)\bigr]^{\frac{p}{p-1}} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ & \leq C \lambda (t)^{p'} (t+R) ^{n-1- \frac{(n-1)p'}{2}} e^{p't}. \end{aligned}$$
(2.9)

Taking advantage of Lemma 2.5 in [9], we have

$$\begin{aligned} M_{1}(t) \leq C \lambda (t) ^{p'} \int _{\Omega ^{c} \cap B_{R}(0)} \operatorname{dist} (x,\partial \Omega ) \,dx \leq C \lambda (t) ^{p'}. \end{aligned}$$
(2.10)

We conclude

$$\begin{aligned} & \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\Phi (t,x)\bigr]^{ \frac{p}{p-1}}\phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ &\quad \leq C \lambda (t)^{p'} (t+R) ^{n-1- \frac{(n-1)p'}{2}} e^{p't}. \end{aligned}$$
(2.11)

Utilizing (2.4), we have

$$\begin{aligned} \int ^{T}_{0} \int _{\Omega ^{c}} \bigl[\Phi (t,x)\bigr]^{\frac{p}{p-1}} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx\,dt &\leq C \int ^{T}_{T/2} \lambda (t) ^{p'} e^{p't} (t+R)^{n-1- \frac{(n-1)p'}{2}} \,dt \\ &\leq C T^{\frac{\mu p'}{2}+n- { \frac{(n-1)p'}{2}}}. \end{aligned}$$
(2.12)

This proves Lemma 2.5. □

Proof of Theorem 1.1

Let \(\eta (t) \in C^{\infty} ([0,\infty )) \) satisfy

$$\begin{aligned} \eta (t) = \textstyle\begin{cases} 1, & t \leq \frac{1}{2}, \\ \text{decreasing}, & \frac{1}{2} < t < 1, \\ 0, & t \geq 1 \end{cases}\displaystyle \end{aligned}$$
(2.13)

and

$$\begin{aligned} \bigl\vert \eta '(t) \bigr\vert \leq C,\qquad \bigl\vert \eta ''(t) \bigr\vert \leq C. \end{aligned}$$

Let \(\eta _{T} (t)=\eta (\frac{t}{T}) \). Choosing \(\Psi (t,x) = \eta ^{2p'} _{T} (t) \phi _{0} (x) \) in (2.1) with \(f(u, u_{t})= |u|^{p} \) and integrating by parts, we obtain

$$\begin{aligned} & \varepsilon \int _{\Omega ^{c}} g(x) \phi _{0}(x) \,dx + \varepsilon \int _{\Omega ^{c}} \mu f(x) \phi _{0}(x) \,dx + \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \\ &\quad= \int ^{T} _{0} \int _{\Omega ^{c}} u \partial ^{2}_{t} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt - \int ^{T} _{0} \int _{\Omega ^{c}} \frac{\mu}{1+t} u \partial _{t} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \\ &\qquad{}+ \int ^{T} _{0} \int _{\Omega ^{c}} \frac{\mu}{(1+t)^{2}} u \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \\ &\quad= I_{1}+I_{2}+I_{3}. \end{aligned}$$
(2.14)

Noting that

$$\begin{aligned} &\partial _{t} \eta ^{2p'} _{T}= \frac{2p'}{T} \eta ^{2p'-1} _{T} \eta ',\\ &\partial ^{2}_{t} \eta ^{2p'} _{T}= \frac{2p'(2p'-1)}{T^{2}} \eta ^{2p'-2} _{T} \bigl\vert \eta ' \bigr\vert ^{2} + \frac{2p'}{T^{2}} \eta ^{2p'-1} _{T} \eta '', \end{aligned}$$

we derive

$$\begin{aligned} \vert I_{1} \vert &\leq CT^{-2} \int ^{T} _{0} \int _{\Omega ^{c}} \bigl\vert u \eta ^{2p'-2} _{T} \phi _{0}(x) \bigr\vert \,dx\,dt \\ & \leq CT^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}}\phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p'}} \\ & \leq CT^{n+1-2p'} + \frac{1}{4} \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt, \end{aligned}$$
(2.15)
$$\begin{aligned} \vert I_{2} \vert &\leq CT^{-1} \int ^{T} _{0} \int _{\Omega ^{c}} \biggl\vert \frac{\mu}{1+t} u \eta ^{2p'-1} _{T} \phi _{0}(x) \biggr\vert \,dx\,dt \\ & \leq CT^{-1} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \biggl(\frac{\mu}{1+t}\biggr)^{p'} \phi _{0}(x) \,dx\,dt\biggr)^{ \frac{1}{p'}} \\ & \leq CT^{-1} \biggl( \int ^{T} _{0} t^{n-p'} \,dt \biggr)^{\frac{1}{p'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \\ & \leq CT^{n+1-2p'}+ \frac{1}{4} \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \end{aligned}$$
(2.16)

and

$$\begin{aligned} \vert I_{3} \vert & \leq \int ^{T} _{0} \int _{\Omega ^{c}} \biggl\vert \frac{\mu}{(1+t)^{2}} u \eta ^{2p'} _{T} \phi _{0}(x) \biggr\vert \,dx\,dt \\ & \leq C \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \biggl[\frac{\mu}{(1+t)^{2}}\biggr]^{p'} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{p'}} \\ & \leq CT^{n+1-2p'}+ \frac{1}{4} \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt. \end{aligned}$$
(2.17)

From (2.14), (2.15), (2.16), and (2.17), we obtain

$$\begin{aligned} C_{1} (f,g) \varepsilon + \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \leq CT^{n+1-2p'}, \end{aligned}$$
(2.18)

where

$$\begin{aligned} C_{1} (f,g)=C\biggl( \int _{\Omega ^{c}} g(x) \phi _{0}(x) \,dx + \int _{ \Omega ^{c}} \mu f(x) \phi _{0}(x) \,dx\biggr). \end{aligned}$$

Setting \(\Psi (t,x) = \eta ^{2p'} _{T}(t) \Phi (t,x) \) in (2.1) with \(f(u, u_{t})=|u|^{p} \) and integrating by parts, we get

$$\begin{aligned} & C_{2}(f,g) \varepsilon + \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \Psi \,dx\,dt \\ &\quad= \int ^{T} _{0} \int _{\Omega ^{c}} u \partial ^{2}_{t} \eta ^{2p'} _{T} \Phi \,dx\,dt +2 \int ^{T} _{0} \int _{\Omega ^{c}} u \partial _{t} \eta ^{2p'} _{T} \partial _{t} \Phi \,dx\,dt \\ &\qquad{}- \int ^{T} _{0} \int _{\Omega ^{c}} u \frac{\mu}{1+t} \partial _{t} \eta ^{2p'} _{T} \Phi \,dx\,dt + \int ^{T} _{0} \int _{ \Omega ^{c}} u \frac{\mu}{(1+t)^{2}} \eta ^{2p'} _{T} \Phi \,dx\,dt \\ &\qquad{}+ \int ^{T} _{0} \int _{\Omega ^{c}} u \eta ^{2p'} _{T} \phi _{1}(x) \biggl(\lambda ''(t)-\lambda (t)- \frac{\mu}{1+t} \lambda '(t)\biggr) \,dx\,dt \\ &\quad= \int ^{T} _{0} \int _{\Omega ^{c}} u \partial ^{2}_{t} \eta ^{2p'} _{T} \Phi \,dx\,dt +2 \int ^{T} _{0} \int _{\Omega ^{c}} u \partial _{t} \eta ^{2p'} _{T} \partial _{t} \Phi \,dx\,dt \\ &\qquad{}- \int ^{T} _{0} \int _{\Omega ^{c}} u \frac{\mu}{1+t} \partial _{t} \eta ^{2p'} _{T} \Phi \,dx\,dt + \int ^{T} _{0} \int _{ \Omega ^{c}} u \frac{\mu}{(1+t)^{2}} \eta ^{2p'} _{T} \Phi \,dx\,dt \\ &\quad= I_{4} + I_{5}+ I_{6}+ I_{7}, \end{aligned}$$
(2.19)

where

$$\begin{aligned} C_{2}(f,g) = C\biggl( \int _{\Omega ^{c}} g(x) \lambda (0) \phi _{1}(x) \,dx + \int _{\Omega ^{c}}\bigl(\mu \lambda (0)-\lambda '(0) \bigr)f(x) \phi _{1}(x) \,dx\biggr). \end{aligned}$$

Using Lemma 2.5, we deduce

$$\begin{aligned} \vert I_{4} \vert & \leq \int ^{T} _{0} \int _{\Omega ^{c}} \bigl\vert u \partial ^{2}_{t} \eta ^{2p'} _{T} \Phi \bigr\vert \,dx\,dt \\ & \leq CT^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T}_{0} \int _{ \Omega ^{c}} \Phi ^{p'}\phi _{0}(x) ^{- \frac{1}{p-1}}\,dx \,dt\biggr)^{ \frac{1}{p'}} \\ & \leq CT^{-2+\frac{n}{p'}+\frac{\mu -n+1}{2}}\biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{ \frac{1}{p}}, \end{aligned}$$
(2.20)
$$\begin{aligned} \vert I_{5} \vert &\leq \int ^{T} _{0} \int _{\Omega ^{c}} \bigl\vert u \partial _{t} \eta ^{2p'} _{T} \partial _{t} \Phi \bigr\vert \,dx \,dt \\ & \leq CT^{-1} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T}_{0} \int _{ \Omega ^{c}} \Phi ^{p'}\phi _{0}(x) ^{- \frac{1}{p-1}}\,dx \,dt\biggr)^{ \frac{1}{p'}} \\ & \leq CT^{-1+\frac{n}{p'}+\frac{\mu -n+1}{2}}\biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{ \frac{1}{p}}. \end{aligned}$$
(2.21)

In a similar way, we acquire

$$\begin{aligned} & \vert I_{6} \vert , \vert I_{7} \vert \leq CT^{-2+\frac{n}{p'}+\frac{\mu -n+1}{2}}\biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt\biggr)^{ \frac{1}{p}}. \end{aligned}$$
(2.22)

We conclude from (2.19), (2.20), (2.21), and (2.22) that

$$\begin{aligned} C_{2} (f,g) \varepsilon \leq C T^{-1+\frac{n}{p'}+\frac{\mu -n+1}{2}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$

This in turn implies

$$\begin{aligned} & \bigl(C_{2} (f,g) \varepsilon \bigr)^{p} T^{n-\frac{(n+\mu -1)p}{2}} \leq \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt. \end{aligned}$$
(2.23)

From (2.18) and (2.23), we arrive at

$$\begin{aligned} T\leq C\varepsilon ^{-\frac{2p(p-1)}{\gamma (p,n+ \mu )}}. \end{aligned}$$

 □

2.2 The case for \(n = 2 \)

We are in the position to present several lemmas.

Lemma 2.6

([38])

There exists a function \(\phi _{0}(x) \in C^{2} (\Omega ^{c}) \ (n=2)\) satisfying the following boundary value problem

$$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{0} (x)=0, \quad x\in \Omega ^{c}, n = 2, \\ \phi _{0} (x)|_{\partial \Omega}=0, \\ \vert x \vert \rightarrow \infty ,\qquad \phi _{0} (x)\rightarrow \infty . \end{cases}\displaystyle \end{aligned}$$
(2.24)

Moreover, for all \(x \in \Omega ^{c} \), it holds that \(0 < \phi _{0} (x)\leq C \ln r \), where C is a positive constant, and \(r=|x| \).

When we set \(n=2 \) in Lemmas 2.4 and 2.5, we obtain the following two lemmas.

Lemma 2.7

Let \(n=2 \) and \(p>1\). Then for all \(t \geq 0\), it holds that

$$\begin{aligned} \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\Phi (t,x)\bigr]^{p'} \,dx \leq C \lambda (t)^{p'} (t+R) ^{1- \frac{p'}{2}} e^{p't}, \end{aligned}$$

where \(p'=\frac{p}{p-1} \), and C is a positive constant.

Lemma 2.8

Let \(n=2 \) and \(p>1\). Then for all \(t \geq 0 \), it holds that

$$\begin{aligned} \int ^{T}_{0} \int _{\Omega ^{c} \cap \{|x| \leq t+R\}} \bigl[\Phi (t,x)\bigr]^{p'} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \,dt \leq C T^{ \frac{\mu p'}{2}+2- \frac{p'}{2}} (\ln T)^{- \frac{1}{p-1}}, \end{aligned}$$
(2.25)

where \(p'=\frac{p}{p-1} \), and C is a positive constant.

Proof of Theorem 1.1

Similar to the derivation in (2.15)–(2.17), we acquire

$$\begin{aligned} \vert I_{1} \vert &\leq CT^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}}\phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p'}} \\ & \leq CT^{-2} \biggl( \int ^{T} _{0} t^{2} \ln t \,dt \biggr)^{ \frac{1}{p'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \\ & \leq CT^{3-2p'}\ln T + \frac{1}{4} \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt, \end{aligned}$$
(2.26)

and

$$\begin{aligned} & \vert I_{2} \vert , \vert I_{3} \vert \leq CT^{3-2p'}\ln T + \frac{1}{4} \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt. \end{aligned}$$
(2.27)

Applying (2.14), (2.26), and (2.27), we obtain

$$\begin{aligned} C_{1} (f,g) \varepsilon + \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0} (x)\,dx\,dt \leq CT^{3-2p'}\ln T. \end{aligned}$$
(2.28)

Combining Lemma 2.8, we deduce

$$\begin{aligned} \vert I_{4} \vert & \leq CT^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T}_{0} \int _{ \Omega ^{c}} \Phi ^{p'}\phi _{0}(x) ^{- \frac{1}{p-1}}\,dx \,dt\biggr)^{ \frac{1}{p'}} \\ & \leq CT^{-2+\frac{2}{p'}+\frac{\mu -1}{2}}(\ln T)^{- \frac{1}{p}}\biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(2.29)

Similarly, we obtain

$$\begin{aligned} \vert I_{5} \vert , \vert I_{6} \vert , \vert I_{7} \vert \leq CT^{-1+\frac{2}{p'}+\frac{\mu -1}{2}}( \ln T)^{-\frac{1}{p}}\biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(2.30)

We conclude from (2.19), (2.29), and (2.30) that

$$\begin{aligned} & \bigl(C_{2} (f,g) \varepsilon \bigr)^{p} T^{-p+2-\frac{(\mu -1)p}{2}} \ln T \leq \int ^{T} _{0} \int _{\Omega ^{c}} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt. \end{aligned}$$
(2.31)

From (2.28) and (2.31), we have

$$\begin{aligned} T\leq C\varepsilon ^{-\frac{2p(p-1)}{\gamma (p,2+ \mu )}}. \end{aligned}$$

 □

2.3 The case for \(n = 1 \)

We present several related lemmas.

Lemma 2.9

([38])

There exists a function \(\phi _{0}(x) \in C^{2} ([0, \infty )) \ (n =1)\) satisfying the following boundary value problem

$$\begin{aligned} \textstyle\begin{cases} \Delta \phi _{0} (x)=0, \quad x>0, n = 1, \\ \phi _{0} (x)|_{x=0}=0, \\ \vert x \vert \rightarrow \infty , \qquad \phi _{0} (x)\rightarrow \infty . \end{cases}\displaystyle \end{aligned}$$
(2.32)

Moreover, there exist two positive constants \(C_{1} \) and \(C_{2} \), such that \(C_{1}(x) \leq \phi _{0} (x) \leq C_{2}(x) \) for all \(x \geq 0 \).

Lemma 2.10

Let \(n=1\) and \(p>1\). Then, for all \(t \geq 0\), it holds that

$$\begin{aligned} \int ^{t+R}_{0} \bigl[\Phi (t,x) \bigr]^{p'} \,dx \leq C \lambda (t)^{p'}e^{p't}, \end{aligned}$$

where \(p'=\frac{p}{p-1} \), and C is a positive constant.

Proof

Making use of Lemma 2.3, we obtain

$$\begin{aligned} \int ^{t+R}_{0} \bigl[\Phi (t,x) \bigr]^{p'} \,dx& = \int ^{t+R}_{0} \bigl[\lambda (t) \phi _{1} (x) \bigr]^{p'} \,dx \\ & \leq \lambda (t)^{p'} \int ^{t+R}_{0} \bigl(C e^{|x|} \bigr)^{p'}\,dx \\ & \leq C\lambda (t)^{p'} e^{p't}. \end{aligned}$$
(2.33)

This finishes the proof of Lemma 2.10. □

Lemma 2.11

Let \(n=1\) and \(p>1 \). Then, for all \(t \geq 0 \), it holds that

$$\begin{aligned} \int ^{T}_{0} \int ^{t+R}_{0} \bigl[\Phi (t,x) \bigr]^{p'}\phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \,dt \leq C T^{ \frac{\mu p'}{2}+1}, \end{aligned}$$

where \(p'=\frac{p}{p-1} \), and C is a positive constant.

Proof

The direct calculation shows

$$\begin{aligned} & \int ^{t+R}_{0} \bigl[\Phi (t,x) \bigr]^{p'}\phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ &\quad= \int ^{R}_{0}\bigl[\Phi (t,x)\bigr]^{p'} \phi _{0} (x) ^{-\frac{1}{p-1}}\,dx \\ &\qquad{}+ \int ^{t+R}_{R}\bigl[\Phi (t,x)\bigr]^{p'} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ &\quad= M_{3}(t) + M_{4}(t). \end{aligned}$$
(2.34)

We observe that \(0< \phi _{0} (x) < \infty \) for all \(x > 0\). There exists a positive constant C, such that \(\phi _{0}(x) \geq C \) when \(R \leq x \leq t+R \). According to Lemma 2.10, we have

$$\begin{aligned} M_{4}(t)= \int ^{t+R}_{R}\bigl[\Phi (t,x)\bigr]^{p'} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \leq C \lambda (t)^{p'} e^{p't}. \end{aligned}$$
(2.35)

Taking advantage of Lemma 2.5 in [39], we acquire

$$\begin{aligned} M_{3}(t) &= \int ^{R}_{0} \bigl[\Phi (t,x) \bigr]^{p'}\phi _{0} (x) ^{- \frac{1}{p-1}}\,dx \\ & \leq \int ^{R}_{0} (C x)^{-\frac{1}{p-1}} \lambda (t) ^{p'} \phi _{1} (x) ^{p'} \,dx \\ & \leq C \lambda (t) ^{p'} \int ^{R}_{0} x ^{- \frac{1}{p-1}} x^{p'} \,dx \\ & \leq C \lambda (t) ^{p'}. \end{aligned}$$
(2.36)

We conclude that

$$\begin{aligned} \int ^{t+R}_{0} \bigl[\Phi (t,x) \bigr]^{p'}\phi _{0} (x) ^{-\frac{1}{p-1}}\,dx \leq C \lambda (t)^{p'} e^{p't}. \end{aligned}$$
(2.37)

Therefore, we have

$$\begin{aligned} \int ^{T}_{0} \int ^{t+R}_{0}\bigl[\Phi (t,x)\bigr]^{p'} \phi _{0} (x) ^{- \frac{1}{p-1}}\,dx\,dt \leq C \int ^{T}_{T/2} \lambda (t) ^{p'} e^{p't} \,dt \leq C T^{\mu p'/2+1}. \end{aligned}$$
(2.38)

This finishes the proof of Lemma 2.11. □

Proof of Theorem 1.1

Similar to (2.15)–(2.17), we derive

$$\begin{aligned} \vert I_{1} \vert &\leq CT^{-2} \biggl( \int ^{T} _{0} \int ^{t+R}_{0} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \biggl( \int ^{T} _{0} \int ^{t+R}_{0} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p'}} \\ & \leq \frac{1}{2}CT^{-2} \biggl( \int ^{T} _{0} t^{2} \,dt \biggr)^{ \frac{1}{p'}} \biggl( \int ^{T} _{0} \int ^{t+R}_{0} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \\ & \leq CT^{3-2p'} + \frac{1}{4} \int ^{T} _{0} \int ^{t+R}_{0} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt, \end{aligned}$$
(2.39)

and

$$\begin{aligned} & \vert I_{2} \vert , \vert I_{3} \vert \leq CT^{3-2p'} + \frac{1}{4} \int ^{T} _{0} \int ^{t+R}_{0} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt. \end{aligned}$$
(2.40)

Applying (2.14), (2.39), and (2.40) gives rise to

$$\begin{aligned} & C_{1} (f,g) \varepsilon + \int ^{T} _{0} \int ^{t+R}_{0} \vert u \vert ^{p} \eta ^{2p'} _{T} \phi _{0}(x) \,dx\,dt \leq CT^{3-2p'}. \end{aligned}$$
(2.41)

Making use of Lemma 2.11, we acquire

$$\begin{aligned} \vert I_{4} \vert \leq{}& CT^{-2} \int ^{T} _{0} \int ^{t+R}_{0} \bigl\vert u \eta ^{2p'} _{T} \Phi \bigr\vert \,dx\,dt \\ \leq{}& CT^{-2} \biggl( \int ^{T} _{0} \int ^{t+R}_{0} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}} \\ &{} \times \biggl( \int ^{T}_{0} \int ^{t+R}_{0} \Phi ^{ \frac{p}{p-1} } \phi _{0}(x) ^{-\frac{1}{p-1}}\,dx \,dt\biggr)^{\frac{1}{p'}} \\ \leq{}& CT^{-2+\frac{1}{p'}+\frac{\mu }{2}}\biggl( \int ^{T} _{0} \int ^{t+R}_{0} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{ \frac{1}{p}}. \end{aligned}$$
(2.42)

In a similar way, we arrive at

$$\begin{aligned} & \vert I_{5} \vert , \vert I_{6} \vert , \vert I_{7} \vert \leq CT^{-1+\frac{1}{p'}+ \frac{\mu}{2}}\biggl( \int ^{T} _{0} \int ^{t+R}_{0} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(2.43)

We conclude from (2.19), (2.42), and (2.43) that

$$\begin{aligned} \bigl(C_{2} (f,g) \varepsilon \bigr)^{p} T^{1-\frac{\mu p}{2}} \leq \int ^{T} _{0} \int ^{t+R}_{0} \eta ^{2p'} _{T} \vert u \vert ^{p} \phi _{0}(x) \,dx\,dt. \end{aligned}$$
(2.44)

Applying (2.41) and (2.44), we obtain

$$\begin{aligned} T \leq C \varepsilon ^{-\frac{2p(p-1)}{ -\mu p ^{2} + \mu p +4}}. \end{aligned}$$

 □

3 Proof of Theorem 1.2

3.1 The case for \(n\geq 3\)

We introduce

$$\begin{aligned} \theta (t) = \textstyle\begin{cases} 0, & t < \frac{1}{2}, \\ \eta (t),& t \geq \frac{1}{2}, \end{cases}\displaystyle \qquad\theta _{M}(t)= \theta \biggl( \frac{t}{M}\biggr). \end{aligned}$$
(3.1)

Let \(M \in (1, T) \). Set \(\psi =-\eta _{M}^{2p'}(t)\lambda (t)\phi _{0}(x) \phi _{1}(x)\). Choosing \(\Psi (t,x) = \partial _{t}\psi \) in (2.1) with \(f(u, u_{t})= |u_{t}|^{p} \) and applying Lemma 2.1 lead to

$$\begin{aligned} & C_{3}(f, g)\varepsilon + \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \eta _{M}^{2p'}(t) \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\quad= \int _{0}^{T} \int _{\Omega ^{c}}u_{t}\eta _{M}^{2p'}(t) \phi _{0}(x) \phi _{1}(x) \biggl( \lambda ''(t)-\lambda (t) -\frac{\mu}{1+t} \lambda '(t) \biggr)\,dx\,dt \\ &\qquad{}+ \int _{0}^{T} \int _{\Omega ^{c}}u_{t}\partial _{t}^{2} \eta _{M}^{2p'}(t) \lambda (t)\phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\qquad{}+2 \int _{0}^{T} \int _{\Omega ^{c}}u_{t}\partial _{t}\eta _{M}^{2p'}(t) \lambda '(t)\phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\qquad{}+ \int _{0}^{T} \int _{\Omega ^{c}}u_{t}\eta _{M}^{2p'}(t) \lambda (t)\nabla \phi _{0}(x)\nabla \phi _{1}(x)\,dx\,dt \\ &\qquad{}- \int _{0}^{T} \int _{\Omega ^{c}}\frac{\mu}{1+t}u_{t} \partial _{t}\eta _{M}^{2p'}\lambda (t)\phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\quad= \int _{0}^{T} \int _{\Omega ^{c}}u_{t}\partial _{t}^{2} \eta _{M}^{2p'}(t) \lambda (t)\phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\qquad{}+2 \int _{0}^{T} \int _{\Omega ^{c}}u_{t}\partial _{t}\eta _{M}^{2p'}(t) \lambda '(t)\phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\qquad{}+ \int _{0}^{T} \int _{\Omega ^{c}}u_{t}\eta _{M}^{2p'}(t) \lambda (t)\nabla \phi _{0}(x)\nabla \phi _{1}(x)\,dx\,dt \\ &\qquad{}- \int _{0}^{T} \int _{\Omega ^{c}}\frac{\mu}{1+t}u_{t} \partial _{t}\eta _{M}^{2p'}\lambda (t)\phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\quad=I_{8}+I_{9}+I_{10}+I_{11}, \end{aligned}$$
(3.2)

where \(C_{3}(f, g) = - \int _{\Omega ^{c}} \lambda '(0) g(x) \phi _{0}(x) \phi _{1}(x) \,dx + \int _{\Omega ^{c}} \lambda (0) f(x)\phi _{0}(x) \phi _{1}(x) \,dx\).

The direct calculation gives rise to

$$\begin{aligned} \vert I_{8} \vert \leq{}& CM^{-2} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{ \frac{1}{p}} \\ &{} \times \biggl( \int _{\frac{M}{2}}^{M} \int _{\{ \vert x \vert \leq t+R \}} \bigl\vert \lambda '(t) \bigr\vert ^{-\frac{1}{p-1}} \bigl\vert \lambda (t) \bigr\vert ^{\frac{p}{p-1}}\phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p'}} \\ \leq{}& CM^{-2+\frac{n+\mu +1}{2}\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(3.3)
$$\begin{aligned} \vert I_{9} \vert \leq {}&C M^{-1} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{ \frac{1}{p}} \\ &{} \times \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p'}} \\ \leq{}& CM^{-1+\frac{n+\mu +1}{2}\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(3.4)
$$\begin{aligned} \vert I_{10} \vert \leq{}& C \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{ \frac{1}{p}} \\ &{} \times \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \bigl\vert \lambda '(t) \bigr\vert ^{-\frac{1}{p-1}} \bigl\vert \lambda (t) \bigr\vert ^{\frac{p}{p-1}} \bigl(\phi _{0}(x)\bigr)^{- \frac{1}{p-1}} \bigl\vert \nabla \phi _{0}(x) \bigr\vert ^{\frac{p}{p-1}}\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p'}} \\ \leq{}& CM^{-2+\frac{n+\mu +1}{2}\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}} \end{aligned}$$
(3.5)

and

$$\begin{aligned} \vert I_{11} \vert \leq{}& CM^{-2} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{ \frac{1}{p}} \\ &{} \times \biggl( \int _{\frac{M}{2}}^{M} \int _{\{ \vert x \vert \leq t+R \}} \bigl\vert \lambda '(t) \bigr\vert ^{-\frac{1}{p-1}} \bigl\vert \lambda (t) \bigr\vert ^{\frac{p}{p-1}}\phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p'}} \\ \leq{}& CM^{-2+\frac{n+\mu +1}{2}\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(3.6)

It is deduced from (3.2)–(3.6) that

$$\begin{aligned} &C_{3}(f, g)\varepsilon + \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \eta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\quad\leq CM^{-1+\frac{n+\mu +1}{2}\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{ \Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(3.7)

We introduce the following function

$$\begin{aligned} F(M)&= \int ^{M}_{1}\biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\theta _{\sigma}^{2p'}\,dx\,dt\biggr) \frac{1}{\sigma}\,d\sigma \\ & \leq C\ln 2 \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\eta _{M}^{2p'}\,dx\,dt. \end{aligned}$$
(3.8)

Differentiating (3.8) with respect to M gives rise to

$$\begin{aligned} F'(M)=\frac{1}{M} \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\theta _{M}^{2p'}\,dx\,dt. \end{aligned}$$
(3.9)

Combining (3.7), (3.8), and (3.9), we derive

$$\begin{aligned} M^{\frac{(n+\mu -1)(p-1)}{2}} F'(M) \geq C\bigl(C_{3}(f, g)\varepsilon +F(M)\bigr)^{p}. \end{aligned}$$
(3.10)

Thus, we obtain

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-\frac{p-1}{1-\frac{(n+\mu -1)(p-1)}{2}}}, & 1 < p < \frac{2}{n+\mu -1}+1, \\ \exp (C \varepsilon ^{-(p-1)}), & p = \frac{2}{n+\mu -1}+1. \end{cases}\displaystyle \end{aligned}$$
(3.11)

3.2 The case for \(n=2\)

In this case, we achieve

$$\begin{aligned} &\vert I_{8} \vert \leq CM^{-2+\frac{3+\mu}{2}\frac{1}{p'}}(\ln M)^{\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(3.12)
$$\begin{aligned} &\vert I_{9} \vert \leq CM^{-1+\frac{3+\mu }{2}\frac{1}{p'}}(\ln M) ^{ \frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(3.13)
$$\begin{aligned} &\vert I_{10} \vert \leq CM^{-2+\frac{3+\mu }{2}\frac{1}{p'}} (\ln M)^{- \frac{1}{p}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}} \end{aligned}$$
(3.14)

and

$$\begin{aligned} \vert I_{11} \vert \leq CM^{-2+\frac{3+\mu }{2}\frac{1}{p'}} (\ln M)^{ \frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{ \frac{1}{p}}. \end{aligned}$$
(3.15)

Making use of (3.2) and (3.12)–(3.15) leads to

$$\begin{aligned} & C_{3}(f, g)\varepsilon + \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \eta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\quad\leq CM^{-1+\frac{3+\mu }{2}\frac{1}{p'}}(\ln M)^{\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(3.16)

Combining (3.8), (3.9), and (3.16), we derive

$$\begin{aligned} M^{\frac{(\mu +1)(p-1)}{2}} (\ln M)^{p-1} F'(M) \geq C \bigl(C_{3}(f, g) \varepsilon +F(M)\bigr)^{p}. \end{aligned}$$
(3.17)

As a result, we obtain

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-\frac{p-1}{1-\frac{(3+\mu )(p-1)}{2}}}, & 1 < p < \frac{2}{3+\mu}+1, \\ \exp (C \varepsilon ^{-(p-1)}), & p = \frac{2}{3+\mu}+1. \end{cases}\displaystyle \end{aligned}$$
(3.18)

3.3 The case for \(n=1\)

In this case, we acquire

$$\begin{aligned} & \vert I_{8} \vert \leq CM^{-2+\frac{2+\mu}{2}\frac{1}{p'}}M^{\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(3.19)
$$\begin{aligned} & \vert I_{9} \vert \leq CM^{-1+\frac{2+\mu }{2}\frac{1}{p'}}M^{\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(3.20)
$$\begin{aligned} & \vert I_{10} \vert \leq CM^{-2+\frac{2+\mu }{2}\frac{1}{p'}}M^{-\frac{1}{p}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}} \end{aligned}$$
(3.21)

and

$$\begin{aligned} \vert I_{11} \vert \leq CM^{-2+\frac{2+\mu }{2}\frac{1}{p'}} M^{\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(3.22)

Taking into account (3.2) and (3.19)–(3.22) yields

$$\begin{aligned} &C_{3}(f, g)\varepsilon + \int _{0}^{T} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \eta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x)\phi _{1}(x)\,dx\,dt \\ &\quad\leq CM^{-1+\frac{2+\mu }{2}\frac{1}{p'}} \biggl( \int _{0}^{T} \int _{ \Omega ^{c}} \vert u_{t} \vert ^{p} \theta _{M}^{2p'} \bigl\vert \lambda '(t) \bigr\vert \phi _{0}(x) \phi _{1}(x)\,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(3.23)

Combining (3.8), (3.9), and (3.23), we derive

$$\begin{aligned} M^{\frac{\mu (p-1)}{2}} F'(M) \geq C\bigl(C_{3}(f, g) \varepsilon +F(M)\bigr)^{p}. \end{aligned}$$
(3.24)

Consequently, we conclude that

$$\begin{aligned} T(\varepsilon ) \leq \textstyle\begin{cases} C\varepsilon ^{-\frac{p-1}{1-\frac{(2+\mu )(p-1)}{2}}}, & 1 < p < \frac{2}{2+\mu}+1, \\ \exp (C \varepsilon ^{-(p-1)}),& p = \frac{2}{2+\mu}+1. \end{cases}\displaystyle \end{aligned}$$
(3.25)

4 Proof of Theorem 1.3

4.1 The case for \(n\geq 3\)

We introduce the following function

$$\begin{aligned} \zeta (t) = \textstyle\begin{cases} 0, & t \leq \frac{1}{4}, \\ \text{increasing},& \frac{1}{4} < t < \frac{1}{2}, \\ \theta (t), & t \geq \frac{1}{2}. \end{cases}\displaystyle \end{aligned}$$

We set

$$\begin{aligned} \zeta _{M}(t) = \zeta \biggl(\frac{t}{M}\biggr),\qquad \psi _{M}(t) =\zeta ^{k}_{M}(t), \end{aligned}$$

where \(M \in (1,T), k \) is a positive constant. We obtain

$$\begin{aligned} &\bigl\vert \partial ^{2}_{t}\psi _{M}(t) \bigr\vert \leq CM^{-2} \psi ^{1-\frac{2}{k}}_{M}(t),\\ &\bigl\vert \partial _{t}\psi _{M}(t) \bigr\vert = CM^{-1} \psi ^{1-\frac{1}{k}}_{M}(t). \end{aligned}$$

Choosing \(\Psi (t,x) = \psi _{M}(t) \phi _{0} (x) \) in (2.1) with \(f(u, u_{t})= |u_{t}|^{p}+|u|^{q} \) and integrating over \([0,T) \times \Omega ^{c} \), we have

$$\begin{aligned} & \int ^{T} _{0} \int _{\Omega ^{c}} \bigl( \vert u_{t} \vert ^{p} + \vert u \vert ^{q}\bigr) \psi _{M} \phi _{0} (x) \,dx\,dt \\ &\quad= \int ^{T} _{0} \int _{\Omega ^{c}} u \partial ^{2}_{t} \psi _{M} \phi _{0}(x) \,dx\,dt + \int ^{T} _{0} \int _{\Omega ^{c}} \frac{\mu}{(1+t)^{2}} u \psi _{M} \phi _{0}(x) \,dx\,dt \\ &\qquad{}- \int ^{T} _{0} \int _{\Omega ^{c}} \frac{\mu}{1+t} u \partial _{t} \psi _{M} \phi _{0}(x) \,dx\,dt \\ &\quad= I_{12}+I_{13}+I_{14}. \end{aligned}$$
(4.1)

We notice that \(\operatorname{supp} \psi _{M}\subset [\frac{R}{4}, R] \). We acquire

$$\begin{aligned} \vert I_{12} \vert \leq{}& \int ^{T} _{0} \int _{\Omega ^{c}} \bigl\vert u \partial ^{2}_{t} \psi _{M} \phi _{0}(x) \bigr\vert \,dx\,dt \\ \leq{}& CM^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi ^{q(1-\frac{2}{k}-\frac{1}{2q'})}_{M} \phi _{0}(x) \,dx\,dt \biggr)^{ \frac{1}{q}} \\ &{} \times \biggl( \int ^{T} _{0} \int _{ \vert x \vert \leq t+R} \psi ^{\frac{1}{2}}_{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q'}} \\ \leq{}& CR^{-2+\frac{n+1}{q'}} \biggl( \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q}}, \end{aligned}$$
(4.2)

where \(q(1-\frac{2}{k}-\frac{1}{2q'})\geq 1\) for some sufficiently large k. It holds that

$$\begin{aligned} \vert I_{13} \vert &\leq C \int ^{T} _{0} \int _{\Omega ^{c}} \biggl\vert u \psi _{M} \phi _{0}(x) \frac{\mu}{(1+t)^{2}} \biggr\vert \,dx\,dt \\ & \leq C \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q}} \biggl( \int ^{T}_{0} t^{-2q'} \,dt \int _{ \vert x \vert \leq t+R}\phi _{0}(x) \,dx \biggr)^{\frac{1}{q'}} \\ & \leq CR^{-2+\frac{n+1}{q'}} \biggl( \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q}}. \end{aligned}$$
(4.3)

In a similar way, we derive

| I 14 |C R 2 + n + 1 q ( 0 T Ω c | u | q ψ M ϕ 0 ( x ) d x d t ) 1 q .
(4.4)

Combining (4.1), (4.2), (4.3), and (4.4), we have

$$\begin{aligned} & \int ^{T} _{0} \int _{\Omega ^{c}} \bigl( \vert u_{t} \vert ^{p} + \vert u \vert ^{q}\bigr) \psi _{M} \phi _{0}(x) \,dx\,dt \\ &\quad\leq CR^{-2+\frac{n+1}{q'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q}} \\ &\quad\leq C M^{n-\frac{q+1}{q-1}} + \frac{1}{2} \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt, \end{aligned}$$
(4.5)

which yields

$$\begin{aligned} \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \psi _{M} \phi _{0}(x) \,dx\,dt \leq C M^{n-\frac{q+1}{q-1}}. \end{aligned}$$
(4.6)

Choosing \(\Psi (t,x) = - \partial _{t} (\eta ^{k}_{M}(t) \lambda (t) \phi _{1} (x)) \) in (2.1) with \(f(u, u_{t})= |u_{t}|^{p}+|u|^{q} \) and integrating over \([0,T) \times \Omega ^{c} \), we obtain

$$\begin{aligned} & C_{4}(f,g) \varepsilon + \int ^{T} _{0} \int _{\Omega ^{c}} \bigl( \vert u_{t} \vert ^{p} + \vert u \vert ^{q}\bigr) \eta ^{k}_{M}(t) \bigl\vert \lambda '(t) \bigr\vert \phi _{1}(x) \,dx \,dt \\ &\quad= \int ^{T} _{0} \int _{\Omega ^{c}} u_{t} \eta ^{k}_{M}(t) \phi _{1}(x) \biggl( \lambda ''(t)- \frac{\mu}{1+t} \lambda '(t) -\lambda (t)\biggr) \,dx\,dt \\ &\qquad{}+ \int ^{T} _{0} \int _{\Omega ^{c}} u_{t} \partial ^{2} _{t} \eta ^{k}_{M}(t) \lambda (t) \phi _{1}(x) \,dx\,dt + 2 \int ^{T} _{0} \int _{\Omega ^{c}} u_{t} \partial _{t} \eta ^{k}_{M}(t) \lambda '(t) \phi _{1}(x) \,dx\,dt \\ &\qquad{}- \int ^{T} _{0} \int _{\Omega ^{c}} u_{t} \frac{\mu}{1+t} \eta ^{k}_{M}(t) \lambda (t) \phi _{1}(x) \,dx\,dt \\ &\quad= I_{15}+I_{16}+I_{17}, \end{aligned}$$
(4.7)

where \(C_{4}(f,g) = C(- \int _{\Omega ^{c}} g(x) \lambda '(0) \phi _{1}(x) \,dx + \int _{\Omega ^{c}}\lambda (0) f(x) \lambda (0) \phi _{1}(x) \,dx )\).

Furthermore, the direct calculation shows

$$\begin{aligned} &\bigl\vert \partial ^{2} _{t} \eta ^{k}_{M}(t) \bigr\vert \leq C M^{-2} \theta ^{k}_{M}(t),\\ &\bigl\vert \partial _{t} \eta _{M}(t) \bigr\vert = C M^{-1} \theta ^{k-1}_{M}(t). \end{aligned}$$

Applying Lemma 2.5 gives rise to

$$\begin{aligned} \vert I_{15} \vert \leq{}& \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert \partial ^{2} _{t} \eta ^{k}_{M}(t) \lambda (t) \phi _{1}(x) \,dx\,dt \\ \leq{}& C M ^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}} \\ &{} \times \biggl( \int ^{M} _{\frac{M}{2}} \int _{ \vert x \vert \leq t+R } \theta ^{k-2p'}_{M}(t) \bigl\vert \lambda (t) \phi _{1} (x) \bigr\vert ^{p'} \phi _{0} (x) ^{-\frac{1}{p-1}} \,dx\,dt\biggr)^{\frac{1}{p'}} \\ \leq{}& C M ^{-2+\frac{\mu}{2} +\frac{n}{p'} - \frac{n-1}{2}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(4.8)

Similarly, we obtain

$$\begin{aligned} &\vert I_{16} \vert \leq C M ^{-1+\frac{\mu}{2} +\frac{n}{p'} - \frac{n-1}{2}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(4.9)
$$\begin{aligned} &\vert I_{17} \vert \leq C M ^{-2+\frac{\mu}{2} +\frac{n}{p'} - \frac{n-1}{2}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(4.10)

Using (4.7), (4.8), (4.9), and (4.10), we have

$$\begin{aligned} C_{4}(f,g) \varepsilon \leq C M ^{-1+\frac{\mu}{2} +\frac{n}{p'} - \frac{n-1}{2}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$

which in turn implies

$$\begin{aligned} \bigl(C_{4}(f,g)\varepsilon \bigr)^{p} M ^{n-\frac{(n+\mu -1)p}{2}} \leq \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt. \end{aligned}$$
(4.11)

Since

$$\begin{aligned} \theta ^{k}_{M} (t)\leq \psi _{M} (t) = \zeta ^{k} _{M} (t), \end{aligned}$$

combining (4.6) and (4.11), we obtain

$$\begin{aligned} T \leq C\varepsilon ^{-\frac{2p(q-1)}{4-\gamma (p,q, n+ \mu )}}. \end{aligned}$$

4.2 The case for \(n=2\)

In this case, we derive

$$\begin{aligned} &\vert I_{12} \vert \leq CM^{-2} \int ^{T} _{0} \int _{\Omega ^{c}} \bigl\vert u \psi _{M} \phi _{0}(x) \bigr\vert \,dx\,dt \\ &\phantom{\vert I_{12} \vert } \leq CM^{-2} \biggl( \int ^{T} _{0} t^{2} \ln t \,dt \biggr)^{ \frac{1}{q'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi ^{q(1- \frac{2}{k}-\frac{1}{2q'})}_{M} \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{q}} \\ &\phantom{\vert I_{12} \vert } \leq CR^{-2+\frac{3}{q'}} (\ln R)^{\frac{1}{q'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0} (x) \,dx\,dt\biggr)^{ \frac{1}{q}}, \end{aligned}$$
(4.12)
$$\begin{aligned} & \vert I_{13} \vert , \vert I_{14} \vert \leq CR^{-2+\frac{3}{q'}} (\ln R)^{ \frac{1}{q'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q}}. \end{aligned}$$
(4.13)

Combining (4.1), (4.12), and (4.13), we obtain

$$\begin{aligned} & \int ^{T} _{0} \int _{\Omega ^{c}} \bigl( \vert u_{t} \vert ^{p} + \vert u \vert ^{q}\bigr) \psi _{M} \phi _{0}(x) \,dx\,dt \\ &\quad\leq C M^{2-\frac{q+1}{q-1}}\ln M + \frac{1}{2} \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt, \end{aligned}$$
(4.14)

which results in

$$\begin{aligned} \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \psi _{M} \phi _{0}(x) \,dx\,dt \leq C M^{2-\frac{q+1}{q-1}}\ln M. \end{aligned}$$
(4.15)

Similar to the derivation in (4.8), applying Lemma 2.8, we deduce

$$\begin{aligned} \vert I_{15} \vert \leq {}& C M ^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}} \\ &{} \times \biggl( \int ^{M} _{\frac{M}{2}} \int _{ \vert x \vert \leq t+R } \theta ^{k-2p'}_{M}(t) \bigl\vert \lambda (t) \phi _{1} (x) \bigr\vert ^{p'} \phi _{0} (x) ^{-\frac{1}{p-1}} \,dx\,dt\biggr)^{\frac{1}{p'}} \\ \leq{}& C M ^{-2+\frac{\mu -1}{2} +\frac{2}{p'}} (\ln M)^{- \frac{1}{p}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(4.16)

In a similar way, we acquire

$$\begin{aligned} &\vert I_{16} \vert \leq C M ^{-1+\frac{\mu -1}{2} +\frac{2}{p'}} (\ln M)^{- \frac{1}{p}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(4.17)
$$\begin{aligned} & \vert I_{17} \vert \leq C M ^{-2+\frac{\mu -1}{2} +\frac{2}{p'}} (\ln M)^{- \frac{1}{p}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(4.18)

Using (4.7), (4.16), (4.17), and (4.18), we obtain

$$\begin{aligned} \bigl(C_{4}(f,g) \varepsilon \bigr)^{p} M ^{2-\frac{(\mu +1)p}{2}}\ln M \leq \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt. \end{aligned}$$
(4.19)

Combining (4.15) and (4.19), we conclude that

$$\begin{aligned} T \leq C\varepsilon ^{-\frac{2p(q-1)}{4-\gamma (p,q, 2+ \mu )}}. \end{aligned}$$

4.3 The case for \(n=1\)

In this case, using Lemma 2.9, we obtain

$$\begin{aligned} \vert I_{12} \vert \leq{}& CM^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi ^{q(1-\frac{2}{k}-\frac{1}{2q'})}_{M} \phi _{0}(x) \,dx\,dt \biggr)^{ \frac{1}{q}} \\ &{} \times \biggl( \int ^{T} _{0} \int _{ \vert x \vert \leq t+R} \psi ^{\frac{1}{2}}_{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q'}} \\ \leq{}& CM^{-2} \biggl( \int ^{T} _{0} t^{2} \,dt \biggr)^{\frac{1}{q'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi ^{q(1-\frac{2}{k}- \frac{1}{2q'})}_{M} \phi _{0}(x) \,dx\,dt \biggr)^{\frac{1}{q}} \\ \leq {}& CR^{-2+\frac{3}{q'}} \biggl( \int ^{T} _{0} \int _{ \Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x) \,dx\,dt\biggr)^{\frac{1}{q}}, \end{aligned}$$
(4.20)

and

$$\begin{aligned} \vert I_{13} \vert , \vert I_{14} \vert \leq CR^{-2+\frac{3}{q'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u \vert ^{q} \psi _{M} \phi _{0}(x)\,dx\,dt\biggr)^{\frac{1}{q}}. \end{aligned}$$
(4.21)

Making use of (4.1), (4.20), and (4.21), we derive

$$\begin{aligned} \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \psi _{M} \phi _{0}(x) \,dx\,dt \leq C M^{2-\frac{q+1}{q-1}}. \end{aligned}$$
(4.22)

Similar to (4.8), utilizing Lemma 2.11 gives rise to

$$\begin{aligned} \vert I_{15} \vert \leq{}& C M ^{-2} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}} \\ &{}\times \biggl( \int ^{M} _{\frac{M}{2}} \int _{ \vert x \vert \leq t+R } \theta ^{k-2p'}_{M}(t) \bigl\vert \lambda (t) \phi _{1} (x) \bigr\vert ^{p'} \phi _{0} (x) ^{-\frac{1}{p-1}} \,dx\,dt\biggr)^{\frac{1}{p'}} \\ \leq{}& C M ^{-2+\frac{\mu}{2} +\frac{1}{p'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(4.23)

In a similar way, we acquire

$$\begin{aligned} &\vert I_{16} \vert \leq C M ^{-1+\frac{\mu}{2} +\frac{1}{p'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}, \end{aligned}$$
(4.24)
$$\begin{aligned} &\vert I_{17} \vert \leq C M ^{-2+\frac{\mu}{2} +\frac{1}{p'}} \biggl( \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt \biggr)^{\frac{1}{p}}. \end{aligned}$$
(4.25)

Applying (4.7), (4.23), (4.24), and (4.25), we observe

$$\begin{aligned} \bigl(C_{4}(f,g) \varepsilon \bigr)^{p} M ^{1-\frac{\mu p}{2}} \leq \int ^{T} _{0} \int _{\Omega ^{c}} \vert u_{t} \vert ^{p} \theta ^{k}_{M} (t) \phi _{0} (x) \,dx\,dt. \end{aligned}$$
(4.26)

Making use of (4.22) and (4.26), we have

$$\begin{aligned} T \leq C\varepsilon ^{-\frac{2p(q-1)}{4- \mu p q+\mu p}}. \end{aligned}$$

Availability of data and materials

Not applicable.

References

  1. Glassey, R.T.: Existence in the large for \(u_{tt}- \triangle u = f(u) \) in two space dimensions. Math. Z. 178(2), 233–261 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  2. John, F.: Blow-up of solutions of nonlinear wave equation in three space dimensions. Manuscr. Math. 28, 235–268 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhou, Y.: Cauchy problem for semilinear wave equations in four space dimensions with small initial data. Partial Differ. Equ. 8, 135–144 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Sideris, T.C.: Non-existence of global solutions to semilinear wave equations in high dimensions. J. Differ. Equ. 52(3), 378–406 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. John, F.: Blow-up for quasilinear wave equations in three space dimensions. Commun. Pure Appl. Math. 34, 29–51 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Masuda, K.: Blow-up of solutions of quasilinear wave equations in two space dimensions. Rece. Topi. Nonl. Pde. 6, 87–91 (1983)

    MathSciNet  Google Scholar 

  7. Rammaha, M.A.: Finite time blow-up for nonlinear wave equations in high dimensions. Commun. Partial Differ. Equ. 12(6), 677–700 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhou, Y.: Blow-up of solutions to the Cauchy problem for nonlinear wave equations. Chin. Ann. Math. 22B(3), 275–280 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, Y., Han, W.: Blow-up of solutions to semilinear wave equations with variable coefficients and boundary. J. Math. Anal. Appl. 374(2), 585–601 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Han, W., Zhou, Y.: Blow-up for some semilinear wave equations in multispace dimensions. Commun. Partial Differ. Equ. 39(4), 651–665 (2014)

    Article  MATH  Google Scholar 

  11. Dai, W., Fang, D.Y., Wang, C.B.: Global existence and lifespan for semilinear wave equations with mixed nonlinear terms. J. Differ. Equ. 267(5), 2238–3354 (2019)

    Article  MathSciNet  Google Scholar 

  12. Hidano, K., Wang, C.B., Yokoyama, K.: Combined effects of two nonlinearities in lifespan of small solutions to semilinear wave equations. Math. Ann. 366, 667–694 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ikeda, M., Sobajima, M., Wakasa, K.: Blow-up phenomena of semilinear wave equations and their weakly coupled systems. J. Differ. Equ. 267(9), 5165–5201 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ikeda, M., Wakasugi, Y.: Global well posedness for the semilinear wave equation with time dependent damping in the overdamping case. Proc. Am. Math. Soc. 148(1), 157–172 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, M.Y., Wang, C.B.: Global existence for semilinear damped wave equations in relation with the Strauss conjecture. Discrete Contin. Dyn. Syst. 40(2), 709–724 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ming, S., Lai, S.Y., Fan, X.M.: Lifespan estimates of solutions to quasilinear wave equations with scattering damping. J. Math. Anal. Appl. 492, 124441 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ming, S., Lai, S.Y., Fan, X.M.: Blow-up for a coupled system of semilinear wave equations with scattering dampings and combined nonlinearities. Appl. Anal. 101(8), 2996–3016 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ming, S., Yang, H., Fan, X.M.: Blow-up and lifespan estimates of solutions to the weakly coupled system of semilinear Moore-Gibson-Thompson equations. Math. Methods Appl. Sci. 44, 10972–10992 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wirth, J.: Solution representations for a wave equation with weak dissipation. Math. Methods Appl. Sci. 27, 101–124 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wirth, J.: Wave equations with time dependent dissipation. I. Non-effective dissipation. J. Differ. Equ. 222, 487–514 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wirth, J.: Wave equations with time dependent dissipation. II. Effective dissipation. J. Differ. Equ. 232, 74–103 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wakasugi, Y.: Scaling variables and asymptotic profiles for the semilinear damped wave equation with variable coefficients. J. Math. Anal. Appl. 447, 452–487 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lin, J., Nishihara, K., Zhai, J.: Critical exponent for the semilinear wave equation with time dependent damping. Discrete Contin. Dyn. Syst. 32, 4307–4320 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. D’Abbicco, M., Lucente, S., Reissig, M.: Semilinear wave equations with effective damping. Chin. Ann. Math., Ser. B 34, 345–380 (2013)

    Article  MATH  Google Scholar 

  25. Ikeda, M., Wakasugi, Y.: A note on the lifespan of solutions to the semilinear damped wave equation. Proc. Am. Math. Soc. 143, 163–171 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fujiwara, K., Ikeda, M., Wakasugi, Y.: Estimates of lifespan and blow-up rates for the wave equation with a time dependent damping and a power type nonlinearity. Funkc. Ekvacioj 62(2), 157–189 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lai, N.A., Takamura, H.: Blow-up for semilinear damped wave equations with sub-critical exponent in the scattering case. Nonlinear Anal. 168, 222–237 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. D’Abbicco, M.: The threshold of effective damping for semilinear wave equations. Math. Methods Appl. Sci. 38, 1032–1045 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wakasugi, Y.: Critical exponent for the semilinear wave equation with scale invariant damping. In: Fourier Analysis, Trends in Mathematics, pp. 375–390. Birkhäuser, Cham (2014)

    Chapter  Google Scholar 

  30. Wakasugi, Y.: On the diffusive structure for the damped wave equation with variable coefficients. Osaka University, (2014)

  31. Takamura, H.: Improved Kato’s lemma on ordinary differential inequality and its application to semilinear wave equations. Nonlinear Anal. 125, 227–240 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. D’Abbicco, M., Lucente, S., Reissig, M.: A shift in the Strauss exponent for semilinear wave equations with a not effective damping. J. Differ. Equ. 259, 5040–5073 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. D’Abbicco, M., Lucente, S.: Nlwe with a special scale invariant damping in odd space dimension. J. Mod. Dyn. 2015, 312–319 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Lai, N.A., Takamura, H.: Non-existence of global solutions of nonlinear wave equations with weak time dependent damping related to glasseys conjecture. Differ. Integral Equ. 32, 37–48 (2019)

    MATH  Google Scholar 

  35. Palmieri, A., Tu, Z.H.: A blow-up result for a semilinear wave equation with scale invariant damping and mass and nonlinearity of derivative type. Calc. Var. Partial Differ. Equ. 60(2), Article ID 72 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hamouda, M., Hamza, M.A.: Improvement on the blow-up of the wave equation with the scale invariant damping and combined nonlinearities. Nonlinear Anal., Real World Appl. 59, 103275 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hamouda, M., Hamza, M.A.: Blow-up for wave equation with the scale invariant damping and combined nonlinearities. Math. Methods Appl. Sci. 44, 1127–1136 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, Y.M.: A new method for blow-up to scale invariant damped wave equations with derivatives and combined nonlinear terms. Symmetry 14(2), Article ID 198 (2022)

    Article  Google Scholar 

  39. Han, W.: Blow-up of solutions to one dimensional initial boundary value problems for semilinear wave equations with variable coefficients. J. Partial Differ. Equ. 26(2), 138–150 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Han, W.: Concerning the Strauss conjecture for the sub-critical and critical cases on the exterior domain in two space dimensions. Nonlinear Anal., Theory Methods Appl. 84, 136–145 (2013)

    Article  MATH  Google Scholar 

  41. Lai, N.A., Takamura, H.: Non-existence of global solutions of wave equations with weak time dependent damping and combined nonlinearity. Nonlinear Anal., Real World Appl. 45, 83–96 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lai, N.A., Takamura, H., Wakasa, K.: Blow-up for semilinear wave equations with the scale invariant damping and super Fujita exponent. J. Differ. Equ. 263, 5377–5394 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lai, N.A., Tu, Z.H.: Strauss exponent for semilinear wave equations with scattering space dependent damping. J. Math. Anal. Appl. 489(2), Article ID 124189 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Fino, A.Z.: Finite time blow-up for wave equations with strong damping in an exterior domain. Mediterr. J. Math. 17(6), 174 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author Sen Ming would like to express his sincere thanks to Professor Yi Zhou for his guidance and encouragement during the postdoctoral study in Fudan University. The author Sen Ming also would like to express his sincere thanks to Professor Ning-An Lai for his helpful suggestions and discussions.

Funding

The project is supported by Natural Science Foundation of Shanxi Province of China (No. 201901D211276), Fundamental Research Program of Shanxi Province (No. 20210302123045, No. 202103021223182), National Natural Science Foundation of P.R. China (No. 11601446).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sen Ming.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Ming, S., Fan, X. et al. Blow-up of solutions to the semilinear wave equation with scale invariant damping on exterior domain. Bound Value Probl 2023, 36 (2023). https://doi.org/10.1186/s13661-023-01722-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01722-5

Keywords