Skip to main content

\((\omega ,c)\)-periodic solutions for a class of fractional integrodifferential equations

Abstract

In this paper we investigate the following fractional order in time integrodifferential problem

$$ \mathbb{D}_{t}^{\alpha}u(t)+Au(t)=f \bigl(t,u(t) \bigr)+ \int _{-\infty}^{t} k(t-s)g \bigl(s,u(s) \bigr)\,ds, \quad t \in \mathbb{R}. $$

Here, \(\mathbb{D}_{t}^{\alpha}\) is the Caputo derivative. We obtain results on the existence and uniqueness of \((\omega ,c)\)-periodic mild solutions assuming that −A generates an analytic semigroup on a Banach space X and f, g, and k satisfy suitable conditions. Finally, an interesting example that fits our framework is given.

1 Introduction

The aim of this paper is to investigate the existence of \((\omega ,c)\)-periodic mild solutions for a class of fractional integrodifferential equations in Banach spaces. More precisely, let X be a Banach space. Our objective is to study the following problem

$$ \mathbb{D}_{t}^{\alpha}u(t)+Au(t)=f \bigl(t,u(t) \bigr)+(Ku) (t),\quad t\in \mathbb{R}. $$
(1.1)

In (1.1), \(0<\alpha \leq 1\), \(\mathbb{D}_{t}^{\alpha}\) denotes the Caputo fractional derivative in the t variable that is defined by

$$\begin{aligned} \mathbb{D}_{t}^{\alpha}u(t):=\frac{1}{\Gamma (1-\alpha )} \int _{0}^{t}(t- \tau )^{-\alpha}u'( \tau )\,d\tau , \end{aligned}$$

where −A generates an analytic semigroup \(S(t)\) in X, and f, g are continuous functions from \(\mathbb{R}\times X\) to X, and

$$ (Ku) (t):= \int _{-\infty}^{t} k(t-s)g \bigl(s,u(s) \bigr)\,ds, $$

where k is a continuous function from \(\mathbb{R}\mathbbm{^{+}}\) to \(\mathbb{R}\).

In many areas of science and technology, the theory of fractional differential equations and their applications is of significant importance because certain situations do not fit into classical models, see [18, 25, 26] and the references therein.

Recently, Alvarez et al. presented the concept of vector-valued \((\omega ,c)\)-periodic solutions and its properties in [6]. Moreover, they proved the existence and uniqueness of \((\omega ,c)\)-periodic mild solutions to the problem (1.1) with \(K=0\). Then, several authors have studied related problems, see, for example, [1, 4, 5, 7, 1015, 17, 22, 23, 27]. Also, there exist various generalizations of this kind of functions and applications to real-life problems [2, 3, 20, 21].

The problem of the existence and uniqueness of a pseudoalmost-periodic PC-mild solution for

$$\begin{aligned} \mathbb{D}_{t}^{\alpha}u(t)+Au(t)=f \bigl(t,u(t) \bigr)+ \int _{-\infty}^{t}k(t-s)g \bigl(s,u(s) \bigr)\,ds+ \sum _{j=-\infty}^{\infty}G_{j} \bigl(u(t) \bigr) \delta (t-t_{j}),\quad t\in \mathbb{R}, \end{aligned}$$

where \(G_{j}\) are continuous impulsive operators, \(\delta (\cdot )\) is the Dirac delta function, and \(\tau _{j}\) are a sequence in \(\mathbb{Z}\) was investigated by Xia in [29] for \(0<\alpha <1\), and by Gu and Li in [19] for \(1<\alpha <2\). The existence of almost-periodic mild solutions for the case without impulsive effects was studied in [8].

It is worth mentioning that not much seems to be known about \((\omega ,c)\)-periodic mild solutions for the integrodifferential equation (1.1). This is precisely our aim in this article.

We succeed in solving this open problem using Banach fixed-point arguments and the fractional powers of operators to derive some sufficient conditions guaranteeing the existence and uniqueness of \((\omega ,c)\)-periodic mild solutions to (1.1).

The paper is structured as follows. In Sect. 2, we recall the definition of \((\omega ,c)\)-periodic functions, the fractional power of an operator, and the definition of Mittag–Leffler functions and their properties that will be used throughout the manuscript. In Sect. 3, we investigate the main problem where we obtain a novel regularity result related to \((\omega ,c)\)-periodic mild solutions of (1.1). Finally, an interesting example is given in Sect. 4.

2 Preliminaries

Throughout this paper, \(c\in \mathbb{C}\setminus \{0\}\), \(\omega >0\), X will denote a Banach space with norm \(\|\cdot \|_{X}\) and we will denote the set of continuous functions on \(\mathbb{R}\) by

$$ C(\mathbb{R},X):=\{f:\mathbb{R}\to X: f\text{ is continuous}\}, $$

and the set of continuous functions on \(\mathbb{R}\times X\) by

$$ C(\mathbb{R}\times X,X):=\{f:\mathbb{R}\times X\to X: f\text{ is continuous}\}. $$

We recall that a function \(f\in C(\mathbb{R},X)\) is said to be \((\omega ,c)\)-periodic if \(f(t+\omega )=cf(t)\) for all \(t\in \mathbb{R}\), see [6]. The collection of those functions with the same c-period ω will be denoted by \(P_{\omega c}(\mathbb{R},X)\). Also, in the same article, it was proved that \(P_{\omega c}(\mathbb{R},X)\) is a Banach space with the norm

$$ \Vert f \Vert _{\omega c}:=\sup_{t\in [0,\omega ]} \bigl\Vert \vert c \vert ^{\land}(-t)f(t) \bigr\Vert . $$

Definition 2.1

([28, Sect. 2.6])

Assume that −A generates an analytic semigroup \(\{S(t)\}_{t\geq 0}\) in a Banach space X and \(0\in \rho (A)\). For any \(\beta > 0\), we define the fractional power \(A^{-\beta}\) of the operator A by

$$ A^{-\beta}:=\frac{1}{\Gamma (\beta )} \int _{0}^{\infty }t^{\beta -1} S(t)\,dt. $$

We further define \(A^{-0}:=I\).

Lemma 2.2

([28, Lemma 6.3])

Let the operatorA be an infinitesimal generator of an analytic semigroup \(\{S(t)\}_{t\geq 0}\) in the Banach space X and \(0\in \rho (A)\). There exists a constant \(C_{\beta}\) such that

$$ \bigl\Vert A^{-\beta}x \bigr\Vert _{X}\leq C_{\beta} \Vert x \Vert _{X}, \quad \textit{for all } x\in X, $$

where \(0\leq \beta \leq 1\).

Theorem 2.3

([28, Theorem 6.13])

LetA be an infinitesimal generator of an analytic semigroup \(\{S(t)\}_{t\geq 0}\). If \(0\in \rho (A)\), then

  1. 1.

    \(S(t): X \to D(A^{\beta})\) for all \(t > 0\) and \(\beta \geq 0\);

  2. 2.

    For all \(x \in D(A^{\beta})\), it follows that \(S(t)A^{\beta }x= A^{\beta }S(t)x\);

  3. 3.

    For all \(t > 0\), the operator \(A^{\beta }S(t)\) is bounded and

    $$ \bigl\Vert A^{\beta }S(t) \bigr\Vert _{\mathcal{L}(X)}\leq M_{\beta }t^{-\beta}e^{- \lambda t}, \quad M_{\beta}>0, \lambda >0, $$

    where \(M_{\beta}\) is a positive constant and \(\lambda >0\) satisfies that \(-A+\lambda I\) remains the infinitesimal generator of the analytic semigroup \(S(t)\).

  4. 4.

    For \(0 <\beta \leq 1\) and \(x \in D(A^{\beta})\), there exists \(C_{\beta}>0\) such that

    $$ \bigl\Vert S(t)x-x \bigr\Vert _{X}\leq C_{\beta }t^{\beta} \bigl\Vert A^{\beta }x \bigr\Vert _{X}. $$

Theorem 2.4

([28])

The space \(X_{\beta}:=D(A^{\beta})\subset X\) with norm \(\|x\|_{\beta}:=\|A^{\beta }x\|_{X}\) is a Banach space.

We recall that the Mittag–Leffler-type function (or the two-parameter Mittag–Leffler function) is given by

$$ E_{\alpha , \beta}(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{\Gamma (\alpha n+\beta )},\quad (\alpha >0, \beta \in \mathbb{C}). $$

When \(\beta =1\), we write simply \(E_{\alpha}(t)\) instead of \(E_{\alpha , 1}(t)\). For more details about the Mittag–Leffler function, the reader may want to consult [18].

Proposition 2.5

([25])

Let \(0<\alpha <1\). If \(\theta \geq 0\), the following properties are satisfied:

  1. (a)
    $$ M_{\alpha}(\theta )\geq 0. $$
  2. (b)
    $$ { \int _{0}^{\infty}} \theta ^{n} M_{\alpha}(\theta )\,d\theta =\frac{\Gamma (n+1)}{\Gamma (\alpha n+1)},\quad n\geq -1. $$
  3. (c)
    $$ \int _{0}^{\infty }M_{\alpha}(\theta )e^{-t\theta}\,d\theta =E_{\alpha}(-t). $$

Lemma 2.6

([25])

Let \(0<\alpha <1\). IfA is an infinitesimal generator of an analytic semigroup \(\{S(t)\}_{t\geq 0}\) on X, \(0\in \rho (A)\) and \(x\in X\), then

$$ E_{\alpha} \bigl(-t^{\alpha }A \bigr)x= \int _{0}^{\infty }M_{\alpha}(\theta )S \bigl( \theta t^{\alpha} \bigr)x\,d\theta ,\quad t\geq 0 $$

and

$$ E_{\alpha ,\alpha} \bigl(-t^{\alpha }A \bigr)x= \int _{0}^{\infty}\alpha \theta M_{ \alpha}(\theta )S \bigl(\theta t^{\alpha} \bigr)x\,d\theta ,\quad t\geq 0. $$

Theorem 2.7

([9])

Let \(\alpha ,\beta \in (0,1)\). IfA is the infinitesimal generator of an analytic semigroup \(\{S(t)\}_{t\geq 0}\) and \(0\in \rho (A)\), there exists a constant \(M_{E}\) such that

$$ \bigl\Vert E_{\alpha} \bigl(-t^{\alpha }A \bigr)x \bigr\Vert _{\beta}\leq M_{E} t^{- \alpha \beta} \Vert x \Vert _{X} \quad \textit{and}\quad \bigl\Vert E_{\alpha , \alpha} \bigl(-t^{\alpha }A \bigr)x \bigr\Vert _{\beta}\leq M_{E} t^{-\alpha \beta} \Vert x \Vert _{X} $$

for all \(t> 0\).

Lemma 2.8

([25])

The operators \(E_{\alpha ,\alpha}(-t^{\alpha }A)\) and \(E_{\alpha}(-t^{\alpha }A)\) are strongly continuous, which means that for all \(x\in X\) and \(s,t>0\), we have that

$$ \bigl\Vert E_{\alpha ,\alpha} \bigl(-t^{\alpha }A \bigr)x-E_{\alpha ,\alpha} \bigl(-s^{\alpha }A \bigr)x \bigr\Vert _{X}\to 0 \quad \textit{and}\quad \bigl\Vert E_{\alpha} \bigl(-t^{\alpha }A \bigr)x-E_{ \alpha} \bigl(-s^{\alpha }A \bigr)x \bigr\Vert _{X}\to 0 $$

when \(s\to t\).

Proposition 2.9

([26])

Let \(0<\alpha <1\), \(t>0\). There are two asymptotic representations set up for \(E_{\alpha}(-t^{\alpha})\):

$$ E_{\alpha} \bigl(-t^{\alpha} \bigr)\sim \textstyle\begin{cases} E_{\alpha}^{0} (-t^{\alpha} ):=\exp (- \frac{t^{\alpha}}{\Gamma (1+\alpha )} ),& t\to 0; \\ E_{\alpha}^{\infty} (-t^{\alpha} ):= \frac{t^{-\alpha}}{\Gamma (1-\alpha )}= \frac{\sin (\alpha \pi )}{\pi} \frac{\Gamma (\alpha )}{t^{\alpha}},& t\to \infty . \end{cases} $$

3 \((\omega ,c)\)-periodic mild solutions

In this section we prove the main result of this article. Under suitable conditions, we show the existence and uniqueness of \((\omega ,c)\)-periodic mild solutions for (1.1).

Let us consider the following Cauchy problem

$$ \textstyle\begin{cases} \mathbb{D}_{t}^{\alpha}u(t)+Au(t)=f(t,u(t))+(Ku)(t), & t>t_{0}, \\ u(t_{0})=u_{0}, & t_{0}\in \mathbb{R}, u_{0}\in X, \end{cases} $$
(3.1)

where the \(\mathbb{D}_{t}^{\alpha}\) denotes the fractional Caputo derivative, \(0<\alpha <1\), \(-A:D(-A)\subset X\to X\) generates an analytic semigroup \(S(t)\) in a Banach space X, and f, g are continuous functions from \(\mathbb{R}\times X\) to X and \((Ku)(t):=\int _{-\infty}^{t} k(t-s)g(s,u(s))\,ds\). Here, k is a continuous function from \(\mathbb{R}\mathbbm{^{+}}\) to \(\mathbb{R}\).

We assume the following:

  1. (H1)

    A is an infinitesimal generator of an analytic semigroup \(\{S(t)\}_{t\geq 0}\) such that \(0\in \rho (A)\) and

    $$ \bigl\Vert S (t) \bigr\Vert _{X} \leq Ce^{-\sigma t} \quad \text{for } t \geq 0, $$

    where σ and C are positive constants.

  2. (H2)

    \(|k(t)|\leq C_{k} e^{-\eta t}\) for some positive constants \(C_{k}\), η.

  3. (H3)

    \(f\in C(\mathbb{R}\times X_{\beta},X_{\beta})\) and there exists \((\omega , c)\in \mathbb{R}^{+}\times (\mathbb{C}\setminus \{0\})\) such that \(f(t+\omega ,cx)=cf(t,x)\) for all \(t\in \mathbb{R}\) and all \(x\in X_{\beta}\). Also, there exists a positive constant \(L_{f}\) such that

    $$ \bigl\Vert f(t,u)-f(t,v) \bigr\Vert _{X} \leq L_{f} \Vert u-v \Vert _{\beta}, \quad t\in \mathbb{R}, u,v\in X_{\beta}. $$
  4. (H4)

    \(g\in C(\mathbb{R}\times X_{\beta},X_{\beta})\) and \(g(t+\omega ,cx)=cg(t,x)\) (where ω and c are the same as given in (H3)) for all \(t\in \mathbb{R}\) and all \(x\in X_{\beta}\). Also, there exists a positive constant \(L_{g}\) such that

    $$ \bigl\Vert g(t,u)-g(t,v) \bigr\Vert _{X} \leq L_{g} \Vert u-v \Vert _{\beta},\quad t\in \mathbb{R}, u,v\in X_{\beta}. $$

The next definition is similar to [16, Definition 3.1] and [29, Definition 3.1].

Definition 3.1

A mild solution of (3.1) is a continuous function u from \(\mathbb{R}\) to X that satisfies the following integral equation:

$$ u(t)=E_{\alpha} \bigl(-(t-t_{0})^{\alpha }A \bigr)u_{0}+ \int _{t_{0}}^{t} (t-s)^{ \alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr)\,ds. $$
(3.2)

Proposition 3.2

Suppose that (H1) holds. If u is a mild solution of (3.1), then

$$ \lim_{t_{0}\to -\infty}u(t)= \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{ \alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr) \,ds. $$
(3.3)

Proof

According to the definition of an improper integral, we have

$$ \begin{aligned} &\lim_{t_{0}\to -\infty} \biggl( \int _{t_{0}}^{t} (t-s)^{\alpha -1} E_{ \alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr)\,ds \biggr) \\ &\quad = \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr) \,ds. \end{aligned} $$
(3.4)

On the other hand, we will prove that \({\lim_{t_{0}\to -\infty}E_{\alpha}(-(t-t_{0})^{\alpha }A)u_{0}=0}\). In fact, by Proposition 2.5 and (H1), we obtain

$$ \begin{aligned} \bigl\Vert E_{\alpha} \bigl(-(t-t_{0})^{\alpha }A \bigr)u_{0} \bigr\Vert _{X}&= \biggl\Vert \int _{0}^{\infty }M_{\alpha}(\theta )S \bigl((t-t_{0})^{\alpha}\theta \bigr)u_{0}\,d\theta \biggr\Vert _{X} \\ &{\leq} \int _{0}^{\infty }M_{\alpha}(\theta ) Ce^{-\sigma (t-t_{0})^{ \alpha}\theta } \Vert u_{0} \Vert _{X}\,d\theta \\ &{\leq} C \Vert u_{0} \Vert _{X} E_{\alpha } \bigl(- \bigl(\sigma ^{1/\alpha}(t-t_{0}) \bigr)^{ \alpha} \bigr). \end{aligned} $$

Now, by Proposition 2.9, we obtain

$$ \begin{aligned} \bigl\Vert E_{\alpha} \bigl(-(t-t_{0})^{\alpha }A \bigr)u_{0} \bigr\Vert _{X}&{\leq} C \Vert u_{0} \Vert _{X} \biggl(\frac{\sin (\alpha \pi )}{\pi}\cdot \frac{\Gamma (\alpha )}{\sigma (t-t_{0})^{\alpha}} \biggr) \xrightarrow[t_{0}\to -\infty ]{} 0, \end{aligned} $$

which shows that \({\lim_{t_{0}\to -\infty}E_{\alpha}(-(t-t_{0})^{\alpha }A)u_{0}=0}\). Using this fact, together with (3.2) and (3.4), we obtain the desired result. □

The previous proposition motivates the following definition.

Definition 3.3

A mild solution of (1.1) is a continuous function u from \(\mathbb{R}\) to X that satisfies the following integral equation:

$$ u(t)= \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr) \,ds, $$
(3.5)

provided that (H1) holds.

The next results are crucial for the proof of our main result.

Lemma 3.4

If (H3) and (H4) are satisfied and \(u \in P_{\omega c}(\mathbb{R},X_{\beta})\), then \(f_{u}=f(\cdot ,u(\cdot ))\), \(g_{u}=g(\cdot ,u(\cdot ))\) lies in \(P_{\omega c}(\mathbb{R},X_{\beta})\).

Proof

Let \(t\in \mathbb{R}\). Then,

$$ f_{u}(t+\omega ) =f \bigl(t+\omega ,u(t+\omega ) \bigr)=f \bigl(t+ \omega ,cu(t) \bigr) =cf \bigl(t,u(t) \bigr)=cf_{u}(t). $$

By [6, Theorem 2.11] we have that \(f_{u}\in P_{\omega c}(\mathbb{R},X_{\beta})\). Analogously, we can prove the claim for \(g_{u}\). □

Lemma 3.5

Suppose that (H2)(H4) are satisfied. If \(u \in P_{\omega c}(\mathbb{R},X_{\beta})\), then

$$ h(\cdot ):=f \bigl(\cdot ,u(\cdot ) \bigr)+(Ku) (\cdot ) \in P_{\omega c}( \mathbb{R},X_{\beta}). $$
(3.6)

Proof

First, we will show that \(h\in C(\mathbb{R},X_{\beta})\). In order to prove that h is continuous for each \(t\in \mathbb{R}\), we claim that \({\lim_{\rho \to 0^{+}}}\|h(t+\rho )-h(t)\|_{\beta}=0\). Indeed, let \(\rho >0\). Then,

$$ \begin{aligned} \bigl\Vert h(t+\rho )-h(t) \bigr\Vert _{\beta}={}& \bigl\Vert f \bigl(t+\rho ,u(t+\rho ) \bigr)+(Ku) (t+ \rho )-f \bigl(t,u(t) \bigr)-(Ku) (t) \bigr\Vert _{\beta} \\ \leq{}& \bigl\Vert f \bigl(t+\rho ,u(t+\rho ) \bigr)-f \bigl(t,u(t) \bigr) \bigr\Vert _{\beta} \\ &{} + \underbrace{ \int _{t}^{t+\rho} \bigl\Vert k(t+\rho -s)g \bigl(s,u(s) \bigr) \bigr\Vert _{\beta }\,ds}_{I} \\ & {}+ \underbrace{ \int _{-\infty}^{t} \bigl\Vert \bigl( k(t+\rho -s)-k(t-s) \bigr)g \bigl(s,u(s) \bigr) ) \bigr\Vert _{\beta } \,ds}_{II}. \end{aligned} $$

Note that by (H3), we have \(\Vert f(t+\rho ,u(t+\rho ))-f(t,u(t)) \Vert _{\beta} \xrightarrow[\rho \to 0^{+}]{}0\). Now, we estimate I and II separately. By (H2), (H4), and Lemma 3.4, we have

$$ \begin{aligned} I&= \int _{t}^{t+\rho} \bigl\Vert k(t+\rho -s)g \bigl(s,u(s) \bigr) \bigr\Vert _{\beta }\,ds \\ &\leq C_{k} \Vert g_{u} \Vert _{\omega c}e^{-\eta (t+\rho )} \int _{t}^{t+\rho} e^{s (\frac{\ln \vert c \vert +\eta \omega}{\omega} )}\,ds \\ &\leq C_{k} \Vert g_{u} \Vert _{\omega c} \biggl( \frac{\omega}{\ln \vert c \vert +\eta \omega} \biggr) \bigl( e^{(t+\rho ) \frac{\ln \vert c \vert }{\omega}}- e^{t\frac{\ln \vert c \vert }{\omega}-\rho \eta} \bigr) \xrightarrow[\rho \to 0^{+}]{} 0. \end{aligned} $$

On the other hand, by (H4) and Lemma 3.4, we obtain

$$ \begin{aligned} II&= \int _{-\infty}^{t} \bigl\Vert \bigl( k(t+\rho -s)-k(t-s) \bigr)g \bigl(s,u(s) \bigr) ) \bigr\Vert _{\beta }\,ds \\ &{\leq} \Vert g_{u} \Vert _{\omega c} \int _{-\infty}^{t} \bigl\vert k(t+ \rho -s)e^{s\frac{\ln \vert c \vert }{\omega}}-k(t-s)e^{s\frac{\ln \vert c \vert }{\omega}} \bigr\vert \,ds. \end{aligned} $$

Since \(k\in C(\mathbb{R}^{+},\mathbb{R})\) and \(s< t+\rho \) for \(\rho >0\), we have that

$$ s\mapsto k(t+\rho -s)e^{s\frac{\ln|c|}{\omega}}:(-\infty ,t+\rho )\to \mathbb{R} $$
(3.7)

is continuous. In particular,

$$ \bigl\vert k(t+\rho -s)e^{s\frac{\ln \vert c \vert }{\omega}}-k({t}-s)e^{s \frac{\ln \vert c \vert }{\omega}} \bigr\vert \xrightarrow[\rho \to 0^{+}]{}0. $$

Moreover, by (H2)

$$ \begin{aligned} \bigl\vert k(t+\rho -s)e^{s\frac{\ln \vert c \vert }{\omega}}-k(t-s)e^{s \frac{\ln \vert c \vert }{\omega}} \bigr\vert &\leq C_{k} \bigl( e^{-\eta (t+\rho )}+ e^{-\eta t} \bigr)e^{s (\frac{\ln \vert c \vert }{\omega}+\eta )}. \end{aligned} $$

Due to the facts that \(\rho >0\) and \(\eta >0\), we have

$$ e^{-\eta (t+\rho )}< e^{-\eta t}. $$

The above implies that

$$ \begin{aligned} C_{k} \bigl( e^{-\eta (t+\rho )}+ e^{-\eta t} \bigr)e^{s ( \frac{\ln|c|}{\omega}+\eta )}&< 2C_{k} e^{-\eta t}e^{s ( \frac{\ln|c|}{\omega}+\eta )}, \end{aligned} $$

and therefore,

$$ \bigl\vert k(t+\rho -s)e^{s\frac{\ln \vert c \vert }{\omega}}-k(t-s)e^{s \frac{\ln \vert c \vert }{\omega}} \bigr\vert \leq 2C_{k} \bigl( e^{-\eta t} \bigr)e^{s (\frac{\ln \vert c \vert }{\omega}+\eta )}. $$

Also, the function \(s\mapsto 2 C_{k} e^{-\eta t}e^{s ( \frac{\ln|c|+\eta \omega}{\omega} )}\) is integrable in \((-\infty ,t)\), since

$$ \begin{aligned} \int _{-\infty}^{t} 2 C_{k} e^{-\eta t}e^{s ( \frac{\ln \vert c \vert +\eta \omega}{\omega} )}\,ds &=2C_{k} \biggl( \frac{\omega}{\ln \vert c \vert +\eta \omega} \biggr) e^{\frac{t\ln \vert c \vert }{\omega}}< \infty . \end{aligned} $$

Hence, the criterion of comparison of improper integrals guarantees that

$$ s\mapsto \bigl\vert k(t+\rho -s)e^{s\frac{\ln \vert c \vert }{\omega}}-k(t-s)e^{s \frac{\ln \vert c \vert }{\omega}} \bigr\vert $$

is integrable in \((-\infty ,t)\). By virtue of the Dominated Convergence Theorem, it follows that

$$ II \leq \Vert g_{u} \Vert _{\omega c} \int _{-\infty}^{t} \bigl\vert k(t+ \rho -s)e^{s\frac{\ln \vert c \vert }{\omega}}-k(t-s)e^{s\frac{\ln \vert c \vert }{\omega}} \bigr\vert \,ds \xrightarrow[ \rho \to 0^{+}]{}0, $$

obtaining the claim.

Analogously, we can show that \({\lim_{\rho \to 0^{-}}}\|h(t+\rho )-h(t)\|_{\beta}=0\).

Now, we will prove that \(h(t+\omega )=ch(t)\) for all \(t\in \mathbb{R}\). In fact, since \(u\in P_{\omega c}(\mathbb{R}, X)\), by the definition of \((\omega ,c)\)-periodicity, (H3), and (H4), we obtain

$$ \begin{aligned} h(t+\omega )&=f \bigl(t+\omega ,u(t+\omega ) \bigr)+(Ku) (t+\omega ) \\ &=f \bigl(t+\omega ,cu(t) \bigr)+ \int _{-\infty}^{t}k(t-r)g \bigl(r+\omega ,cu(r) \bigr) \,dr \\ &=cf \bigl(t,u(t) \bigr)+ \int _{-\infty}^{t}k(t-r)cg \bigl(r,u(r) \bigr)\,dr=ch(t). \end{aligned} $$

Consequently, \(h\in P_{\omega c}(\mathbb{R},X_{\beta})\). □

Lemma 3.6

Suppose that (H1)(H4) are satisfied. If \(u \in P_{\omega c}(\mathbb{R},X_{\beta})\), then

$$ (\Theta u) (t)= \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr) \,ds $$
(3.8)

lies in \(P_{\omega c}(\mathbb{R},X_{\beta})\).

Proof

Define \(h(s):=f(s,u(s))+(Ku)(s)\) for all \(s\in \mathbb{R}\). According to Lemma 3.5, we have \(h\in P_{\omega c}(\mathbb{R},X_{\beta})\).

First, we will show that \((\Theta u)\in C(\mathbb{R},X_{\beta})\). For this, we claim that \({\lim_{\xi \to 0^{+}}}\|(\Theta u)(t+\xi )-(\Theta u)(t) \|_{\beta}=0\). Indeed, let \(\xi >0\). Then,

$$ \begin{aligned} & \bigl\Vert (\Theta u) (t+\xi )-(\Theta u) (t) \bigr\Vert _{\beta} \\ &\quad =\bigg\| \int _{-\infty}^{t+\xi}(t+\xi -s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t+\xi -s)^{\alpha }A \bigr)h(s)\,ds \\ &\qquad {} - \int _{-\infty}^{t} ({t}-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A \bigr)h(s)\,ds\bigg\| _{\beta} \\ &\quad \leq \underbrace{ \int _{-\infty}^{t} \bigl\Vert (t+\xi -s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t+\xi -s)^{\alpha }A \bigr)h(s)- ({t}-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr)h(s) \bigr\Vert _{\beta }\,ds}_{I} \\ &\qquad {} + \underbrace{ \int _{{t}}^{t+\xi} (t+\xi -s)^{\alpha -1} \bigl\Vert E_{\alpha ,\alpha} \bigl(-(t+\xi -s)^{\alpha }A \bigr)h(s) \bigr\Vert _{\beta }\,ds}_{II}. \end{aligned} $$

We will estimate I and II. Indeed, for \(s\in (-\infty ,t)\), by Theorem 2.7 and Lemma 3.5, we have

$$\begin{aligned}& \bigl\Vert (t+\xi -s)^{\alpha -1} E_{\alpha ,\alpha}\bigl(-(t+ \xi -s)^{\alpha }A\bigr)h(s)- ({t}-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A\bigr)h(s) \bigr\Vert _{\beta} \\& \quad \leq \bigl\Vert (t+\xi -s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t+ \xi -s)^{ \alpha }A \bigr)h(s)-(t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t+\xi -s)^{ \alpha }A \bigr)h(s) \bigr\Vert _{\beta} \\& \qquad {} + \bigl\Vert (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t+\xi -s)^{ \alpha }A \bigr)h(s)- (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr)h(s) \bigr\Vert _{\beta} \\& \quad \leq \biggl( \frac{M_{E} C_{\beta } \Vert h \Vert _{\omega c}e^{s\frac{\ln \vert c \vert }{\omega}}}{(t+\xi -s)^{\alpha \beta}} \biggr) \biggl\vert \biggl( \frac{1}{t+\xi -s} \biggr)^{1-\alpha}- \biggl( \frac{1}{t-s} \biggr)^{1-\alpha} \biggr\vert \\& \qquad {} +(t-s)^{\alpha -1} \bigl\Vert E_{\alpha ,\alpha} \bigl(-(t+\xi -s)^{ \alpha }A \bigr)h(s)- E_{\alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr)h(s) \bigr\Vert _{ \beta}\xrightarrow[\xi \to 0^{+} ]{}0. \end{aligned}$$

Therefore,

$$ \big\| (t+\xi -s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t+\xi -s)^{ \alpha }A \bigr)h(s)- ({t}-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A \bigr)h(s)\big\| _{\beta}\xrightarrow[\xi \to 0^{+}]{}0. $$

Again, by Theorem 2.7 and Lemma 3.5, we obtain

$$\begin{aligned} & \big\| ({t}+\xi -s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t+\xi -s)^{\alpha }A \bigr)h(s)-({t}-s)^{ \alpha -1} E_{\alpha , \alpha} \bigl(-(t-s)^{\alpha }A \bigr)h(s)\big\| _{\beta } \\ &\quad \leq \big\| ({t}+\xi -s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t+\xi -s)^{ \alpha }A \bigr)h(s) \big\Vert _{\beta}+ \big\Vert ({t}-s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t-s)^{ \alpha }A \bigr)h(s) \big\| _{\beta} \\ &\quad \leq M_{E} C_{\beta} \Vert h \Vert _{\omega c} \biggl( \frac{e^{s\frac{\ln \vert c \vert }{\omega}}}{(t+\xi -s)^{1-\alpha +\alpha \beta}}+ \frac{e^{s\frac{\ln \vert c \vert }{\omega}}}{(t-s)^{1-\alpha +\alpha \beta}} \biggr),\quad s\in (-\infty ,t). \end{aligned}$$

Due to \(\xi >0\) and \(0<1-\alpha +\alpha \beta <1\), we have

$$ M_{E} C_{\beta} \Vert h \Vert _{\omega c} \biggl( \frac{e^{s\frac{\ln \vert c \vert }{\omega}}}{(t+\xi -s)^{1-\alpha +\alpha \beta}}+ \frac{e^{s\frac{\ln \vert c \vert }{\omega}}}{(t-s)^{1-\alpha +\alpha \beta}} \biggr)\leq M_{E} C_{\beta} \Vert h \Vert _{\omega c} \biggl( \frac{2e^{s\frac{\ln \vert c \vert }{\omega}}}{(t-s)^{1-\alpha +\alpha \beta}} \biggr), $$

and therefore,

$$\begin{aligned} & \big\| ({t+\xi}-s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t+\xi -s)^{ \alpha }A \bigr)h(s)-({t}-s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t-s)^{ \alpha }A \bigr)h(s)\big\| _{\beta} \\ &\quad \leq 2M_{E} C_{\beta} \Vert h \Vert _{\omega c} \biggl( \frac{e^{s\frac{\ln \vert c \vert }{\omega}}}{(t-s)^{1-\alpha +\alpha \beta}} \biggr), \quad s\in (-\infty ,t). \end{aligned}$$

In addition, the function \({s\mapsto 2 M_{E} C_{\beta} \Vert h \Vert _{\omega c} ( \frac{e^{s\frac{\ln |c|}{\omega}}}{(t-s)^{1-\alpha +\alpha \beta}} )}\) is integrable in \((-\infty ,t)\), since

$$ \int _{-\infty}^{t} 2 M_{E} C_{\beta} \Vert h \Vert _{\omega c} \biggl( \frac{e^{s\frac{\ln \vert c \vert }{\omega}}}{(t-s)^{1-\alpha +\alpha \beta}} \biggr)\,ds=2 M_{E} C_{\beta} \Vert h \Vert _{\omega c}e^{t \frac{\ln \vert c \vert }{\omega}} \biggl(\frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1- \beta )}\Gamma \bigl(\alpha (1-\beta ) \bigr). $$

Hence, the criterion of comparison of improper integrals guarantees that

$$ s\mapsto \big\| ({t+\xi}-s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t+\xi -s)^{ \alpha }A \bigr)h(s)-({t}-s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t-s)^{ \alpha }A \bigr)h(s)\big\| _{\beta} $$

is integrable in \((-\infty ,t)\). Thus, by the Dominated Convergence Theorem, it follows that

$$\begin{aligned} I =& \int _{-\infty}^{t} \big\| (t+\xi -s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t+\xi -s)^{\alpha }A \bigr)h(s) \\ &{}- ({t}-s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t-s)^{\alpha }A \bigr)h(s) \big\| _{\beta }\,ds \\ {\xrightarrow[\xi \to 0^{+}]{}}&0. \end{aligned}$$

On the other hand, using similar arguments to those in the estimates of I, we obtain

$$ \begin{aligned} II&= \int _{{t}}^{t+\xi} (t+\xi -s)^{\alpha -1} \bigl\Vert E_{\alpha , \alpha} \bigl(-(t+\xi -s)^{\alpha }A \bigr)h(s) \bigr\Vert _{\beta }\,ds \\ &\leq M_{E} C_{\beta } \Vert h \Vert _{\omega c} \int _{{t}}^{t+\xi} (t+\xi -s)^{ \alpha -\alpha \beta -1}e^{s\frac{\ln \vert c \vert }{\omega}} \,ds \\ &\leq M_{E} C_{\beta} \Vert h \Vert _{\omega c}e^{(t+\xi ) \frac{\ln \vert c \vert }{\omega}} \int _{0}^{\xi} r^{\alpha -\alpha \beta -1}e^{-r \frac{\ln \vert c \vert }{\omega}}\,dr. \end{aligned} $$

Note that, using a change of variable and the definition of the incomplete Gamma function γ, we have

$$\begin{aligned} \int _{0}^{\xi} r^{\alpha -\alpha \beta -1}e^{-r \frac{\ln \vert c \vert }{\omega}}\,dr &= \int _{0}^{\frac{\ln \vert c \vert }{\omega}\xi} \biggl(s\frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1-\beta )-1}e^{-s} \frac{\omega}{\ln \vert c \vert }\,ds \\ &= \biggl(\frac{\ln \vert c \vert }{\omega} \biggr)^{\alpha (\beta -1)}\gamma \biggl(\alpha (1-\beta ), \frac{\ln \vert c \vert }{\omega}\xi \biggr). \end{aligned}$$

Thus,

$$\begin{aligned} II &\leq M_{E} C_{\beta} \Vert h \Vert _{\omega c}e^{(t+\xi ) \frac{\ln \vert c \vert }{\omega}} \biggl(\frac{\ln \vert c \vert }{\omega} \biggr)^{\alpha ( \beta -1)} \gamma \biggl(\alpha (1-\beta ), \frac{\ln \vert c \vert }{\omega}\xi \biggr) {\xrightarrow[ \xi \to 0^{+}]{}}0. \end{aligned}$$

Therefore, \({\|(\Theta u)(t+\xi )-(\Theta u)(t)\|_{\beta}\to 0}\) when \(\xi \to 0^{+}\), proving the claim. In a similar way, we can show that \({\lim_{\xi \to 0^{-}}}\|(\Theta u)(t+\xi )-(\Theta u)(t) \|_{\beta}=0\).

Now, we will show that \((\Theta u)(t+\omega )=c(\Theta u)(t)\) for all \(t\in \mathbb{R}\). Indeed, since \(h\in P_{\omega c}(\mathbb{R},X_{\beta})\), by the definition of \((\omega ,c)\)-periodicity, we have

$$ \begin{aligned} (\Theta u) (t+\omega ) &= \int _{-\infty}^{t} (t-r)^{\alpha -1} E_{ \alpha , \alpha} \bigl(-(t-r)^{\alpha }A \bigr)h(r+\omega )\,dr \\ &=c \int _{-\infty}^{t} (t-r)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t-r)^{ \alpha }A \bigr)h(r)\,dr=c(\Theta u) (t). \end{aligned} $$

Hence, we deduce that \((\Theta u)\in P_{\omega c}(\mathbb{R},X_{\beta})\). □

Theorem 3.7

Suppose that (H1)(H4) are satisfied and \(1<|c|<e^{\eta \omega}\). If \(\delta <1\) where

$$ \delta :=M_{E} \biggl(\frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1- \beta )}\Gamma \bigl(\alpha (1-\beta ) \bigr) \biggl( L_{f} + \frac{C_{k}L_{g} \omega}{\eta \omega +\ln \vert c \vert } \biggr), $$
(3.9)

then (1.1) has a unique mild solution \(u\in P_{\omega c}(\mathbb{R},X_{\beta})\).

Proof

Let us define the operator \(\Theta :P_{\omega c}(\mathbb{R},X_{\beta})\to P_{\omega c}( \mathbb{R},X_{\beta})\) given by

$$ (\Theta u) (t)= \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr) \,ds. $$

According to Lemma 3.6, we have \(\Theta u\in P_{\omega c}(\mathbb{R},X_{\beta})\) for all \(u\in P_{\omega c}(\mathbb{R},X_{\beta})\).

Let us see that Θ is a contraction. In fact, let \(u,v\in P_{\omega c}(\mathbb{R},X_{\beta})\). By (H3) and Theorem 2.7, we have

$$\begin{aligned} & \biggl\Vert \vert c \vert ^{\wedge}(-t) \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{ \alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)-f \bigl(s,v(s) \bigr) \bigr)\,ds \biggr\Vert _{\beta } \\ & \quad \leq M_{E} L_{f} \Vert u-v \Vert _{\omega c} \int _{-\infty}^{t} (t-s)^{ \alpha (1-\beta )-1} \vert c \vert ^{\wedge} \bigl(-(t-s) \bigr)\,ds \\ &\quad \leq M_{E} L_{f} \biggl(\frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1- \beta )}\Gamma \bigl(\alpha (1-\beta ) \bigr) \Vert u-v \Vert _{\omega c}. \end{aligned}$$
(3.10)

On the other hand, by (H2) and (H4), we obtain

$$ \begin{aligned} \bigl\Vert (Ku) (s)-(Kv) (s) \bigr\Vert _{X} &\leq \int _{-\infty}^{s} \bigl\vert k(s-r) \bigr\vert \bigl\Vert g \bigl(r,u(r) \bigr)-g \bigl(r,v(r) \bigr) \bigr\Vert _{X} \,dr \\ &\leq C_{k}L_{g} \Vert u-v \Vert _{\omega c}e^{-\eta s} \biggl( \int _{-\infty}^{s} e^{ (\eta +\frac{\ln \vert c \vert }{\omega} ) r}\,dr \biggr) \\ &\leq C_{k}L_{g} \biggl(\frac{\omega}{\eta \omega +\ln \vert c \vert } \biggr) \Vert u-v \Vert _{\omega c} \vert c \vert ^{\wedge}(s) . \end{aligned} $$

Using this fact together with Theorem 2.7, we obtain

$$\begin{aligned} & { \biggl\Vert \vert c \vert ^{\wedge}(-t) \int _{-\infty}^{t} (t-s)^{ \alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl((Ku) (s)-(Kv) (s) \bigr)\,ds \biggr\Vert _{\beta}} \\ &\quad \leq M_{E} \int _{-\infty}^{t} \vert c \vert ^{\wedge}(-t) (t-s)^{\alpha -1- \alpha \beta} \bigl\Vert (Ku) (s)-(Kv) (s) \bigr\Vert _{X} \,ds \\ &\quad \leq M_{E} \int _{-\infty}^{t} \vert c \vert ^{\wedge}(-t) (t-s)^{\alpha -1- \alpha \beta} \biggl(C_{k}L_{g} \biggl( \frac{\omega}{\eta \omega +\ln \vert c \vert } \biggr) \Vert u-v \Vert _{ \omega c} \vert c \vert ^{\wedge}(s) \biggr)\,ds \\ &\quad \leq M_{E} C_{k}L_{g} \biggl( \frac{\omega}{\eta \omega +\ln \vert c \vert } \biggr) \biggl(\frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1-\beta )} \Gamma \bigl(\alpha (1-\beta ) \bigr) \Vert u-v \Vert _{\omega c}. \end{aligned}$$
(3.11)

Now, by (3.10) and (3.11), we have

$$\begin{aligned} & { \bigl\Vert (\Theta u) (t)-(\Theta v) (t) \bigr\Vert _{\omega c}} \\ &\quad \leq \sup_{t\in [0,\omega ]} \biggl( \biggl\Vert \vert c \vert ^{\wedge}(-t) \int _{- \infty}^{t} (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)-f \bigl(s,v(s) \bigr) \bigr)\,ds \biggr\Vert _{\beta} \\ & \qquad {} {} + \biggl\Vert \vert c \vert ^{\wedge}(-t) \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl((Ku) (s)-(Kv) (s) \bigr)\,ds \biggr\Vert _{\beta} \biggr) \\ &\quad \leq \sup_{t\in [0,\omega ]} \biggl( M_{E} L_{f} \biggl( \frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1-\beta )}\Gamma \bigl(\alpha (1- \beta ) \bigr) \Vert u-v \Vert _{\omega c} \\ &\qquad {} {} + M_{E} C_{k}L_{g} \biggl( \frac{\omega}{\eta \omega +\ln \vert c \vert } \biggr) \biggl( \frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1-\beta )}\Gamma \bigl(\alpha (1- \beta ) \bigr) \Vert u-v \Vert _{\omega c} \biggr) \\ &\quad \leq \biggl( M_{E} \biggl(\frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1- \beta )} \Gamma \bigl(\alpha (1-\beta ) \bigr) \biggl( L_{f} + \frac{C_{k}L_{g} \omega}{\eta \omega +\ln \vert c \vert } \biggr) \biggr) \Vert u-v \Vert _{\omega c} \\ &\quad \leq \delta \Vert u-v \Vert _{\omega c}. \end{aligned}$$

Since \(\delta <1\), Θ is a contraction. Therefore, Banach’s Fixed-Point Theorem guarantees the existence of a unique fixed point \(u\in P_{\omega c}(\mathbb{R},X_{\beta})\) of the operator Θ, which satisfies

$$ (\Theta u) (t)=u(t)= \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{\alpha , \alpha} \bigl(-(t-s)^{\alpha }A \bigr) \bigl(f \bigl(s,u(s) \bigr)+(Ku) (s) \bigr) \,ds. $$

This completes the proof of the theorem. □

4 An application

In this section we present an example that fits our framework.

Let \(X=(L^{2}[0,1],\|\cdot \|_{L^{2}})\). Consider the following problem:

$$ \textstyle\begin{cases} \partial ^{\alpha}_{t} w(t,x)+\partial _{x}^{2} w(t,x)=a(t)\cos (b(t)w(t,x))+Kw(t,x), & t\in \mathbb{R},x\in (0,1), \\ w(t,0)=w(t,1)=0, & t\in \mathbb{R}, \end{cases}$$
(4.1)

where \(0<\alpha < 1\), \(\partial _{t}^{\alpha}\) denotes the Caputo fractional derivative with respect to t and

$$ Kw(t,x)= \int _{-\infty}^{t} k(t-s) \bigl(a(s)\sin \bigl( b(s)w(s,x) \bigr) \bigr)\,ds. $$

The functions k and a, b will be specified later.

We define the linear operator −A on X by

$$ \begin{aligned} &D(-A)= \bigl\{ u\in X: u,u'\in X\text{ are absolutely continuous},u''\in X\text{ and } u(0)=u(1)=0 \bigr\} , \\ &-Au(x)=u''(x),\quad \forall x\in (0,1), u\in D(-A). \end{aligned} $$

It is well known that −A is an infinitesimal generator of an analytic semigroup \(\{S(t)\}_{t\geq 0}\) on X (see, for example, [24, Example 4.1.7] with a little modification). In addition, −A has a discrete spectrum, namely, the eigenvalues \(-\lambda _{n}=-n^{2}\), \(n\in \mathbb{N}\). The associated normalized eigenfunctions are given by \(e_{n}(x)=\sqrt{2}\sin (n\pi x)\), \(n\in \mathbb{N}\). Moreover, the semigroup is

$$ S(t)u(x)=\sum_{n=1}^{\infty }e^{-n^{2}\pi ^{2} t} \langle u,e_{n} \rangle _{L^{2}}e_{n}(x). $$

Also, \(\|S(t)\|_{L^{2}}\leq e^{-\pi ^{2} t}\) for \(t\geq 0\). This shows that (H1) holds. This in turn implies that the fractional powers of A can be defined as in Sect. 2. More precisely, since A has a compact resolvent, we have that

$$\begin{aligned} A^{\beta}u=\sum_{n=1}^{\infty}\langle u,e_{n}\rangle _{L^{2}}e_{n} \lambda _{n}^{\beta}=\sum_{n=1}^{\infty} \langle u,e_{n}\rangle _{L^{2}}e_{n} n^{2\beta}, \end{aligned}$$

with domain

$$\begin{aligned} \Biggl\{ u\in X:\sum_{n=1}^{\infty} \bigl\vert \langle u,e_{n}\rangle _{L^{2}} \bigr\vert ^{2} n^{4\beta}< \infty \Biggr\} . \end{aligned}$$

Now, let \(k(t)=e^{-\pi ^{2} t}\). Then, \({|e^{-\pi ^{2} t}|\leq (2/3)e^{-9 t}}\). Thus, (H2) holds with \(C_{k}=\frac{2}{3}\) and \(\eta =9\).

Let \(a\in P_{\omega ,c}(\mathbb{R},X_{\beta})\) and \(b\in P_{\omega ,\frac{1}{c}}(\mathbb{R},X_{\beta})\) with \(1<|c|<e^{9\omega}\).

Let us define \(f(t,x)=a(t)\cos (b(t)x)\) and \(g(t,x)=a(t)\sin (b(t)x)\). Then, the problem (4.1) can be reformulated as (1.1) with A, k, f, and g defined as above.

Next, we will show that (H3) and (H4) hold. Indeed,

$$ \begin{aligned} f(t+\omega ,cx)&=a(t+\omega )\cos \bigl(b(t+\omega )cx \bigr) \\ &=ca(t)\cos \biggl( \frac{1}{c}b(t)cx \biggr) \\ &=ca(t)\cos \bigl(b(t)x \bigr)= cf(t,x). \end{aligned} $$

Since \(a\in P_{\omega c}(\mathbb{R},X_{\beta})\), \(b\in P_{\omega \frac{1}{c}}(\mathbb{R},X_{\beta})\), we have \(f\in C(\mathbb{R}\times X_{\beta}, X_{\beta})\). Also, for \(x, y\in X_{\beta}\), we obtain

$$ \begin{aligned} \bigl\Vert f(t,x)-f(t,y) \bigr\Vert _{L^{2}} &\leq \Vert a \Vert _{L^{2}} \bigl\Vert \cos \bigl(b(t)x \bigr)-\cos \bigl(b(t)y \bigr) \bigr\Vert _{L^{2}} \\ &\leq \Vert a \Vert _{L^{2}} 2 \biggl\Vert \sin \biggl( \frac{b(t)x-b(t)y}{2} \biggr) \biggr\Vert _{L^{2}} \biggl\Vert \sin \biggl(\frac{b(t)x+b(t)y}{2} \biggr) \biggr\Vert _{L^{2}} \\ &\leq \Vert a \Vert _{L^{2}} 2 \biggl\Vert \frac{b(t)x-b(t)y}{2} \biggr\Vert _{L^{2}} \cdot 1 \\ &\leq \Vert a \Vert _{L^{2}} \Vert b \Vert _{L^{2}} \Vert x-y \Vert _{L^{2}} \\ &\leq \Vert a \Vert _{L^{2}} \Vert b \Vert _{L^{2}} C_{\beta } \Vert x-y \Vert _{\beta},\quad \forall t\in \mathbb{R}, x,y\in X_{\beta}, \end{aligned} $$

obtaining \((H3)\). The proof for (H4) is analogous. More precisely,

$$ \bigl\Vert g(t,x)-g(t,y) \bigr\Vert _{L^{2}}\leq \Vert a \Vert _{L^{2}} \Vert b \Vert _{L^{2}} C_{ \beta } \Vert x-y \Vert _{\beta},\quad \forall t\in \mathbb{R}, x,y\in X_{\beta}. $$

From the estimated

$$ \begin{aligned} \bigl\Vert A^{-\beta}x \bigr\Vert _{L^{2}} &\leq \frac{ \Vert x \Vert _{L^{2}}}{\Gamma (\beta )} \int _{0}^{\infty } \biggl(\frac{s}{\pi ^{2}} \biggr)^{\beta -1} e^{-s} \frac{ds}{\pi ^{2}} \\ &\leq \frac{1}{\pi ^{2\beta}} \Vert x \Vert _{L^{2}},\quad x\in X_{\beta}, \end{aligned} $$

we see that the constant \(C_{\beta}\) can be chosen as \({\frac{1}{\pi ^{2\beta}}}\) (see Lemma 2.2).

The constant \(M_{\beta}\) of Theorem 2.3 can be taken as \({\frac{1}{\pi ^{2(1-\beta )}}}\). In fact, note that \(\|S(t) x(\cdot )\|_{L^{2}}\leq e^{-\pi ^{2}t}\|x\|_{L^{2}}\) for \(t\geq 0\) and \(\|AS(t)x(\cdot )\|_{L^{2}}\leq t^{-1}e^{-\pi ^{2}t}\|x\|_{L^{2}}\) for \(t> 0\). Moreover, for \(x\in X_{\beta}\), we have

$$ \begin{aligned} \bigl\Vert A^{\beta}S(t) x \bigr\Vert _{L^{2}} &= \bigl\Vert A^{-(1-\beta )}AS(t) x \bigr\Vert _{L^{2}} \\ &\leq \frac{1}{\Gamma (1-\beta )} \int _{0}^{\infty }s^{-\beta}(t+s)^{-1}e^{- \pi ^{2}(t+s)} \Vert x \Vert _{L^{2}}\,ds \\ &\leq \frac{1}{\pi ^{2(1-\beta )}} t^{-\beta} e^{-\pi ^{2} t} \Vert x \Vert _{L^{2}}. \end{aligned} $$

Finally, the constant \(M_{E}\) of Theorem 2.7 can be taken as \(M_{E}=\frac{1}{\pi ^{2(1-\beta )}} ( \frac{\Gamma (1-\beta )}{\Gamma (\alpha (1-\beta ))} )\). Indeed,

$$ \begin{aligned} \bigl\Vert E_{\alpha ,\alpha} \bigl(-t^{\alpha }A \bigr)x \bigr\Vert _{\beta }&= \biggl\Vert A^{\beta} \int _{0}^{\infty}\alpha \theta M_{\alpha}(\theta )S \bigl( \theta t^{\alpha} \bigr)x\,d\theta \biggr\Vert _{L^{2}} \\ &\leq \int _{0}^{\infty}\alpha \theta M_{\alpha}(\theta ) \bigl\Vert A^{ \beta }S \bigl(\theta t^{\alpha} \bigr)x \bigr\Vert _{L^{2}}\,d\theta \\ &\leq \int _{0}^{\infty}\alpha \theta M_{\alpha}(\theta ) \biggl( \frac{1}{\pi ^{2(1-\beta )}} \bigl(\theta t^{\alpha} \bigr)^{-\beta}e^{-\pi ^{2} \theta t^{\alpha}} \Vert x \Vert _{L^{2}} \biggr)\,d\theta \\ &\leq \frac{\alpha}{\pi ^{2(1-\beta )}} \biggl( \int _{0}^{\infty }M_{ \alpha}(\theta )\theta ^{1-\beta}\,d\theta \biggr)t^{-\alpha \beta} \Vert x \Vert _{L^{2}}. \end{aligned} $$

Due to the Proposition 2.5, it is fulfilled that \({\int _{0}^{\infty}} \theta ^{n} M_{\alpha}(\theta )\,d\theta =\frac{\Gamma (n+1)}{\Gamma (\alpha n+1)}\), for \(n\geq -1\) and by the definition of the Gamma function one has that \(\Gamma (\theta +1)=\theta{\Gamma (\theta )}\).

Then,

$$ \begin{aligned} \bigl\Vert E_{\alpha ,\alpha} \bigl(-t^{\alpha }A \bigr)x \bigr\Vert _{\beta }&\leq \frac{\alpha}{\pi ^{2(1-\beta )}} \biggl( \frac{\Gamma (1-\beta +1)}{\Gamma (\alpha (1-\beta )+1)} \biggr)t^{- \alpha \beta} \Vert x \Vert _{L^{2}} \\ &\leq \frac{1}{\pi ^{2(1-\beta )}} \biggl( \frac{\Gamma (1-\beta )}{\Gamma (\alpha (1-\beta ))} \biggr)t^{- \alpha \beta} \Vert x \Vert _{L^{2}}. \end{aligned} $$

Consequently \(M_{E}=\frac{1}{\pi ^{2(1-\beta )}} ( \frac{\Gamma (1-\beta )}{\Gamma (\alpha (1-\beta ))} )\).

Now, by (3.9), we have

$$ \delta =M_{E} \biggl(\frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1-\beta )} \Gamma \bigl(\alpha (1-\beta ) \bigr) \biggl( L_{f} + \frac{C_{k}L_{g} \omega}{\eta \omega +\ln \vert c \vert } \biggr), $$

and therefore,

$$\begin{aligned} \delta =& \biggl( \frac{\Gamma (1-\beta )}{\pi ^{2(1-\beta )}\Gamma (\alpha (1-\beta ))} \biggr) \\ &{}\times \biggl( \frac{\omega}{\ln \vert c \vert } \biggr)^{\alpha (1-\beta )} \Gamma \bigl(\alpha (1-\beta ) \bigr) \cdot \Vert a \Vert _{L^{2}} \Vert b \Vert _{L^{2}}\cdot \frac{1}{\pi ^{2\beta}} \biggl( 1 + \frac{(2/3) \omega}{9\omega +\ln \vert c \vert } \biggr) \\ =&\frac{\Gamma (1-\beta )}{\pi ^{2}}\cdot \Vert a \Vert _{L^{2}} \Vert b \Vert _{L^{2}} \biggl( \frac{\omega ^{\alpha (1-\beta )}}{(\ln \vert c \vert )^{\alpha (1-\beta )}} \biggr) \biggl(1+\frac{(2/3) \omega}{9\omega +\ln \vert c \vert } \biggr). \end{aligned}$$

According to Theorem 3.7, the fractional problem (4.1) has a unique \((\omega ,c)\)-periodic mild solution whenever \(\delta <1\). Moreover, the solution is given by

$$\begin{aligned} u(t) =& \int _{-\infty}^{t} (t-s)^{\alpha -1} E_{\alpha ,\alpha} \bigl(-(t-s)^{ \alpha }A \bigr) \\ &{}\times \biggl(a(s)\cos \bigl(b(s)u(s) \bigr)+ \int _{-\infty}^{s} e^{\pi ^{2}(s-r)}a(s) \sin \bigl(b(s)u(s) \bigr)\,dr \biggr)\,ds. \end{aligned}$$

References

  1. Abadias, L., Alvarez, E., Grau, R.: \((\omega ,c)\)-periodic mild solutions to non-autonomous abstract differential equations. Mathematics 9(5), 474 (2021). https://doi.org/10.3390/math9050474

    Article  Google Scholar 

  2. Alvarez, E., Castillo, S., Pinto, M.: \((\omega ,c)\)-pseudo periodic functions, first order Cauchy problem and Lasota–Wazewska model with ergodic and unbounded oscillating production of red cells. Bound. Value Probl. 2019, 106 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alvarez, E., Castillo, S., Pinto, M.: \((\omega ,c)\)-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells. Math. Methods Appl. Sci. 43(1), 305–319 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alvarez, E., Díaz, S., Grau, R.: \((\omega ,Q)\)-periodic mild solutions for a class of semilinear abstract differential equations and applications to Hopfield-type neural network model. Z. Angew. Math. Phys. 74, 60 (2023). https://doi.org/10.1007/s00033-023-01943-9

    Article  MathSciNet  MATH  Google Scholar 

  5. Alvarez, E., Díaz, S., Lizama, C.: Existence of \((N,\lambda )\)-periodic solutions for abstract fractional difference equations. Mediterr. J. Math. 19, 47 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alvarez, E., Gómez, A., Pinto, M.: \((\omega ,c)\)-periodic functions and mild solutions to abstract fractional integro-differential equations. Electron. J. Qual. Theory Differ. Equ. 16, 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Amster, P., Déboli, A., Pinto, M.: Hartman and Nirenberg type results for systems of delay differential equations under \((\omega ,Q)\)-periodic conditions. Discrete Contin. Dyn. Syst., Ser. B 27(6), 3019–3037 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, J., Huang, Z., Yang, Q.: Optimal mild solutions and weighted pseudo-almost periodic classical solutions of fractional integro-differential equations. Nonlinear Anal., Theory Methods Appl. 74, 224–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carvalho Neto, P.M.D.: Fractional differential equations: a novel study of local and global solutions in Banach spaces. Doctoral dissertation, Universidade de São Paulo (2013)

  10. Chang, Y.K., N’Guérékata, G.M., Ponce, R.: Bloch-Type Periodic Functions: Theory and Applications to Evolution Equations. World Scientific, Singapore (2022)

    Book  MATH  Google Scholar 

  11. Chang, Y.K., Wei, Y.: Pseudo S-asymptotically Bloch type periodic solutions to fractional integro-differential equations with Stepanov-like force terms. Z. Angew. Math. Phys. 73, 77 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, Y.K., Zhao, J.: Some new asymptotic properties on solutions to fractional evolution equations in Banach spaces. Appl. Anal. (2022). https://doi.org/10.1080/00036811.2021.1969016

    Article  Google Scholar 

  13. Fečkan, M., Li, M., Wang, J.R.: \((\omega ,c)\)-periodic for impulsive differential systems. Commun. Math. Anal. 21, 35–64 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Fečkan, M., Liu, K., O’Regan, D., Wang, J.R.: \((\omega ,c)\)-periodic solutions for time-varying non-instantaneous impulsive differential systems. Appl. Anal. 101(15), 5469–5489 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fečkan, M., Liu, K., Wang, J.R.: \((\omega ,T)\)-periodic solutions of impulsive evolution equations. Evol. Equ. Control Theory 11(2), 415–437 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fečkan, M., Wang, J.R., Zhou, Y.: On the new concept of solutions and existence results for impulsive fractional evolution equations. Dyn. Partial Differ. Equ. 8(4), 345–361 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Federson, M., Grau, R., Mesquita, C.: Affine-periodic solutions for generalized ODEs and other equations. Topol. Methods Nonlinear Anal. 60(2), 725–760 (2022). https://doi.org/10.12775/TMNA.2022.027

    Article  MathSciNet  MATH  Google Scholar 

  18. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, New York (2020)

    Book  MATH  Google Scholar 

  19. Gu, C.Y., Li, H.X.: Piecewise weighted pseudo almost periodicity of impulsive integro-differential equations with fractional order \(1<\alpha <2\). Banach J. Math. Anal. 14, 487–502 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khalladi, M.T., Kostic, M., Pinto, M., Rahmani, A., Velinov, D.: On semi-c-periodic functions. J. Math. 2021, Article ID 6620625 (2021)

    Article  MathSciNet  Google Scholar 

  21. Kostic, M.: Generalized c-almost periodic type functions in \(\mathbb{R}^{n}\). Arch. Math. 4, 221–253 (2021)

    MATH  Google Scholar 

  22. Larrouy, J., N’Guérékata, G.M.: \((\omega ,c)\)-periodic and asymptotically \((\omega ,c)\)-periodic mild solutions to fractional Cauchy problems. Appl. Anal. (2021). https://doi.org/10.1080/00036811.2021.1967332

    Article  Google Scholar 

  23. Liang, J., Mu, Y., Xiao, T.-J.: Impulsive differential equations involving general conformable fractional derivative in Banach spaces. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 116(3), 114 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Springer, Berlin (2012)

    MATH  Google Scholar 

  25. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  MATH  Google Scholar 

  26. Mainardi, F.: On some properties of the Mittag-Leffler function \(E_{\alpha}(-t^{\alpha})\), completely monotone for \(t>0\) with \(0<\alpha <1\). Discrete Contin. Dyn. Syst., Ser. B 19(7), 2267–2278 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Mophou, G., N’Guérékata, G.M.: An existence result of \((\omega ,c)\)-periodic mild solutions to some fractional differential equation. Nonlinear Stud. 27(1), 167–175 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, vol. 44. Springer, Berlin (2012)

    MATH  Google Scholar 

  29. Xia, Z.: Pseudo almost periodicity of fractional integro-differential equations with impulsive effects in Banach spaces. Czechoslov. Math. J. 67(142), 123–141 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.A. and R.G. had the main idea, R.M. worked in all computations and E.A., R:G. and R.M. wrote the main manuscript.

Corresponding author

Correspondence to E. Alvarez.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, E., Grau, R. & Meriño, R. \((\omega ,c)\)-periodic solutions for a class of fractional integrodifferential equations. Bound Value Probl 2023, 40 (2023). https://doi.org/10.1186/s13661-023-01726-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01726-1

MSC

Keywords