Skip to main content

A class of Schrödinger elliptic equations involving supercritical exponential growth

Abstract

This paper studies the existence of nontrivial solutions to the following class of Schrödinger equations:

$$ \textstyle\begin{cases} -\operatorname{div}(w(x)\nabla u) = f(x,u),&\ x \in B_{1}(0), \\ u = 0,&\ x \in \partial B_{1}(0), \end{cases} $$

where \(w(x)= (\ln (1/|x|) )^{\beta}\) for some \(\beta \in [0,1)\), the nonlinearity \(f(x,s)\) behaves like \({\exp} (|s|^{\frac{2}{1-\beta}+h(|x|)} )\), and h is a continuous radial function such that \(h(r)\) can be unbounded as r tends to 1. Our approach is based on a new Trudinger–Moser-type inequality for weighted Sobolev spaces and variational methods.

1 Introduction

Let consider the following Schrödinger equation:

$$ \textstyle\begin{cases} -\Delta u = f(x,u),& x \in \Omega , \\ u = 0,& x \in \partial \Omega , \end{cases} $$
(1.1)

where Ω is a bounded smooth domain in R N . In the case \(N\geq 3\), some pioneering works developed by Brézis [7], Brézis & Nirenberg [8], Bartsh & Willem [6], and Capozzi, Fortunato & Palmieri [14] considered the assumption \(|f(x,u)|\leq c(1+|u|^{q-1} )\), with \(1< q\leq 2^{*}=2N/(N-2)\). The above growth of the nonlinearity f is related to the Sobolev embedding \(H_{0}^{1}(\Omega )\subset L^{q}(\Omega )\) for \(1\leq q\leq 2^{*}\). In the limiting case \(N =2\), one has \(2^{*}=+\infty \), that is, \(H_{0}^{1}(\Omega )\subset L^{q}(\Omega )\) for \(q\geq 1\), in particular, the nonlinear function f in (1.1) may have arbitrary polynomial growth. Also, some examples show that \(H_{0}^{1}(\Omega )\not \subset L^{\infty}(\Omega )\). An important result found independently by Yudovich [37], Pohozaev [28], and Trudinger [35] showed that the maximal growth of the nonlinearity in the bivariate case is of exponential type. More precisely, it was stated that

$$ e^{\alpha u^{2}}\in L^{1}(\Omega ), \quad \text{for all } u\in H^{1}_{0}( \Omega ) \text{ and } \alpha >0. $$
(1.2)

Furthermore, Moser [26] stated the existence of a positive constant \(C=C(\alpha ,\Omega )\) such that

$$ \mathop{\sup_{u\in H^{1}_{0}(\Omega ), }}_{\| \nabla u\|_{2}\leq 1} \int _{\Omega}e^{\alpha u^{2}}\,dx \textstyle\begin{cases} \leq C, & \alpha \leq 4\pi , \\ =+\infty , & \alpha >4\pi . \end{cases} $$
(1.3)

Estimates (1.2) and (1.3) from now on be referred to as Trudinger–Moser inequalities. The above results motivate us to say that the function f has subcritical exponential growth if

$$ \lim_{s\to +\infty}\frac {f(x,s)}{e^{\alpha s^{2}}}=0, \quad \text{for all } \alpha > 0, $$

and critical exponential growth if there exists \(\alpha _{0}>0 \) such that

$$ \lim_{s\to +\infty}\frac {f(x,s)}{e^{\alpha s^{2}}}= \textstyle\begin{cases} 0, & \alpha < \alpha _{0}, \\ +\infty , & \alpha >\alpha _{0}. \end{cases} $$
(1.4)

Equations of the type (1.1) considering nonlinearities involving subcritical and critical exponential growth were treated by Adimurthi [1], Adimurthi–Yadava [2], de Figueiredo, Miyagaki, and Ruf [18] (see also [14, 11, 13, 23, 27, 31]), and some results on Hamiltonian systems involving the above-mentioned growth can be found in [16, 17, 20, 24, 29, 33]. We shall write \(g_{1}(s)\prec g_{2}(s)\) if there exist positive constants k and \(s_{0}\) such that \(g_{1}(s)\leq g_{2}(ks)\) for \(s\geq s_{0}\). Additionally, we shall say that \(g_{1}\) and \(g_{2}\) are equivalent and write \(g_{1}(s)\sim g_{2}(s)\) if \(g_{1}(s)\prec g_{2}(s)\) and \(g_{2}(s)\prec g_{1}(s)\). Therefore, f possesses critical exponential growth if only if \(f(x,s)=g(s)\) with \(g(s)\sim e^{|s|^{2}}\).

Several extensions of the Trudinger–Moser inequalities were obtained considering weighted Sobolev spaces, weighted Lebesgue measures, or Lorentz–Sobolev spaces (see [35, 13, 15, 19, 24, 25, 34] among others). In the above-mentioned papers, the growth of the nonlinearity is of the type \(f(x,s)= Q(x)g(s)\) where \(g(s)\sim e^{\lvert s\lvert ^{p}}\) with \(p=2\) on Sobolev spaces and \(p>1\) on Lorentz–Sobolev spaces and for some weight \(Q(x)\). More precisely, on Lorentz–Sobolev spaces, Brezis and Wainger [9] have shown the following: Let Ω be a bounded domain in R 2 and \(s>1\). Then, \(e^{\alpha |u|^{\frac{s}{s-1}}}\) belongs to \(L^{1}(\Omega )\) for all \(u\in W_{0}^{1}L^{2,s}(\Omega )\) and \(\alpha >0\). Furthermore, Alvino [5] obtained the following refinement of (1.3): there exists a positive constant \(C=C(\Omega ,s,\alpha )\) such that

$$ \mathop{\sup_{u\in W^{1}_{0}L^{2,s}(\Omega ), }}_{\|\nabla u\|_{2,s} \leq 1} \int _{\Omega}e^{\alpha |u|^{\frac{s}{s-1}}}\,dx \textstyle\begin{cases} \leq C, & \alpha \leq (4\pi )^{s/(s-1)}, \\ =+\infty , & \alpha >(4\pi )^{s/(s-1)}. \end{cases} $$
(1.5)

In order to extend equations (1.1), we will study Schrödinger equations involving a diffusion operator (see [10, 12, 32, 38, 39] among others). Let \(B_{1}\) be the unit ball centered at the origin in R 2 and \(H^{1}_{0,{\mathrm{rad}}}(B_{1},w)\) be the subspace of the radially symmetric functions in the closure of \(\mathcal{C}^{\infty}_{0}(B_{1})\) with respect to the norm

$$ \Vert u \Vert := \Vert \nabla u \Vert _{L^{2}(B_{1},w)}= \biggl( \int _{B_{1}}w(x) \vert \nabla u \vert ^{2}\,dx \biggr)^{\frac{1}{2}}. $$
(1.6)

In particular, if \(w\equiv 1\), we denote the above space by \(H^{1}_{0,{\mathrm{rad}}}(B_{1})\). Trudinger–Moser-type inequalities for radial Sobolev spaces with logarithmic weights were considered by Calanchi and Ruf in [11]. More precisely, the above-mentioned authors used the weight \(w(x)= (\log{1}/{|x|} )^{\beta}\) for some fixed \(0\leq \beta <1\), this logarithmic weight will be used in the rest of this article.

Proposition 1.1

(Calanchi–Ruf, [11])

Suppose that \(w(x)= (\log{1}/{|x|} )^{\beta}\) and \(0\leq \beta <1\). Then,

$$ \int _{B_{1}}e^{\alpha |u|^{\frac{2}{1-\beta}}}\,dx< +\infty ,\quad \textit{for all } u \in H^{1}_{0,{\mathrm{rad}}}(B_{1},w) \textit{ and } \alpha >0. $$

Furthermore, setting \(\alpha _{\beta}^{*}=2 [2\pi (1-\beta ) ]^{\frac{1}{1-\beta}}\), there exists a positive constant \(C=C(\alpha ,\beta )\) such that

$$ \mathop{\sup_{u\in H^{1}_{0, {\mathrm{rad}}}(B_{1}, w), }}_{\| u\|\leq 1} \int _{B_{1}}e^{\alpha |u|^{\frac{2}{1-\beta}}}\,dx \textstyle\begin{cases} \leq C, & \alpha \leq \alpha _{\beta}^{*}, \\ =+\infty , & \alpha >\alpha _{\beta}^{*}. \end{cases} $$

In order to establish a Trudinger–Moser inequality proved by Ngô and Nguyen [27], we consider a continuous radial function h:[0,1)R such that

(\(h_{1}\)):

\(h(0)=0\) and \(h(r)>0\) for \(r\in (0,1)\);

(\(h_{2}\)):

there exists \(c>0\) and \(\gamma >2\) such that

$$ h(r)\leq \frac {c}{(-\ln r)^{\gamma}} \quad \text{near } 0. $$

Proposition 1.2

(Ngô–Nguyen, [27])

Suppose that h satisfies \((h_{1})\) and \((h_{2})\). Then, there exists a positive constant \(C=C(\alpha , h)\) such that

$$ \mathop{\sup_{u\in H^{1}_{0, {\mathrm{rad}}}(B_{1}), }}_{ \Vert \nabla u \Vert _{2} \leq 1} \int _{B_{1}}\exp \bigl(\alpha \vert u \vert ^{2+h( \vert x \vert )} \bigr)\,dx \textstyle\begin{cases} \leq C, & \alpha \leq 4\pi , \\ =+\infty , & \alpha >4\pi . \end{cases} $$

Next we establish a new version of the Trudinger–Moser inequality which will be used throughout this paper.

Theorem 1.3

Suppose h satisfies \((h_{1})\) and \((h_{2})\) and \(w(x)= (\log{1}/{|x|} )^{\beta}\) for some \(\beta \in [0,1)\). Then, there exists a positive constant \(C=C(\alpha ,\beta ,h)\) such that

$$ \sup_{ \Vert u \Vert \leq 1} \int _{B_{1}}\exp \bigl(\alpha \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq C. $$
(1.7)

If \(\alpha >\alpha _{\beta}^{*}\), then

$$ \sup_{ \Vert u \Vert \leq 1} \int _{B_{1}}\exp \bigl(\alpha \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx=+\infty . $$
(1.8)

The proof of Theorem 1.3 will be presented in the next section. In this work, we are interested in finding nontrivial weak solutions for the following class of Schrödinger equations:

$$ \textstyle\begin{cases} -\operatorname{div}(w(x)\nabla u) = f(x,u),& x \in B_{1}, \\ u = 0,& x \in \partial B_{1}, \end{cases} $$
(1.9)

where the growth of the nonlinearity of f is motivated by the Trudinger–Moser inequality given by Theorem 1.3. More precisely, we assume the following conditions on the nonlinearity f:

\((H_{1})\):

f: B 1 ×RR is a continuous and radially symmetric in the first variable function, that is, \(f(x,s)=f(y,s)\) for \(|x|=|y|\). Moreover, \(f(x,s)=0\) for all \(x\in B_{1}\) and \(s\leq 0\).

\((H_{2})\):

There exists a constant \(\mu >2\) such that

$$ 0< \mu F(x,s)\leq sf(x,s), \quad \text{for all } x\in B_{1} \text{ and } s> 0, $$

where \(F(x,s)=\int _{0}^{s} f(x,t)\,dt\).

\((H_{3})\):

There exists a constant \(M>0\) such that

$$ 0< F(x,s)\leq M f(x,s), \quad \text{for all } s>0. $$
\((H_{4})\):

There holds

$$ \limsup_{s \to 0}\frac {2F(x,s)}{s^{2}}< \lambda _{1},\quad \text{uniformly in } x\in B_{1}, $$

where \(\lambda _{1}\) is the first eigenvalue associated to \((-\operatorname{div}(w(x)\nabla u), H_{0,{\mathrm{rad}}}^{1}(B_{1},w) )\).

\((H_{5})\):

There exists a constant \(\alpha _{0}>0\) such that

$$ \lim_{s \to \infty} \frac {f(x,s)}{\exp (\alpha \vert u \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} )} = \textstyle\begin{cases} 0, & \alpha > \alpha _{0}, \\ +\infty , & \alpha < \alpha _{0}, \end{cases} $$
\((H_{6})\):

There exist constants \(p> 2\) and \(C_{p}>0\) such that

$$ f(x,s)\geq C_{p} s^{p-1}, \quad \text{for all } s \geq 0, $$

where

$$ C_{p}> \frac {(p-2)^{(p-2)/2}S_{p}^{p}}{p^{(p-2)/2}} \biggl( \frac {\alpha _{0}}{\alpha ^{*}_{\beta}} \biggr)^{(1-\beta )(p-2)/2} $$

and

$$ S_{p}:= \sup_{0\neq u\in H^{1}_{0, {\mathrm{rad}}}(B_{1}, w) } \frac { ( \int _{B_{1}}w(x) \vert \nabla u \vert ^{2}\,dx )^{1/2}}{ ( \int _{B_{1}} \vert u \vert ^{p}\,dx )^{1/p}}. $$

Throughout, we denote the space \(E:=H^{1}_{0,\mathrm{rad}}(B_{1},w)\) endowed with the inner product

$$ \langle u, v\rangle _{E}= \int _{B_{1}}w(x)\nabla u \nabla v \,dx, \quad \text{for all } u, v\in E, $$

to which corresponds the norm

$$ \Vert u \Vert = \biggl( \int _{B_{1}}w(x) \vert \nabla u \vert ^{2}\,dx \biggr)^{1/2}. $$

Also, we denote by \(E^{*}\) the dual space of E with its usual norm. We say that \(u\in E\) is a weak solution of (1.9) if

$$ \int _{B_{1}}w(x)\nabla u \nabla \phi \,dx= \int _{B_{1}} f(x,u)\phi \,dx,\quad \text{for all } \phi \in E. $$
(1.10)

Under the above assumptions on f, we consider the Euler–Lagrange functional J:ER defined by

$$ J(u)=\frac {1}{2} \int _{B_{1}}w(x) \vert \nabla u \vert ^{2}\,dx- \int _{B_{1}} {F}(x,u)\,dx, \quad \text{for all } u \in E. $$

Furthermore, using standard arguments (see [21]), J belongs to C 1 (E,R) and

$$ {J}'(u)\phi = \int _{B_{1}}w(x)\nabla u \nabla \phi \,dx- \int _{B_{1}} {f}(x,u)\phi \,dx, \quad \text{for all } u, \phi \in E. $$

Next, we present our existence result for the problem (1.9).

Theorem 1.4

Suppose that f satisfies \((H_{1})\)\((H_{6})\). Then, the problem (1.9) possesses a nontrivial weak solution.

Notice that the class of Schrödinger equations (1.9) represents a natural extension of the equation (1.1). Under assumption \((H_{5})\), the nonlinearity f behaves like \({\exp}((\alpha +h(|x|))|s|^{\frac{2}{1-\beta}})\) as s tends to infinity. Moreover, if \(\beta =0\), we have that \(w\equiv 1\) and the equation (1.9) is reduced to problem (1.1); the case with \(\beta =0\) and \(h(x)=|x|^{a}\) for some \(a>0\) was studied in [27], and treated in many works considering \(h=0\) (see [1, 2, 18] among others). Additionally, we observe that \((h_{1})\) and \((h_{2})\) are conditions near the origin, in particular, h can tend to infinity for values of \(|x|\) close to 1. Also, if β is close to 1, the power of \(|s|^{p}\) where \(p=2/(1-\beta )\) can be sufficiently large. The above properties motivate us to say that f possesses supercritical exponential growth and represents an extension of other previously studied works. Finally, note that the class of functions which satisfies the conditions \((H_{1})\)\((H_{6})\) is not empty, for instance, consider the following function f: B 1 ×RR defined by

$$ f(x,s)= \textstyle\begin{cases} As^{p-1}+(p+ \vert x \vert ^{\eta})s^{p-1+ \vert x \vert ^{\eta}}e^{s^{p+ \vert x \vert ^{\eta}}},& s \geq 0, \\ 0,& s< 0. \end{cases} $$

for some positive constants η, \(p=2/(1-\beta )\), and A sufficiently large.

2 Preliminaries

The space \(H^{1}_{0,{\mathrm{rad}}}(B_{1},w)\) where \(w(x)= (\log {1}/{|x|} )^{\beta}\) for some \(0\leq \beta <1\), endowed with the norm given by (1.6), is a separable Banach space (see [22, Theorem 3.9]). Next, we present a compactness result.

Lemma 2.1

The embedding \(H^{1}_{0,{\mathrm{rad}}}(B_{1},w)\hookrightarrow L^{p}(B_{1})\) is continuous and compact for \(1\leq p<\infty \).

Proof

From the Cauchy–Schwarz inequality, we have

$$ \int _{B_{1}} \vert \nabla u \vert \,dx \leq \biggl( \int _{B_{1}}w(x) \vert \nabla u \vert ^{2}\,dx \biggr)^{1/2}\cdot \biggl( \int _{B_{1}} w(x)^{-1}\,dx \biggr)^{1/2}. $$

Using the change of variable \(|x|=e^{-s}\), we get

$$ \frac {1}{2\pi} \int _{B_{1}} w(x)^{-1}\,dx= \int ^{+\infty}_{0} e^{-2s}s^{- \gamma}\,ds= \int ^{1}_{0} e^{-2s}s^{-\gamma}\,ds+ \int ^{+\infty}_{1} e^{-2s}s^{- \gamma}\,ds. $$

Note that

$$ \int _{0}^{1}e^{-2s}s^{-\gamma}\,ds \leq \int _{0}^{1} s^{-\gamma}\,ds = \frac {1}{1-\gamma} $$

and

$$ \int _{1}^{+\infty}e^{-2s}s^{-\gamma}\,ds \leq \int _{1}^{+\infty} e^{-2s}\,ds = \frac {e^{-2}}{2}. $$

Therefore, we can find a positive constant C such that

$$ \Vert \nabla u \Vert _{1}\leq C \biggl( \int _{B_{1}} \vert \nabla u \vert ^{2} w(x)\,dx \biggr)^{1/2}. $$

Thus, \(H^{1}_{0}(B_{1},w)\hookrightarrow W_{0}^{1,1}(B_{1})\) continuously, which implies the continuous and compact embedding

$$ H^{1}_{0}(B_{1},w)\hookrightarrow L^{p}(B_{1}),\quad \text{for all } p \geq 1. $$

 □

Lemma 2.2

([11])

Let u be a function in \(H^{1}_{0}(B_{1},w)\). Then,

$$ \bigl\vert u(x) \bigr\vert \leq \frac {(-\ln \vert x \vert )^{\frac{1-\beta}{2}}}{\sqrt{2\pi (1-\beta )}}\cdot \Vert u \Vert ,\quad \textit{for all } x\in B_{1}. $$

2.1 Proof of Theorem 1.3

Proof

To prove the first statement of the theorem, it is sufficient to consider \(\alpha =\alpha _{\beta}^{*}\). From Lemma 2.2, for each \(u\in E\) with \(\| u\|\leq 1\), we have

$$ \alpha ^{*}_{\beta } \bigl\vert u(r) \bigr\vert ^{2/(1-\beta )}\leq -2\ln r,\quad \text{for all } 0< r< 1, $$
(2.1)

where \(r=|x|\). Setting \(r_{1}:=e^{-\alpha ^{*}_{\beta}/2}\), we have

$$ \bigl\vert u(r) \bigr\vert \leq 1, \quad \text{for all } r\geq r_{1}. $$
(2.2)

Thus,

$$ \int _{B_{1}\backslash{B_{r_{1}}}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq \int _{B_{1}\backslash{B_{r_{1}}}}{ \rm exp} \bigl(\alpha _{\beta}^{*} \bigr)\,dx\leq \exp \bigl(\alpha _{ \beta}^{*}\bigr) \vert B_{1} \vert . $$
(2.3)

On the other hand, by (2.1), we can write

$$\begin{aligned} &\int _{B_{r_{1}}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx \\ &\quad \leq \int _{B_{r_{1}}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{\frac{2}{1-\beta}} \vert u \vert ^{h( \vert x \vert )} \bigr)\,dx \\ &\quad \leq \int _{B_{r_{1}}}\exp \biggl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}} \biggl(\frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)^{ \frac{(1-\beta )}{2}h( \vert x \vert )} \biggr)\,dx \\ &\quad \leq \int _{B_{r_{1}}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}} \bigr) (\exp \biggl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}} \biggl( \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)^{\frac{(1-\beta )}{2}h( \vert x \vert )}-1 \biggr)-1 \biggr)\,dx \\ & \qquad {}+ \int _{B_{r_{1}}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}} \bigr)\,dx. \end{aligned}$$

Note that \(-2\ln r/\alpha _{\beta}^{*}\geq 1\) for \(0< r\leq r_{1}\). By \((h_{2})\), there exist \(c>0\) and \(0< r_{2}< r_{1}\) such that

$$ h\bigl( \vert x \vert \bigr)\leq \frac {c}{(-\ln r)^{\gamma}}, \quad \text{for all } 0< r< r_{2}. $$
(2.4)

Using (2.1) and (2.4), we have

$$ \begin{aligned} &\exp (\alpha _{\beta}^{*} \vert u \vert ^{\frac{2}{1-\beta}} \biggl( \biggl(\frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)^{ \frac{(1-\beta )}{2}h( \vert x \vert )}-1 \biggr)-1 \\ &\quad \leq \exp (-2\ln r \biggl( \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)^{ \frac{c(1-\beta )}{2(-\ln r)^{\gamma}}}-1 \biggr)-1:=k(r). \end{aligned} $$

Also, as \(r\to 0^{+}\), one has

$$\begin{aligned} \biggl(\frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)^{ \frac{c(1-\beta )}{2(-\ln r)^{\gamma}}}&= \exp \biggl[{ \frac {c(1-\beta )}{2(-\ln r)^{\gamma}}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr) \biggr] \\ &= 1+ {\frac {c(1-\beta )}{2(-\ln r)^{\gamma}}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)+o \biggl( \frac {1}{(-\ln r)^{\gamma}} \ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr) \biggr). \end{aligned}$$

Therefore, as r is close to zero, we have

$$ \begin{aligned} -2\ln r \biggl( \biggl(\frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)^{\frac{c(1-\beta )}{2(-\ln r)^{\gamma}}}-1 \biggr) ={}& \frac {c(1-\beta )}{(-\ln r)^{\gamma -1}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr) \\ &{} +o \biggl(\frac {1}{(-\ln r)^{\gamma -1}} \ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr) \biggr). \end{aligned} $$

Since \(\gamma >2\), we obtain

$$ \frac {c(1-\beta )}{(-\ln r)^{\gamma -1}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)\to 0, \quad \text{as } r\to 0^{+}. $$
(2.5)

Consequently,

$$\begin{aligned} k(r)&= \exp \biggl[\frac {c(1-\beta )}{(-\ln r)^{\gamma -1}} \ln \biggl(\frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)+o \biggl( \frac {1}{(-\ln r)^{\gamma -1}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr) \biggr) \biggr]-1 \\ &= \frac {c(1-\beta )}{(-\ln r)^{\gamma -1}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr)+o \biggl( \frac {1}{(-\ln r)^{\gamma -1}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr) \biggr). \end{aligned}$$

Set

$$ l(r)=\frac {c(1-\beta )}{(-\ln r)^{\gamma -1}}\ln \biggl( \frac {-2\ln r}{\alpha _{\beta}^{*}} \biggr). $$

In particular, k and l are continuous and positive in \((0,r_{2})\). Moreover, there exist \(C>0\) and \(0< r_{3}< r_{2}\) such that

$$ k(r)\leq Cl(r), \quad \text{for all } 0< r\leq r_{3}. $$
(2.6)

Therefore, by (2.1), (2.6), and the definition of \(k(r)\), we have

$$\begin{aligned} &\int _{B_{r_{3}}} \exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx \\ & \quad \leq \int _{B_{r_{3}}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}} \bigr) k\bigl( \vert x \vert \bigr)\,dx+ \int _{B_{r_{3}}} \exp \bigl( \alpha _{\beta}^{*} \vert u \vert ^{\frac{2}{1-\beta}} \bigr)\,dx \\ &\quad \leq C_{1} \int _{B_{r_{3}}} \frac {1}{ \vert x \vert ^{2}} \ln \biggl( \frac {-2\ln \vert x \vert }{\alpha _{\beta}^{*}} \biggr){ \frac {c(1-\beta )}{(-\ln \vert x \vert )^{\gamma -1}}}\,dx+C_{2} \\ &\quad =2\pi C_{1}c(1-\beta ) \int _{0}^{\rho _{3}} \frac {1}{r} \ln \biggl(- \frac {2\ln r}{\alpha _{\beta}^{*}} \biggr) \frac {1}{(-\ln r)^{\gamma -1}}\,dr+C_{2} \\ &\quad = 2\pi C_{1}c(1-\beta ) \int _{-\ln \rho _{3}}^{+\infty} \ln \biggl( \frac {2s}{\alpha _{\beta}^{*}} \biggr) \frac {1}{ s^{\gamma -1}}\,ds+C_{2}, \end{aligned}$$

for some positive constants \(C_{1}\) and \(C_{2}\). Using the fact that \(\gamma >2\), we have

$$ \int _{B_{r_{3}}} \exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq C_{2}. $$
(2.7)

On the other hand, using (2.1), we have

$$ 1\leq \bigl\vert u(r) \bigr\vert \leq \biggl(-\frac {2\ln r_{3}}{\alpha _{\beta}^{*}} \biggr)^{ \frac{1-\beta}{2}}, \quad \text{for all } r_{3}\leq r\leq r_{1} $$

Combining the above inequality with the boundedness of h in \(B_{r_{1}}\backslash{B_{r_{3}}}\), we get

$$ \int _{B_{r_{1}}\backslash{B_{r_{3}}}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq \vert B_{r_{1}} \vert M. $$
(2.8)

Consequently, from (2.3), (2.7), and (2.8), we obtain

$$ \int _{B_{1}}\exp \bigl(\alpha _{\beta}^{*} \vert u \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq C, $$

which implies the first assertion of the theorem. In order to prove the sharpness, we consider the following sequence given in [15]:

$$ \psi _{k}(x)= \biggl(\frac {1}{\alpha _{\beta}^{*}} \biggr)^{(1-\beta )/2} \textstyle\begin{cases} { k^{\frac{2}{1-\beta}}} \ln (\frac {1}{ \vert x \vert ^{2}} )^{1-\beta},&0 \leq \vert x \vert \leq e^{-k/2}, \\ k^{\frac{1-\beta}{2}},& e^{-k/2}\leq \vert x \vert \leq 1. \end{cases} $$

Then, \(\|\psi _{k}\|=1\) for all kN. Moreover, for \(\alpha >\alpha ^{*}_{\beta}\), we have

$$ \int _{B_{1}}\exp \bigl(\alpha \vert \psi _{k} \vert ^{\frac{2}{1-\beta}+h( \vert x \vert } \bigr)\,dx\geq \int _{B_{1}}\exp \bigl(\alpha \vert \psi _{k} \vert ^{ \frac{2}{1-\beta}} \bigr)\,dx\geq \int _{e^{-k}/2}^{1} {\exp} \biggl( \frac {\alpha}{\alpha _{\beta}^{*}} k \biggr)r \,dr. $$

Then,

$$ \int _{B_{1}}\exp \bigl(\bigl(\alpha +h\bigl( \vert x \vert \bigr) \bigr) \vert \psi _{k} \vert ^{2/(1- \beta )} \bigr) \,dx\geq e^{k (\frac{ \alpha}{\alpha _{\beta}^{*}}-1 )} \bigl(e^{k}-1 \bigr)\to + \infty ,\quad \text{as } k\to \infty , $$

and the proof is complete. □

Corollary 2.3

Let \(\eta >0\). Then,

$$ \int _{B_{1}}\exp \bigl(\alpha \vert \psi _{k} \vert ^{\frac{2}{1-\beta}+ \vert x \vert ^{ \eta}} \bigr)\,dx< +\infty ,\quad \textit{for all } u\in H^{1}_{0,{\mathrm{rad}}}(B_{1},w) \textit{ and } \alpha >0. $$
(2.9)

Furthermore, if \(\alpha \leq \alpha ^{*}_{\beta}\), there exists a positive constant C such that

$$ \int _{B_{1}}\exp \bigl(\alpha \vert \psi _{k} \vert ^{\frac{2}{1-\beta}+ \vert x \vert ^{ \eta}} \bigr)\,dx\leq C. $$
(2.10)

If \(\alpha >\alpha _{\beta}^{*}\), then

$$ \sup_{ \Vert u \Vert \leq 1} \int _{B_{1}}\exp \bigl(\alpha \vert \psi _{k} \vert ^{ \frac{2}{1-\beta}+ \vert x \vert ^{\eta}} \bigr)\,dx=+\infty . $$
(2.11)

As it was observed in [27], the statements of Theorem 1.3 and its corollary are no longer true if one considers the space of nonradial functions \(H_{0}^{1}(B_{1},w)\). Additionally, using similar arguments as in Theorem 1.3, we can prove the natural extension of (1.2), that is, if \(\alpha >0\) and \(u\in H^{1}_{0,{\mathrm{rad}}}(B_{1},w)\), then

$$ \int _{B_{1}}\exp \bigl(\alpha \vert u \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx< +\infty . $$
(2.12)

3 The geometry of the mountain pass theorem

This section is devoted to showing that the functional J satisfies the geometry of the mountain pass theorem.

Lemma 3.1

Suppose that \((H_{1})\), \((H_{4})\), and \((H_{5})\) hold. Then, there exist \(\sigma ,\rho >0\) such that

$$ {J}(u)\geq \sigma , \quad \textit{for all } u \in E \textit{ with } \Vert u \Vert = \rho . $$

Proof

Consider \(q>2\) and \(0<\epsilon <{\lambda _{1}}/{2}\). From \((H_{1})\) and \((H_{4})\), we can find \(c>0\) such that

|F(x,s)|ϵ|s | 2 +c|s | q exp ( 2 α 0 | u | 2 1 β + h ( | x | ) ) ,for all (x,s) B 1 ×R.

Integrating on \(B_{1}\) and applying the Cauchy–Schwarz inequality, we obtain

$$ \int _{B_{1}}{F}(x,u)\,dx \leq \epsilon \Vert u \Vert _{2}^{2}+ c \Vert u \Vert _{2q}^{q} \biggl( \int _{B_{1}}\exp \bigl(4\alpha _{0} \vert u \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx \biggr)^{1/2}. $$
(3.1)

Let \(h_{0}=\max_{0\leq r\leq r_{1}}h(r)\) where \(r_{1}\) is given by (2.2). By Theorem 1.3, we have

$$ \begin{aligned} \int _{B_{r_{1}}} \exp \bigl(4\alpha _{0} \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dr &\leq \int _{B_{r_{1}}} \exp \biggl[4\alpha _{0} \Vert u \Vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \biggl( \frac{ \vert u \vert }{ \Vert u \Vert } \biggr)^{\frac{2}{1-\beta}+h( \vert x \vert )} \biggr] \,dx \\ &\leq \int _{B_{r_{1}}} \exp \biggl[4\alpha _{0} \Vert u \Vert ^{ \frac{2}{1-\beta}+h_{0}} \biggl(\frac{ \vert u \vert }{ \Vert u \Vert } \biggr)^{ \frac{2}{1-\beta}+h( \vert x \vert )} \biggr] \,dx \\ &\leq C_{1}, \end{aligned} $$
(3.2)

provided that \(\|u\|\leq \rho _{0}\) for some \(0<\rho _{0}<1\) such that \(4\alpha _{0}\rho _{0}^{\frac{2}{1-\beta}+h_{0}}<\alpha _{\beta}^{*} \). Using (2.2), we have

$$ \int _{B_{1}\backslash{B_{r_{1}}}}\exp \bigl(4\alpha _{0} \vert u \vert ^{ \frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq \int _{B_{1}\backslash{B_{r_{1}}}}{ \rm exp} (4\alpha _{0} )\,dx= C_{2}. $$
(3.3)

Replacing (3.2) and (3.3) in (3.1), we get some \(c>0\) such that

$$ \int _{B_{1}}{F}(x,u)\,dx \leq \frac {\epsilon}{\lambda _{1}} \Vert u \Vert ^{2}+ c \Vert u \Vert ^{q}, $$

provided that \(\| u\|\leq \rho _{0}\) for some \(\rho _{0}>0\). Then,

$$ J(u)\geq \frac {1}{2} \Vert u \Vert ^{2}- \int _{B_{1}}{F}(x,u)\,dx \geq \biggl( \frac {1}{2}- \frac {\epsilon}{\lambda _{1}} \biggr) \Vert u \Vert ^{2}-c \Vert u \Vert ^{q}. $$

Therefore, we can find \(\rho >0\) and \(\sigma >0\) with \(0<\rho <\rho _{0}\) sufficiently small such that \({J}(u)\geq \sigma >0\), for all \(u\in E\) satisfying \(\|u\|=\rho \). □

Lemma 3.2

Suppose that \((H_{1})\)\((H_{2})\) hold. Then, there exists \(e\in E\) such that

$$ {J}(e)< \rho \quad \textit{and}\quad \Vert e \Vert >\rho , $$

where \(\rho >0\) is given by Lemma 3.1.

Proof

It follows from \((H_{2}) \), that there exist \(C>0\) and \(s_{0}>0\) such that

$$ F(x,s)\geq Ce^{s/M},\quad \text{for all } s\geq s_{0}. $$

Let \(e_{0}\geq 0 \) and \(e_{0}\neq 0\) fixed. Then, there exists \(\delta >0\) such that \(|\{x\in B_{1}: e_{0}(x)\geq \delta \}|\geq \delta \). Thus, for \(t\geq s_{0}/\delta \), we have

$$ {J}(te_{0})\geq \frac {t^{2}}{2} \Vert e_{0} \Vert ^{2}- \int _{\{x\in B_{1}:e_{0} \geq \delta \}}{F}(x,te_{0})\,dx\geq \frac {t^{2}}{2} \Vert e_{0} \Vert ^{2}- C \delta e^{t\delta /M}, $$

which implies that \({J}(te_{0})\to -\infty \), as \(t\to +\infty \). Therefore, we can take \(e=t_{0}e_{0}\) with \(t_{0}>0\) sufficiently large such that \({J}(e)<0\) and \(\|e\|>\rho \). □

4 Palais–Smale sequence

By Lemmas 3.1 and 3.2, in the mountain pass theorem (see [30, 36]), we can find a Palais–Smale sequence at level \(d\geq \sigma \), where σ is given by Lemma 3.1, that is, there exists a sequence \((u_{n})\subset E\) such that

$$ {J}(u_{n})\to d \quad \text{and}\quad \bigl\Vert {J}'(u_{n}) \bigr\Vert _{E^{*}}\to 0, $$
(4.1)

where \(d>0\) can be characterized as

$$ d=\inf_{\gamma \in \Gamma}\max_{t \in [0,1]} {J} \bigl(\gamma (t)\bigr), $$
(4.2)

and

$$ \Gamma =\bigl\{ \gamma \in \mathcal{C}\bigl([0,1],E\bigr): \gamma (0)=0, \gamma (1)=e \bigr\} . $$

Lemma 4.1

Let \((u_{n})\subset E\) be a Palais–Smale sequence for the functional J satisfying (4.1). Then, the sequence \((u_{n})\) is bounden in E.

Proof

From (\(H_{2}\)), we have

$$\begin{aligned} {J}(u_{n})-\frac {1}{\mu}{J}'(u_{n})u_{n}&= \biggl(\frac {1}{2}- \frac {1}{\mu} \biggr) \Vert u_{n} \Vert ^{2}-\frac {1}{\mu} \int _{B_{1}} \bigl(\mu {F}(x,u_{n})-{f}(x,u_{n})u_{n} \bigr)\,dx \\ &\geq \biggl(\frac {1}{2}-\frac {1}{\mu} \biggr) \Vert u_{n} \Vert ^{2}. \end{aligned}$$

Using (4.1), for n sufficiently large, we have

$$ {J}(u_{n})\leq d+1 \quad \text{and}\quad \bigl\Vert {J}'(u_{n}) \bigr\Vert _{E^{*}}\leq \mu . $$

Therefore, for n sufficiently large, we obtain

$$ \biggl(\frac {1}{2}-\frac {1}{\mu} \biggr) \Vert u_{n} \Vert ^{2}\leq d+1+ \Vert u_{n} \Vert , $$

which implies that the sequence \((u_{n})\) is bounded in E. □

Lemma 4.2

Let \((u_{n})\) be a Palais–Smale sequence for the functional J satisfying (4.1) and suppose that \(u_{n}\rightharpoonup u\) weakly in E. Then, there exists a subsequence of \((u_{n})\), still denoted by \((u_{n})\), such that

$$ {f}(x,u_{n})\to {f}(x,u)\quad \textit{in } L^{1}(B_{1}) $$
(4.3)

and

$$ {F}(x,u_{n})\to {F}(x,u) \quad \textit{in } L^{1}(B_{1}). $$
(4.4)

Proof

From Lemma 2.1, we can suppose that \((u_{n})\) converges to u in \(L^{1}(B_{1})\). By Theorem 1.3, \((H_{1})\), and \((H_{4})\), we have that \({f}(x,u_{n})\in L^{1}(B_{1})\). Using Lemma 4.1, the sequence \((\|u_{n}\|)\) is bounded and the fact that \(\|{J}'(u_{n})\|_{E^{*}}\to 0\) allows us to obtain

$$ \bigl\vert {J}'(u_{n})u_{n} \bigr\vert \leq \bigl\Vert {J}'(u_{n}) \bigr\Vert _{E^{*}} \Vert u_{n} \Vert \to 0,\quad \text{as } n\to +\infty . $$

Thus,

$$ {J}'(u_{n})u_{n}=\frac { \Vert u_{n} \Vert ^{2}}{2}- \int _{B_{1}}{f}(x,u_{n})u_{n}\,dx\to 0, \quad \text{as } n\to +\infty . $$

Therefore, the sequence \({f}(x,u_{n})u_{n}\) is bounded in \(L^{1}(B_{1})\). Due to [18, Lemma 2.10], we conclude that \({f}(x,u_{n})\to {f}(x,u)\) in \(L^{1}(B_{1})\). On the other hand, by the convergence (4.3), there exists \(p\in L^{1}(B_{1})\) such that

$$ f(x,u_{n})\leq p(x), \quad \text{almost everywhere in } B_{1} \text{ and for } n \text{ sufficiently large}. $$

From \((H_{3})\), we can write

$$ {F}(x,u_{n})\leq Mp(x), \quad \text{almost everywhere in } B_{1} \text{ and for } n \text{ sufficiently large}. $$

By Lebesgue’s dominated convergence theorem, the convergence (4.4) follows. □

Lemma 4.3

Let \((u_{n})\subset E\) be a Palais–Smale sequence for the functional J satisfying (4.1). Then,

$$ d< \frac {1}{2} \biggl(\frac {\alpha ^{*}_{\beta}}{\alpha _{0}} \biggr)^{1- \beta}, $$

where d is the minimax level given by (4.2).

Proof

Let \(u_{p}\in E\) be a nonnegative function with \(\|u_{p}\|_{p}=1\) such that

$$ S_{p}=\inf_{0\neq u\in H_{0,{\mathrm{rad}}}^{1}(B_{1},w)} \frac { ( \int _{B_{1}}w(x) \vert \nabla u \vert ^{2}\,dx )^{1/2}}{ ( \int _{B_{1}} \vert u \vert ^{p}\,dx )^{1/p}}= \Vert u_{p} \Vert . $$

From \((H_{6})\), we get

$$ J(t u_{p})=\frac {t^{2}}{2} \Vert u_{p} \Vert ^{2}- \int _{B_{1}}F(x,tu_{p})\,dx \geq \frac {t^{2}}{2} \Vert u_{p} \Vert ^{2}-\frac {C_{p}t^{p}}{p} \int _{B_{1}} \vert u_{p} \vert ^{p} \,dx. $$

Therefore, by the estimate on \(C_{p}\), we have

$$ \sup_{t\geq 0} J(tu_{p})\leq \max _{t\geq 0} \biggl\{ \frac {t^{2}S_{p}^{2}}{2}-\frac {C_{p}t^{p}}{p} \biggr\} = \frac {(p-2)S_{p}^{2p/(p-2)}}{2pC_{p}^{2/(p-2)}}< \frac {1}{2} \biggl( \frac {\alpha ^{*}_{\beta}}{\alpha _{0}} \biggr)^{1-\beta}. $$
(4.5)

Take \(e_{0}=u_{p}\) in Lemma 3.2, that is, we consider \(e=t_{0}u_{p}\) with \(t_{0}>0\) given by Lemma 3.2. Setting \(\gamma _{0}(t)=tt_{0}u_{p}\), in particular, we have \(\gamma _{0}\in \Gamma =\{\gamma \in \mathcal{C}([0,1],E) : \gamma (0)=0, \gamma (1)=e\}\). Using (4.2) and (4.5), we obtain

$$ d=\inf_{\gamma \in \Gamma}\max_{t \in [0,1]} {J}\bigl(\gamma (t) \bigr)\leq \max_{t \in [0,1]} {J}\bigl(\gamma _{0}(t)\bigr)= \max_{t \in [0,1]} {J}(tt_{0}u_{p}) \leq \max _{t \geq 0} {J}(tu_{p}) < \frac {1}{2} \biggl( \frac {\alpha ^{*}_{\beta}}{\alpha _{0}} \biggr)^{1-\beta}. $$

 □

5 Proof of Theorem 1.4

Let \((u_{n}) \subset E\) be a Palais–Smale sequence of the functional J satisfying (4.1). Then,

$$ {J}'(u_{n})\phi = \int _{B_{1}} w(x)\nabla u_{n} \nabla \phi \,dx - \int _{B_{1}}{f} (x,u_{n})\phi \,dx=o_{n}(1), $$
(5.1)

for all \(\phi \in \mathcal{C}^{\infty}_{0,{\mathrm{rad}}}(B_{1})\). By Lemma 4.1, the sequence \((u_{n})\) is bounded in E. Thus, up to a subsequence, we can assume that there exists \(u\in E\) such that \(u_{n}\rightharpoonup u\) weakly in E, and replacing the above convergence in (5.1) yields

$$ \int _{B_{1}} w(x)\nabla u \nabla \phi \,dx - \int _{B_{1}}{f} (x,u) \phi \,dx=0,\quad \text{for all } \phi \in \mathcal{C}^{\infty}_{0,{ \mathrm{rad}}}(B_{1}). $$

Since \(\mathcal{C}_{0,{\mathrm{rad}}}^{\infty}(B_{1})\) is dense in E, we obtain

$$ \int _{B_{1}} w(x)\nabla u \nabla \phi \,dx = \int _{B_{1}}{f}(x,u) \phi \,dx,\quad \text{for all } \phi \in E. $$

Therefore, \(u\in E\) is a critical point of J. Now, we prove that u is nontrivial. Suppose, by contradiction, that \(u\equiv 0\). From Lemma 2.1, we can assume that

$$ u_{n}\to 0 \quad \text{in } L^{p}(B_{1}), \text{for all } p \geq 1. $$
(5.2)

Using the fact that \({J}(u_{n})\to d\), we have

$$ {J}(u_{n})=\frac { \Vert u_{n} \Vert ^{2}}{2}- \int _{B_{1}}{F}(x,u_{n})\,dx=d+o_{n}(1). $$
(5.3)

Since, we suppose that \(u_{n}\rightharpoonup 0\), by Lemma 4.2, we obtain

$$ \int _{B_{1}}{F}(x,u_{n})\,dx\to \int _{B_{1}}{F}(x,0)\,dx=0. $$

Replacing the above limit in (5.3), one has

$$ \frac { \Vert u_{n} \Vert ^{2}}{2}=d+o_{n}(1). $$
(5.4)

By Lemma 4.3, we get

$$ \Vert u_{n} \Vert ^{2}=2d+o_{n}(1)< \biggl( \frac {\alpha _{\beta}^{*}}{\alpha _{0}} \biggr)^{1-\beta}+o_{n}(1). $$

Thus, we can assume that there exists \(\delta >0\) sufficiently small such that

$$ \Vert u_{n} \Vert ^{\frac{2}{1-\beta}} \leq \frac {\alpha _{\beta}^{*}}{\alpha _{0}}-2 \delta , \quad \text{for all } n\geq 1. $$

Now, we can find \(\epsilon >0\) sufficiently small and \(m>1\) sufficiently close to 1 such that

$$ \Vert u_{n} \Vert ^{\frac{2}{1-\beta}+\epsilon} \leq \frac {\alpha _{\beta}^{*}}{\alpha _{0}}-\delta ,\quad \text{for all } n\geq 1, $$
(5.5)

and

$$ m(\alpha _{0}+\epsilon ) \biggl(\frac {\alpha _{\beta}^{*}}{\alpha _{0}}- \delta \biggr)< \alpha _{\beta}^{*}. $$
(5.6)

From assumption \((H_{5})\) there exists a positive constant C such that

|f(x,s)|Cexp ( ( α 0 + ϵ ) | s | 2 1 β + h ( | x | ) ) ,for all (x,s) B 1 ×R.

By Hölder and the above inequalities, we have

$$ \int _{B_{1}}{f}(x,u_{n})u_{n}\,dx \leq C \Vert u_{n} \Vert _{m'} \biggl( \int _{B_{1}}{ \rm exp} \bigl(m(\alpha _{0}+\epsilon ) \vert u_{n} \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx \biggr)^{1/m}. $$
(5.7)

Since h is continuous and \(h(0)=0\), there exists \(r_{0}>0\) such that

$$ h\bigl( \vert x \vert \bigr)< \epsilon ,\quad \text{for all } \vert x \vert \leq r_{0}. $$

Using (5.5), (5.6), and Theorem 1.3, we obtain \(C_{1}>0\) such that

$$ \begin{aligned} &\int _{B_{r_{0}}}\exp \bigl(m(\alpha _{0}+\epsilon ) \vert u_{n} \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx \\ &\quad \leq \int _{B_{r_{0}}}\exp \biggl[m(\alpha _{0}+ \epsilon ) \Vert u_{n} \Vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \biggl( \frac { \vert u_{n} \vert }{ \Vert u_{n} \Vert } \biggr)^{\frac{2}{1-\beta}+h( \vert x \vert )} \biggr]\,dx \\ & \quad \leq \int _{B_{r_{0}}}\exp (m(\alpha _{0}+ \epsilon ) \Vert u_{n} \Vert ^{\frac{2}{1-\beta}+\epsilon} \biggl( \frac { \vert u_{n} \vert }{ \Vert u_{n} \Vert } \biggr)^{\frac{2}{1-\beta}+h( \vert x \vert )} ]\,dx \\ &\quad \leq \int _{B_{r_{0}}}\exp \biggl[\alpha _{\beta}^{*} \biggl( \frac { \vert u_{n} \vert }{ \Vert u_{n} \Vert } \biggr)^{\frac{2}{1-\beta}+h( \vert x \vert )} \biggr]\,dx\leq C_{1}. \end{aligned} $$
(5.8)

According to (2.2), we have \(|u(x)|\leq 1\) for \(r_{1}\leq |x|<1 \). Thus, we can find \(C_{2}>0\) such that

$$ \int _{B_{1}\backslash{B_{r_{1}}}}\exp \bigl(m(\alpha _{0}+ \epsilon ) \vert u \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq \int _{B_{1} \backslash{B_{r_{1}}}}\exp (m(\alpha _{0}+\epsilon )\,dx= C_{2}. $$
(5.9)

On the other hand, using the boundedness of \((\|u_{n}\|)\) and Lemma 2.2, we have

$$ \bigl\vert u_{n}(x) \bigr\vert \leq M_{0}, \quad \text{for all } r_{0}\leq \vert x \vert \leq r_{1} \text{ and } n\geq 1. $$

By the continuity of h, we can find \(C_{3}>0\) such that

$$ \int _{B_{r_{1}}\backslash B_{r_{0}}}\exp \bigl(m(\alpha _{0}+ \epsilon ) \vert u_{n} \vert ^{\frac{2}{1-\beta}+h( \vert x \vert )} \bigr)\,dx\leq C_{3}. $$
(5.10)

Replacing (5.8), (5.9), and (5.10) in (5.7), we obtain

$$ \int _{B_{1}}{f}(x,u_{n})u_{n}\,dx \leq C \Vert u_{n} \Vert _{m'}. $$

By (5.2), we get

$$ \int _{B_{R}}{f}(x,u_{n})u_{n}\,dx \to 0, \quad \text{as } n\to + \infty . $$
(5.11)

Using the fact that \((\|u_{n}\|)\) is bounded and \(\|{J}'(u_{n})\|_{E^{*}}\to 0\), we obtain \(C>0\) such that

$$ \bigl\vert {J}'(u_{n})u_{n} \bigr\vert \leq \bigl\Vert {J}'(u_{n}) \bigr\Vert _{E^{*}} \Vert u_{n} \Vert \to 0, \quad \text{as } n\to +\infty . $$
(5.12)

Since,

$$ {J}'(u_{n})u_{n}= \Vert u_{n} \Vert ^{2}- \int _{B_{1}}{f}(x,u_{n})u_{n}\,dx. $$

By (5.11) and (5.12), we have

$$ \Vert u_{n} \Vert ^{2}={J}'(u_{n})u_{n}+ \int _{B_{1}}{f}(x,u_{n})u_{n}\,dx\to 0, \quad \text{as } n\to +\infty . $$

From (5.4), we have \(\|u_{n}\|^{2}\to 2d\). Hence, \(d=0\), which represents a contradiction with (4.2). Thus, u is a nontrivial critical point of J. Therefore, u is a nontrivial weak solution of the problem (1.9). This completes the proof.

Availability of data and materials

Not applicable.

References

  1. Adimurthi: Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the N-Laplacian. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 3, 393–413 (1990)

    MathSciNet  MATH  Google Scholar 

  2. Adimurthi, Yadava, S.L.: Multiplicity results for semilinear elliptic equations in a bounded domain of R 2 involving critical exponent. Ann. Sc. Norm. Super. Pisa, Cl. Sci. 4, 481–504 (1990)

    MATH  Google Scholar 

  3. Adimurthi, S.K.: A singular Moser–Trudinger embedding and its applications. NoDEA Nonlinear Differ. Equ. Appl. 13, 585–603 (2007). https://doi.org/10.1007/s00030-006-4025-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Albuquerque, F.S.B., Alves, C.O., Medeiros, E.S.: Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in R 2 . J. Math. Anal. Appl. 409, 1021–1031 (2014). https://doi.org/10.1016/j.jmaa.2013.07.005

    Article  MathSciNet  MATH  Google Scholar 

  5. Alvino, A., Ferone, V., Trombetti, G.: Moser-type inequalities in Lorentz spaces. Potential Anal. 5, 273–299 (1996). https://doi.org/10.1007/BF00282364

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsh, T., Willem, M.: On an elliptic equation with concave and convex nonlinearities. Proc. Am. Math. Soc. 123, 3555–3561 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brézis, H.: Elliptic equations with limiting Sobolev exponents. Commun. Pure Appl. Math. 3, 517–539 (1986). https://doi.org/10.1002/cpa.3160390704

    Article  MathSciNet  MATH  Google Scholar 

  8. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983). https://doi.org/10.1002/cpa.3160360405

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Wainger, S.: A note on limiting cases of Sobolev embeddings and convolution inequalities. Commun. Partial Differ. Equ. 5, 773–789 (1980). https://doi.org/10.1080/03605308008820154

    Article  MathSciNet  MATH  Google Scholar 

  10. Calanchi, M., Massa, E., Ruf, B.: Weighted Trudinger–Moser inequalities and associated Liouville type equations. Proc. Am. Math. Soc. 146(12), 5243–5256 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Calanchi, M., Ruf, B.: On a Trudinger–Moser type inequality with logarithmic weights. J. Differ. Equ. 258, 1967–1989 (2015). https://doi.org/10.1016/j.jde.2014.11.019

    Article  MATH  Google Scholar 

  12. Calanchi, M., Ruf, B., Sani, F.: Elliptic equations in dimension 2 with double exponential nonlinearities. Nonlinear Differ. Equ. Appl. 24, 29 (2017). https://doi.org/10.1007/s00030-017-0453-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Cao, D.M.: Nontrivial solution of semilinear elliptic equation with critical exponent in R 2 . Commun. Partial Differ. Equ. 17, 407–435 (1992). https://doi.org/10.1080/03605309208820848

    Article  MATH  Google Scholar 

  14. Capozzi, A., Fortunato, D., Palmieri, G.: An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 2, 463–470 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cassani, D., Tarsi, C.: A Moser-type inequality in Lorentz–Sobolev spaces for unbounded domains in R N . Asymptot. Anal. 64, 29–51 (2009). https://doi.org/10.3233/ASY-2009-0934

    Article  MathSciNet  MATH  Google Scholar 

  16. Cassani, D., Tarsi, C.: Existence of solitary waves for supercritical Schrödinger systems in dimension two. Calc. Var. Partial Differ. Equ. 5(4), 1673–1704 (2015). https://doi.org/10.1007/s00526-015-0840-3

    Article  MATH  Google Scholar 

  17. de Figueiredo, D.G., do Ó, J.M., Ruf, B.: Critical and subcritical elliptic systems in dimension two. Indiana Univ. Math. J. 53, 1037–1054 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. de Figueiredo, D.G., Miyagaki, O.H., Ruf, B.: Elliptic equations in R 2 with nonlinearities in the critical growth range. Calc. Var. Partial Differ. Equ. 3, 139–153 (1995). https://doi.org/10.1007/BF01205003

    Article  MATH  Google Scholar 

  19. de Souza, M., do Ó, J.M.: On a class of singular Trudinger–Moser type inequalities and its applications. Math. Nachr. 284, 1754–1776 (2011). https://doi.org/10.1016/j.aml.2012.05.007

    Article  MathSciNet  MATH  Google Scholar 

  20. do Ó, J.M., Ribeiro, B., Ruf, B.: Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete Contin. Dyn. Syst. 41, 277–296 (2021). https://doi.org/10.3934/dcds.2020138

    Article  MathSciNet  MATH  Google Scholar 

  21. Kavian, O.: Introduction à la théorie des points critiques et applications aux problèmes elliptiques. Springer, Paris (1993)

    MATH  Google Scholar 

  22. Kufner, A.: Weighted Sobolev Spaces. Teubner, Leipzig (1980)

    MATH  Google Scholar 

  23. Leuyacc, Y.R.S.: A nonhomogeneous Schrödinger equation involving nonlinearity with exponential critical growth and potential which can vanish at infinity. Results Appl. Math. 17, 100348 (2023). https://doi.org/10.1016/j.rinam.2022.100348

    Article  MATH  Google Scholar 

  24. Leuyacc, Y.R.S., Soares, S.H.M.: On a Hamiltonian system with critical exponential growth. Milan J. Math. 87(1), 105–140 (2019). https://doi.org/10.1007/s00032-019-00294-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu, G., Tang, H.: Sharp singular Trudinger–Moser inequalities in Lorentz–Sobolev spaces. Adv. Nonlinear Stud. 16, 581–601 (2016). https://doi.org/10.1515/ans-2015-5046

    Article  MathSciNet  MATH  Google Scholar 

  26. Moser, J.: A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

  27. Ngô, Q.A., Nguyen, V.H.: Supercritical Moser–Trudinger inequalities and related elliptic problems. Calc. Var. Partial Differ. Equ. 59, 69 (2020). https://doi.org/10.1007/s00526-020-1705-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Pohožaev, S.: The Sobolev embedding in the special case \(pl = n\). In: Proceedings of the Tech. Sci. Conference on Adv. Sci. Research Mathematics Sections 1964–1965, pp. 158–170. Moscow. Energet. Inst., Moscow (1965)

    Google Scholar 

  29. Qin, D., Tang, X., Zhang, J.: Ground states for planar Hamiltonian elliptic systems with critical exponential growth. J. Differ. Equ. 308(130), 130–159 (2022). https://doi.org/10.1016/j.jde.2021.10.063

    Article  MathSciNet  MATH  Google Scholar 

  30. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math., vol. 65. Am. Math. Soc., Providence (1986)

    MATH  Google Scholar 

  31. Santaria-Leuyacc, Y.R.: Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity. Proyecciones 38(2), 325–351 (2019). https://doi.org/10.4067/S0716-09172019000200325

    Article  MathSciNet  MATH  Google Scholar 

  32. Santaria-Leuyacc, Y.R.: Standing waves for quasilinear Schrödinger equations involving double exponential growth. AIMS Math. 8(11), 1682–1695 (2023). https://doi.org/10.3934/math.2023086

    Article  MathSciNet  MATH  Google Scholar 

  33. Soares, S.H.M., Leuyacc, Y.R.S.: Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Commun. Contemp. Math. 20, 1750053 (2018). https://doi.org/10.1142/S0219199717500535

    Article  MathSciNet  MATH  Google Scholar 

  34. Soares, S.H.M., Leuyacc, Y.R.S.: Singular Hamiltonian elliptic systems with critical exponential growth in dimension two. Math. Nachr. 292, 137–158 (2019). https://doi.org/10.1002/mana.201700215

    Article  MathSciNet  MATH  Google Scholar 

  35. Trudinger, N.S.: On embedding into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MathSciNet  MATH  Google Scholar 

  36. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  37. Yudovich, V.: Some estimates connected with integral operators and with solutions of elliptic equations. Dokl. Akad. Nauk SSSR 138, 805–808 (1961)

    MathSciNet  Google Scholar 

  38. Zhang, W., Zhang, J., Rădulescu, V.D.: Double phase problems with competing potentials: concentration and multiplication of ground states. Math. Z. 301, 4037–4078 (2022). https://doi.org/10.1007/s00209-022-03052-1

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, W., Zhang, J., Rădulescu, V.D.: Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction. J. Differ. Equ. 347(25), 56–103 (2023). https://doi.org/10.1016/j.jde.2022.11.033

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was done while the author was visiting Universidade de São Paulo at São Carlos. He thanks all the faculty and staff of the Department of Mathematics for their support and kind hospitality.

Funding

This research was supported by CONCYTEC-PROCIENCIA within the call for proposal “Proyecto de Investigación Básica 2019-01 [Contract Number 410-2019]” and the Universidad Nacional Mayor de San Marcos – RR No. 05753-R-21 and project number B21140091.

Author information

Authors and Affiliations

Authors

Contributions

All the parts were prepared by the unique author

Corresponding author

Correspondence to Yony Raúl Santaria Leuyacc.

Ethics declarations

Ethics approval and consent to participate

Ethics approval was not required for this research.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuyacc, Y.R.S. A class of Schrödinger elliptic equations involving supercritical exponential growth. Bound Value Probl 2023, 39 (2023). https://doi.org/10.1186/s13661-023-01725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01725-2

MSC

Keywords