- Research
- Open Access
- Published:
A higher-order extension of Atangana–Baleanu fractional operators with respect to another function and a Gronwall-type inequality
Boundary Value Problems volume 2023, Article number: 49 (2023)
Abstract
This paper aims to extend the Caputo–Atangana–Baleanu (\(ABC\)) and Riemann–Atangana–Baleanu (\(ABR\)) fractional derivatives with respect to another function, from fractional order \(\mu \in (0,1]\) to an arbitrary order \(\mu \in (n,n+1]\), \(n=0,1,2,\dots \). Also, their corresponding Atangana–Baleanu (AB) fractional integral is extended. Additionally, several properties of such definitions are proved. Moreover, the generalization of Gronwall’s inequality in the framework of the AB fractional integral with respect to another function is introduced. Furthermore, Picard’s iterative method is employed to discuss the existence and uniqueness of the solution for a higher-order initial fractional differential equation involving an \(ABC\) operator with respect to another function. Finally, examples are given to illustrate the effectiveness of the main findings. The idea of this work may attract many researchers in the future to study some inequalities and fractional differential equations that are related to AB fractional calculus with respect to another function.
1 Introduction
In the last three decades, fractional calculus has been attracting the interest of many authors in several fields for the sake of a better description of chaotic complex systems, for example, dynamic systems, rheology, electrical networks, blood-flow phenomena, biophysics, and qualitative theories; see for more details [1, 14, 19, 22, 26–29]. In order to realize and describe the real phenomena in the fields of science and engineering, some researchers have developed fractional calculus to singular and nonsingular kernels. Caputo and Fabrizio [13], investigated a new definition of a fractional operator with an exponential kernel. Atangana and Baleanu [11], introduced a new interesting definition of a fractional operator with a Mittag–Leffler kernel that is called the Atangana–Baleanu \((AB)\) fractional operator. Abdeljawad [2], generalized the AB fractional operator to higher arbitrary order. Then, many researchers studied the qualitative properties and approximate solutions of fractional differential equations involving \(ABC\) fractional operators and Caputo–Fabrizio derivatives, we refer the readers to [4–9, 12, 15, 24, 25]. In particular, the authors of [17] studied a two-step reversible enzymatic reaction Dynamics system via \(ABC\)-fractional derivatives. Khan et al. [18] established open-channel flow of grease as a Maxwell fluid with \(MoS_{2}\) by utilizing the Caputo–Fabrizio fractional model.
Very recently, Fernandez and Baleanu [13], presented a fractional derivative of a function with respect to another function with a Mittag–Leffler kernel, which is in fact considered as a generalized AB fractional operator. Mohammed and Abdeljawad [21], constructed a connection between the AB fractional operator and the Riemann–Liouville fractional integral with respect to another function by formulating the corresponding AB-fractional integral of a function with respect to another function. Then, Kashuri [16], presented a fractional integral operator called the Atangana–Baleanu–Kashuri \((ABK)\) fractional integral.
Motivated by what has been mentioned above, the novelty and contributions of this paper are to extend the \(ABC\) , \(ABR\) fractional derivatives with respect to another increasing positive function ϕ (which are mostly called \(\phi -ABC\) , \(\phi -ABR\) , respectively), and their corresponding AB fractional integrals with respect to another function ϕ ( \(\phi -AB\) ), from order \(\mu \in (0,1]\) to an arbitrary order \(\mu \in (n,n+1]\) . In fact, these provide a more reasonable extension than those of Abdeljawad in [ 21 ]. Indeed, the extension we obtain still shows that the ABR differential operator and AB integral operators are inverses of each other for orders more than 1 (see parts (i) and (ii) of Proposition 3.6 ). Also, several properties and applications of these definitions are investigated. Moreover, a new generalized Gronwall inequality in the framework of the \(\phi -AB\) fractional integrals is introduced. The existence and uniqueness results of a higher-order \(\phi -ABC\) fractional problem under initial boundary conditions are established by Picard’s iterative method.
Our paper is structured as follows: Some interesting preliminaries are provided in Sect. 2. In Sect. 3, the \(\phi -AB\) fractional operator is extended to a higher order and a new generalized Gronwall inequality in the sense of the \(\phi -AB\) fractional integral is investigated, moreover the existence and uniqueness results of \(\phi -ABC\) initial fractional differential equation are established. Then, examples that represent the validity of the main findings are provided in Sect. 4. Finally, we conclude our results in Sect. 5.
2 Preliminaries
In this section, we present some essential preliminaries related to fractional calculus. Let us denote by \(\mathcal{C}^{n}(\mathrm{J},\mathbb{R})\) the Banach space of all the nth continuously differentiable functions ω equipped with usual norm \(\|\omega \|=\sup \{|\omega (\mathrm{u})|: \mathrm{u}\in \mathrm{J}=[ \iota ,\tau ]\}\).
Definition 2.1
([10])
Let \(\phi :[\iota ,\tau ]\rightarrow \mathbb{R}\) be an increasing function \(\forall \mathrm{u}\in [\iota ,\tau ]\). For \(\mu >0\), the μth left-sided ϕ-Riemann–Liouville fractional integral for an integrable function \(\omega :[\iota ,\tau ]\rightarrow \mathbb{R}\) with respect to another function \(\phi (\mathrm{u})\) is given by
where \(\Gamma (\mu )=\int _{0}^{+\infty }e^{-\mathrm{u}} \mathrm{u}^{\mu -1} \,\mathrm{d}\mathrm{u}\), \(\mu >0\).
Definition 2.2
Consider \(\mu \in (0,1] \) and \(\omega \in \mathcal{H}^{1}(\iota ,\tau )\). The μth left-sided Riemann–Liouville fractional derivative in the sense of Atangana–Baleanu for a function ω is given by
where \(\Delta (\mu )\) is the normalization function with \(\Delta (0)=\Delta (1)=1\), and \(\mathbb{E}_{\mu }\) is called the Mittag–Leffler function defined by
where \(Re ( \mu ) >0\), \(\mathrm{r}\in \mathbb{C}\).
Definition 2.3
Consider \(\mu \in (0,1] \) and \(\omega \in \mathcal{H}^{1}(\iota ,\tau )\). The μth left-sided Caputo fractional derivative in the sense of Atangana–Baleanu for a function ω is given by
Definition 2.4
Consider \(\mu \in (0,1]\) and \(\omega \in \mathcal{H}^{1}(\iota ,\tau )\). The μth left-sided Riemann–Liouville fractional integral in the sense of Atangana–Baleanu for a function ω is given by
Definition 2.5
([16])
Consider \(\mu \in (0,1]\), \(\rho >0\) and \(\omega \in \mathcal{H}_{c}^{p}(\iota ,\tau )\). The μth left-sided Kashuri fractional integral in the sense of Atangana–Baleanu for a function ω is given by
Definition 2.6
Let \(\phi :[\iota ,\tau ]\rightarrow \mathbb{R}\) be an increasing function with \(\phi '(\mathrm{u})\neq 0\), \(\forall \mathrm{u}\in [\iota ,\tau ]\). Consider \(\mu \in (0,1] \) and \(\omega \in \mathcal{H}^{1}(\iota ,\tau )\). The μth left-sided Riemann–Liouville fractional derivative in the sense of Atangana–Baleanu of a function ω with respect to another function \(\phi (\mathrm{u})\) is given by
Definition 2.7
Let \(\phi :[\iota ,\tau ]\rightarrow \mathbb{R}\) be an increasing function with \(\phi '(\mathrm{u})\neq 0\), \(\forall \mathrm{u}\in [\iota ,\tau ]\). Consider \(\mu \in (0,1] \) and \(\omega \in \mathcal{H}^{1}(\iota ,\tau )\). The μth left-sided Caputo fractional derivative in the sense of Atangana–Baleanu of a function ω with respect to another function \(\phi (\mathrm{u})\) is given by
where \(\omega _{\phi}^{\prime }(\mathrm{u})= \frac {\omega '(\mathrm{u})}{\phi ^{\prime }(\mathrm{u})}\).
Definition 2.8
([21])
Let \(\phi :[\iota ,\tau ]\rightarrow \mathbb{R}\) be an increasing function \(\forall \mathrm{u}\in [\iota ,\tau ]\). Consider \(\mu \in (0,1] \) and \(\omega \in \mathcal{H}^{1}(\iota ,\tau )\). The μth left-sided Riemann–Liouville fractional integral in the sense of Atangana–Baleanu of a function ω with respect to another function \(\phi (\mathrm{u})\) is given by
Remark 2.9
We note that,
-
By putting \(\phi (\mathrm{u})=\mathrm{u}\) in Definitions 2.6, 2.7, and 2.8, then we have Definitions 2.2, 2.3, and 2.4, respectively.
-
By putting \(\phi (\mathrm{u})=\frac{\mathrm{u}^{\rho}}{\rho}\) in Definition 2.8, then we have Definition 2.5.
Lemma 2.10
([10])
Let \(\mu , \varrho >0\) and \(\omega :[\iota , \tau ] \rightarrow \mathbb{R}\). Then,
-
(i)
\({}^{RL}\mathfrak{I}_{\iota}^{\mu , \phi}[\phi (\mathrm{u})-\phi ( \iota )]^{\varrho -1}= \frac{\Gamma (\varrho )}{\Gamma (\mu +\varrho )}[\phi (\mathrm{u})- \phi (\iota )]^{\mu +\varrho -1}\);
-
(ii)
\({}^{RL}\mathfrak{I}_{\iota}^{\mu , \phi} \,{}^{RL}\mathfrak{I}_{\iota}^{ \varrho , \phi} \omega (\mathrm{u})={}^{RL}\mathfrak{I}_{\iota}^{\mu + \varrho , \phi}\omega (\mathrm{u})\);
-
(iii)
\(( (\frac{1}{\phi (\mathrm{u})}\frac{d}{d\mathrm{u}} )^{n} \,{}^{RL}\mathfrak{I}_{\iota}^{n,\phi} \omega ) ( \mathrm{u})=\omega (\mathrm{u})\), \(n\in \mathbb{N}\).
Lemma 2.11
([21])
For \(\mu \in (0,1]\), the following relations hold:
-
(i)
\(({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi } \,{}^{ABR}\mathfrak{D}_{ \iota}^{\mu ,\phi }\omega )(\mathrm{u})=\omega (\mathrm{u})\);
-
(ii)
\(({}^{ABR}\mathfrak{D}_{\iota}^{\mu ,\phi }\,{}^{AB}\mathfrak{I}_{ \iota}^{\mu ,\phi }\omega )(\mathrm{u})=\omega (\mathrm{u})\).
3 Main results
3.1 Higher order of fractional derivatives and integrals
In this subsection, we will introduce the definitions of higher order of fractional derivatives and integrals in the framework of Atangana–Baleanu with respect to another function ϕ.
Definition 3.1
Consider \(\phi :[\iota ,\tau ]\rightarrow \mathbb{R}^{+}\) to be an increasing function with \(\phi '(\mathrm{u})\neq 0\), \(\forall \mathrm{u}\in [\iota ,\tau ]\), \(\mathfrak{g}\in \mathcal{H}^{1}(\iota ,\tau )\) and \(\mu \in (n,n+1]\), \(\vartheta =\mu -n\), \(n=0, 1,2,\dots \). Then, the μth left-sided \(\phi -ABR\) fractional derivative is given by
Definition 3.2
Consider \(\phi :[\iota ,\tau ]\rightarrow \mathbb{R}^{+}\) to be an increasing function with \(\phi '(\mathrm{u})\neq 0\), \(\forall \mathrm{u}\in [\iota ,\tau ]\), \(\mathfrak{g}^{(n)}\in \mathcal{H}^{1}(\iota ,\tau )\) and \(\mu \in (n,n+1]\), \(\vartheta =\mu -n\), \(n=0, 1,2,\dots \). Then, the μth left-sided \(\phi -ABC\) fractional derivative is given by
where \(\mathfrak{g}_{\phi}^{(n)}(\mathrm{u})= ( \frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} )^{n} \mathfrak{g}(\mathrm{u})\) and \(\mathfrak{g}_{\phi}^{(0)}(\mathrm{u})=\mathfrak{g}(\mathrm{u})\). If \(\mu =m\in \mathbb{N}\) then \(({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }\mathfrak{g})(\mathrm{u})= \mathfrak{g}_{\phi}^{(m)}(\mathrm{u})\).
Definition 3.3
Consider \(\mathfrak{g}\in \mathcal{H}^{1}(\iota ,\tau )\) and \(\mu \in (n,n+1]\), \(\vartheta =\mu -n\), \(n=0, 1,2,\dots \). Then, the μth left-sided ϕ-AB fractional integral is given by
where \({}^{RL}\mathfrak{I}_{\iota}^{n,\phi}\) is defined as:
Remark 3.4
We remark that,
-
In the Definitions 3.1, 3.2, and 3.3, if \(\mu \in (0,1]\) we return to Definitions 2.6, 2.7, and 2.8, respectively.
-
If \(\mu =n+1\), then \(\vartheta =1\) and thus our generalization to the higher-order cases hold as follows:
$$\begin{aligned}& \bigl({}^{ABR}\mathfrak{D}_{\iota}^{\mu ,\phi }\mathfrak{g} \bigr) (\mathrm{u}) = \biggl(\frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr)^{n} \bigl( {}^{ABR}\mathfrak{D}_{\iota}^{1,\phi} \mathfrak{g}(\mathrm{u}) \bigr)=\mathfrak{g}_{\phi}^{(n+1)}( \mathrm{u}); \\& \bigl({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }\mathfrak{g} \bigr) (\mathrm{u})=\bigl({}^{ABC} \mathfrak{D}_{\iota}^{1,\phi} \mathfrak{g}_{\phi}^{(n)}\bigr) (\mathrm{u})= \mathfrak{g}_{\phi}^{(n+1)}(\mathrm{u});\quad \text{and} \\& \bigl({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi }\mathfrak{g} \bigr) (\mathrm{u})=\bigl({}^{RL} \mathfrak{I}_{\iota}^{n,\phi} \,{}^{AB}\mathfrak{I}_{\iota}^{1,\phi } \mathfrak{g}\bigr) (\mathrm{u})=\bigl({}^{RL}\mathfrak{I}_{\iota}^{n+1,\phi} \mathfrak{g}\bigr) (\mathrm{u}). \end{aligned}$$
Proposition 3.5
For \(\mu \in (0,1]\), the following relations hold:
-
(i)
\(({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi }\,{}^{ABC}\mathfrak{D}_{\iota}^{ \mu ,\phi }\omega )(\mathrm{u})=\omega (\mathrm{u})-\omega ( \mathrm{\iota}) \);
-
(ii)
\(({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }\,{}^{AB}\mathfrak{I}_{ \iota}^{\mu ,\phi } \omega )(\mathrm{u})=\omega (\mathrm{u})-\omega ( \iota )\mathbb{E}_{\mu } ( \frac{-\mu }{1-\mu}(\phi (\mathrm{u})- \phi (\iota ))^{\mu} ) \).
Proof
-
(i)
By using Definitions 2.7 and 2.8, we have
$$\begin{aligned} &\bigl({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi } \,{}^{ABC}\mathfrak{D}_{\iota}^{ \mu ,\phi }\omega \bigr) ( \mathrm{u}) \\ &\quad=\frac{1-\mu }{\Delta (\mu )} \bigl({}^{ABC}\mathfrak{D}_{\iota}^{\mu , \phi } \omega \bigr) (\mathrm{u})+\frac{\mu }{\Delta (\mu )} \bigl({}^{RL} \mathfrak{I}_{\iota}^{\mu ,\phi }\,{}^{ABC} \mathfrak{D}_{\iota}^{\mu , \phi }\omega \bigr) (\mathrm{u}) \\ &\quad= \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} \int _{ \iota}^{\mathrm{u}}\phi ^{\prime }(\mathrm{v}) \frac {(\phi (\mathrm{u})-\phi (\mathrm{v}))^{i\mu }}{\Gamma (i\mu +1)} \omega _{\phi}^{\prime }(\mathrm{v} ) \,d\mathrm{v} \\ &\quad\quad {}+\frac{\mu }{1-\mu}\,{}^{RL}\mathfrak{I}_{\iota}^{\mu ,\phi } \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} \int _{ \iota}^{\mathrm{u}} \phi ^{\prime }(\mathrm{v}) \frac {(\phi (\mathrm{u})-\phi (\mathrm{v}))^{i\mu }}{\Gamma (i\mu +1)} \omega _{\phi}^{\prime }(\mathrm{v} )\,d\mathrm{v} \\ &\quad= \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} {}^{RL} \mathfrak{I}_{\iota}^{i\mu +1,\phi} \frac {\omega ^{\prime }(\mathrm{u} )}{\phi '(\mathrm{u})} + \frac{\mu }{1-\mu} \,{}^{RL}\mathfrak{I}_{\iota}^{\mu ,\phi } \sum_{i=0}^{ \infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} {}^{RL}\mathfrak{I}_{ \iota}^{i\mu +1,\phi} \frac {\omega ^{\prime }(\mathrm{u} )}{\phi '(\mathrm{u})} \\ &\quad= \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} {}^{RL} \mathfrak{I}_{\iota}^{i\mu +1,\phi} \frac {\omega ^{\prime }(\mathrm{u} )}{\phi '(\mathrm{u})} -\sum_{i=0}^{ \infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i+1} {}^{RL}\mathfrak{I}_{ \iota}^{i\mu +\mu +1,\phi} \frac {\omega ^{\prime }(\mathrm{u} )}{\phi '(\mathrm{u})} \\ &\quad={}^{RL}\mathfrak{I}_{\iota}^{1,\phi} \frac {\omega ^{\prime }(\mathrm{u} )}{\phi '(\mathrm{u})} = \int _{ \iota}^{\mathrm{u}} \omega ^{\prime}(\mathrm{v}) \,d \mathrm{v} =\omega ( \mathrm{u})-\omega (\mathrm{\iota}). \end{aligned}$$ -
(ii)
By using Definitions 2.7 and 2.8, and the identity
$$ {}^{RL}\mathfrak{I}_{\iota}^{\alpha +1,\phi} \biggl( \frac {1}{\phi '(\mathrm{u})}\frac {d}{d\mathrm{u}} \biggr)\omega ( \mathrm{u})= {}^{RL} \mathfrak{I}_{\iota}^{\alpha ,\phi}\omega ( \mathrm{u})-\omega (\iota ) \frac{(\phi (\mathrm{u} )-\phi (\iota ))^{\alpha} }{\Gamma (\alpha +1)}, \quad Re( \alpha )>0, $$we have
$$\begin{aligned} &\bigl({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi } \,{}^{AB}\mathfrak{I}_{ \iota}^{\mu ,\phi } \omega \bigr) ( \mathrm{u}) \\ &\quad={}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi } \biggl( \frac{1-\mu }{\Delta (\mu )} \omega (\mathrm{u})+ \frac{\mu }{\Delta (\mu )} \bigl({}^{RL} \mathfrak{I}_{\iota}^{\mu ,\phi } \omega \bigr) (\mathrm{u}) \biggr) \\ &\quad=\frac{1-\mu }{\Delta (\mu )} \bigl({}^{ABC}\mathfrak{D}_{\iota}^{\mu , \phi } \omega \bigr) (\mathrm{u})+\frac{\mu }{\Delta (\mu )} {}^{ABC} \mathfrak{D}_{\iota}^{\mu ,\phi } \bigl({}^{RL} \mathfrak{I}_{\iota}^{ \mu ,\phi } \omega (\mathrm{u}) \bigr) \\ &\quad= \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} {}^{RL} \mathfrak{I}_{\iota}^{i\mu +1,\phi} \biggl( \frac {1}{\phi '(\mathrm{u})}\frac {d}{d\mathrm{u}} \biggr)\omega ( \mathrm{u}) \\ &\quad\quad {}+\frac{\mu }{1-\mu} \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} {}^{RL} \mathfrak{I}_{\iota}^{i\mu +1, \phi} \biggl( \frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr) \bigl({}^{RL}\mathfrak{I}_{\iota}^{\mu ,\phi } \omega ( \mathrm{u}) \bigr) \\ &\quad= \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} \biggl[{}^{RL} \mathfrak{I}_{\iota}^{i\mu ,\phi} \omega (\mathrm{u})- \frac{\omega (\iota ) (\phi (\mathrm{u})-\phi (\iota ))^{i\mu}}{\Gamma (i \mu +1)}\biggr] \\ &\qquad {}-\sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i+1} {}^{RL} \mathfrak{I}_{\iota}^{i\mu +\mu ,\phi} \omega (\mathrm{u}) \\ &\quad = \omega (\mathrm{u})- \sum_{i=0}^{\infty} \biggl( \frac{-\mu }{1-\mu} \biggr)^{i} \frac{\omega (\iota ) (\phi (\mathrm{u})-\phi (\iota ))^{i\mu}}{\Gamma (i \mu +1)} \\ &\quad =\omega (\mathrm{u})-\omega (\iota )\mathbb{E}_{\mu } \biggl( \frac{-\mu }{1-\mu}\bigl(\phi (\mathrm{u})-\phi (\iota )\bigr)^{\mu} \biggr). \end{aligned}$$
□
Proposition 3.6
Let \(\omega \in \mathcal{C}^{n}(\mathrm{J},\mathbb{R})\), and \({\phi \in \mathcal{C}^{n}(\mathrm{J},\mathbb{R}^{+})}\). For \(\mu \in (n,n+1]\), \(\vartheta =\mu -n\), \(n=0, 1,2,\dots \), the following relations hold:
-
(i)
\(({}^{ABR}\mathfrak{D}_{\iota}^{\mu ,\phi }\,{}^{AB}\mathfrak{I}_{ \iota}^{\mu ,\phi } \omega )(\mathrm{u})=\omega (\mathrm{u})\);
-
(ii)
\(({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi }\,{}^{ABR}\mathfrak{D}_{ \iota}^{\mu ,\phi }\omega )(\mathrm{u})=\omega (\mathrm{u})\);
-
(iii)
\(({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }\,{}^{AB}\mathfrak{I}_{ \iota}^{\mu ,\phi } \omega )(\mathrm{u})=\omega (\mathrm{u})- \omega ( \iota )\mathbb{E}_{\mu -n } ( \frac{-(\mu -n) }{1-(\mu -n)}( \phi (\mathrm{u})-\phi (\iota ))^{\mu -n} )\);
-
(iv)
\(({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi }\,{}^{ABC}\mathfrak{D}_{\iota}^{ \mu ,\phi }\omega )(\mathrm{u})=\omega (\mathrm{u})-\sum_{k=0}^{n} \frac {\omega _{\phi}^{(k)}(\mathrm{\iota})}{k!} (\phi ( \mathrm{u})-\phi (\mathrm{\iota}) )^{k} \).
Proof
-
(i)
In view of Definitions 3.1 and 3.3 and Lemmas 2.10 and 2.11, we have
$$\begin{aligned} \bigl({}^{ABR}\mathfrak{D}_{\iota}^{\mu ,\phi } \,{}^{AB}\mathfrak{I}_{\iota}^{ \mu ,\phi }\omega \bigr) ( \mathrm{u}) &= \biggl( \biggl( \frac{1}{\phi (\mathrm{u})}\frac{d}{d\mathrm{u}} \biggr)^{n} {}^{ABR} \mathfrak{D}_{\iota}^{\vartheta ,\phi } \,{}^{AB}\mathfrak{I}_{\iota}^{ \vartheta ,\phi }\,{}^{RL} \mathfrak{I}_{\iota}^{n,\phi} \omega \biggr) (\mathrm{u}) \\ &= \biggl( \biggl(\frac{1}{\phi (\mathrm{u})}\frac{d}{d\mathrm{u}} \biggr)^{n} \,{}^{RL}\mathfrak{I}_{\iota}^{n,\phi} \omega \biggr) ( \mathrm{u})=\omega (\mathrm{u}). \end{aligned}$$ -
(ii)
In view of Definitions 3.1 and 3.3, we obtain that
$$\begin{aligned} &\bigl({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi } \,{}^{ABR}\mathfrak{D}_{ \iota}^{\mu ,\phi }\omega \bigr) ( \mathrm{u}) \\ &\quad=\frac{(n+1-\mu ) }{\Delta (\mu -n )}\,{}^{RL}\mathfrak{I}_{\iota}^{n, \phi} \bigl( {}^{ABR}\mathfrak{D}_{\iota}^{\mu ,\phi }\omega ( \mathrm{u}) \bigr) + \frac{(\mu -n ) }{\Delta (\mu -n )}\,{}^{RL} \mathfrak{I}_{\iota}^{\mu ,\phi} \bigl( {}^{ABR}\mathfrak{D}_{\iota}^{ \mu ,\phi }\omega ( \mathrm{u}) \bigr) \\ &\quad={}^{RL}\mathfrak{I}_{\iota}^{n,\phi} \biggl( \frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr)^{n+1} \sum _{i=0}^{\infty} \biggl( \frac{-(\mu -n) }{n+1-\mu} \biggr)^{i} \int _{\iota}^{\mathrm{u}}\phi ^{\prime }(\mathrm{v}) \frac {(\phi (\mathrm{u})-\phi (\mathrm{v}) )^{i(\mu -n)}}{\Gamma (i(\mu -n)+1)} \omega (\mathrm{v} )\,d\mathrm{v} \\ &\quad\quad {}+\frac{(\mu -n ) }{(n+1-\mu ) }{}^{RL}\mathfrak{I}_{\iota}^{ \mu ,\phi} \biggl(\frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr)^{n+1}\sum _{i=0}^{\infty} \biggl( \frac{-(\mu -n) }{n+1-\mu} \biggr)^{i} \\ &\qquad {}\times\int _{\iota}^{\mathrm{u}} \frac {\phi ^{\prime }(\mathrm{v})(\phi (\mathrm{u})-\phi (\mathrm{v}) )^{i(\mu -n)}}{\Gamma (i(\mu -n)+1)} \omega ( \mathrm{v})\,d\mathrm{v} \\ &\quad= \sum_{i=0}^{\infty} \biggl( \frac{-(\mu -n) }{n+1-\mu} \biggr)^{i} {}^{RL} \mathfrak{I}_{\iota}^{n,\phi} \biggl(\frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr)^{n+1} {}^{RL}\mathfrak{I}_{\iota}^{i( \mu -n)+1,\phi}\omega (\mathrm{u}) \\ &\quad\quad {}-\sum_{i=0}^{\infty} \biggl( \frac{-(\mu -n) }{n+1-\mu} \biggr)^{i+1} {}^{RL}\mathfrak{I}_{\iota}^{\mu ,\phi} \biggl( \frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr)^{n+1}{}^{RL} \mathfrak{I}_{\iota}^{i(\mu -n)+1,\phi}\omega (\mathrm{u}) \\ &\quad= \sum_{i=0}^{\infty} \biggl( \frac{-(\mu -n) }{n+1-\mu} \biggr)^{i} {}^{RL} \mathfrak{I}_{\iota}^{i(\mu -n),\phi} \omega (\mathrm{u}) -\sum_{i=0}^{ \infty} \biggl( \frac{-(\mu -n) }{n+1-\mu} \biggr)^{i+1} {}^{RL} \mathfrak{I}_{\iota}^{i(\mu -n)+(\mu -n),\phi} \omega (\mathrm{u}) \\ &\quad=\omega (\mathrm{u}). \end{aligned}$$ -
(iii)
Due to Definitions 3.2 and 3.3, Lemma 2.10, and Proposition 3.5, we obtain
$$\begin{aligned} & \bigl({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi } \,{}^{AB}\mathfrak{I}_{ \iota}^{\mu ,\phi } \omega \bigr) ( \mathrm{u}) \\ &\quad= \biggl( {}^{ABC} \mathfrak{D}_{\iota}^{\vartheta ,\phi } \biggl( \frac{1}{\phi (\mathrm{u})}\frac{d}{d\mathrm{u}} \biggr)^{n} {}^{RL} \mathfrak{I}_{\iota}^{n,\phi}\,{}^{AB} \mathfrak{I}_{\iota}^{ \vartheta ,\phi } \omega \biggr) (\mathrm{u}) \\ &\quad= \bigl( {}^{ABC}\mathfrak{D}_{\iota}^{\vartheta ,\phi } \,{}^{AB} \mathfrak{I}_{\iota}^{\vartheta ,\phi } \omega \bigr) ( \mathrm{u})= \omega (\mathrm{u})- \omega (\iota )\mathbb{E}_{\vartheta } \biggl( \frac{-\vartheta }{1-\vartheta}\bigl(\phi (\mathrm{u})-\phi (\iota ) \bigr)^{ \vartheta} \biggr) \\ &\quad=\omega (\mathrm{u})- \omega (\iota )\mathbb{E}_{\mu -n } \biggl( \frac{-(\mu -n) }{1-(\mu -n)}\bigl(\phi (\mathrm{u})-\phi (\iota )\bigr)^{\mu -n} \biggr). \end{aligned}$$ -
(iv)
Due to Definitions 3.2 and 3.3 and Proposition 3.5, we obtain that
$$\begin{aligned} &\bigl({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi } \,{}^{ABC}\mathfrak{D}_{ \iota}^{\mu ,\phi }\omega \bigr) ( \mathrm{u}) \\ &\quad= \bigl( {}^{RL}\mathfrak{I}_{\iota}^{n,\phi} \,{}^{AB}\mathfrak{I}_{ \iota}^{\vartheta ,\phi }\,{}^{ABC} \mathfrak{D}_{\iota}^{\vartheta , \phi }\omega _{\phi}^{(n)} \bigr) (\mathrm{u}) = {}^{RL}\mathfrak{I}_{ \iota}^{n,\phi} \bigl(\omega _{\phi}^{(n)}(\mathrm{u})-\omega _{\phi}^{(n)}( \mathrm{\iota}) \bigr) \\ &\quad=\omega (\mathrm{u})-\sum_{k=0}^{n-1} \frac {\omega _{\phi}^{(k)}(\mathrm{\iota})}{k!} \bigl(\phi ( \mathrm{u})-\phi (\mathrm{\iota}) \bigr)^{k} - \frac {\omega _{\phi}^{(n)}(\mathrm{\iota})}{n!} \bigl(\phi ( \mathrm{u})-\phi (\mathrm{\iota}) \bigr)^{n} \\ &\quad=\omega (\mathrm{u})-\sum_{k=0}^{n} \frac {\omega _{\phi}^{(k)}(\mathrm{\iota})}{k!} \bigl(\phi ( \mathrm{u})-\phi (\mathrm{\iota}) \bigr)^{k}. \end{aligned}$$
□
Proposition 3.7
Let \(\omega \in \mathcal{C}^{n}(\mathrm{J},\mathbb{R})\), \({\phi \in \mathcal{C}^{n}(\mathrm{J},\mathbb{R}^{+})}\), \(\phi '( \mathrm{u})\neq 0\). For \(\mu \in (n,n+1]\), \(\vartheta =\mu -n\), \(n=0, 1,2,\dots \), \(\beta \geq{n+1}\) and \(\varrho >0\). Then, the following relations hold:
-
(i)
\({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi }[\phi (\mathrm{u})-\phi ( \mathrm{\iota})]^{\varrho} = \frac {(n+1-\mu )\Gamma (\varrho +1)[\phi (\mathrm{u})-\phi (\mathrm{\iota})]^{\varrho +n}}{\Delta (\mu -n)\Gamma (n+\varrho +1)} + \frac {(\mu -n)\Gamma (\varrho +1)[\phi (\mathrm{u})-\phi (\mathrm{\iota})]^{\varrho +\mu}}{\Delta (\mu -n )\Gamma (\mu +\varrho +1)}\).
-
(ii)
\({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }[\phi (\mathrm{u})-\phi ( \mathrm{\iota})]^{\beta} = \frac {\Delta (\mu -n )}{( n+1-\mu ) } \sum_{i=0}^{\infty} ( \frac {-(\mu -n) }{n+1-\mu} )^{i} \frac {\Gamma (\beta +1)[\phi (\mathrm{u})-\phi (\mathrm{\iota})]^{i(\mu -n)+\beta -n}}{\Gamma (i(\mu -n)+\beta -n+1)} \).
-
(iii)
\({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }[\phi (\mathrm{u})-\phi ( \mathrm{\iota})]^{\zeta}=0\), \(\zeta =0,1,\dots ,n\).
-
(iv)
\(({}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi } 1) (\mathrm{u})= \frac {(n+1-\mu )[\phi (\mathrm{u})-\phi (\mathrm{\iota})]^{n}}{\Delta (\mu -n)\Gamma (n+1)}+ \frac {(\mu -n)[\phi (\mathrm{u})-\phi (\mathrm{\iota})]^{\mu}}{\Delta (\mu -n )\Gamma (\mu +1)}\).
-
(v)
\(( {}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi } 1) (\mathrm{u}) =0\).
Proof
-
(i)
For this, we apply Definition 3.3 and Lemma 2.10, and we obtain
$$\begin{aligned} &{}^{AB}\mathfrak{I}_{\iota}^{\mu ,\phi }\bigl[\phi ( \mathrm{u})-\phi ( \mathrm{\iota})\bigr]^{\varrho} \\ &\quad=\frac {(n+1-\mu ) }{\Delta (\mu -n )} \,{}^{RL}\mathfrak{I}_{\iota}^{n, \phi} \bigl[\phi (\mathrm{u})-\phi (\mathrm{\iota})\bigr]^{\varrho}+ \frac {(\mu -n) }{\Delta (\mu -n )} {}^{RL}\mathfrak{I}_{\iota}^{\mu , \phi } \bigl[\phi (\mathrm{u})-\phi (\mathrm{\iota})\bigr]^{\varrho} \\ &\quad=\frac {(n+1-\mu ) }{\Delta (\mu -n)} \frac {\Gamma (\varrho +1)}{\Gamma (n+\varrho +1)}\bigl[\phi (\mathrm{u})- \phi (\mathrm{\iota})\bigr]^{\varrho +n}\\ &\qquad {}+ \frac {(\mu -n) }{\Delta (\mu -n )} \frac {\Gamma (\varrho +1)[\phi (\mathrm{u})-\phi (\mathrm{\iota})]^{\varrho +\mu}}{\Gamma (\mu +\varrho +1)}. \end{aligned}$$ -
(ii)
By applying Definitions 2.3 and 3.2 and Lemma 2.10, we have
$$\begin{aligned} &{}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }\bigl[\phi ( \mathrm{u})-\phi ( \mathrm{\iota})\bigr]^{\beta} \\ &\quad= {}^{ABC}\mathfrak{D}_{\iota}^{\vartheta ,\phi } \biggl( \frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr)^{n}\bigl[ \phi ( \mathrm{u})-\phi (\mathrm{\iota})\bigr]^{\beta} \\ &\quad= {}^{ABC}\mathfrak{D}_{\iota}^{\vartheta ,\phi } \frac {\Gamma (\beta +1)}{\Gamma (\beta -n+1)}\bigl[\phi (\mathrm{u})- \phi (\mathrm{\iota}) \bigr]^{\beta -n} \\ &\quad=\frac{\Delta (\vartheta )}{ 1-\vartheta } \int _{\iota}^{\mathrm{u}} \sum_{i=0}^{\infty} \biggl( \frac{-\vartheta }{1-\vartheta} \biggr)^{i} \frac {\Gamma (\beta +1) [\phi (\mathrm{v})-\phi (\mathrm{\iota})]^{\beta -(n+1)}}{\Gamma (\beta -n)\Gamma (i\vartheta +1)} \phi '(\mathrm{v}) \bigl(\phi (\mathrm{u})-\phi (\mathrm{v}) \bigr)^{i\vartheta } \,d\mathrm{v} \\ &\quad= \frac{\Gamma (\beta +1)\Delta (\vartheta )}{\Gamma (\beta -n) (1-\vartheta ) } \sum_{i=0}^{\infty} \biggl( \frac{-\vartheta }{1-\vartheta} \biggr)^{i} {}^{RL} \mathfrak{I}_{\iota}^{i\vartheta +1,\phi}\bigl[\phi (\mathrm{u})- \phi (\mathrm{\iota})\bigr]^{\beta -(n+1)} \\ &\quad=\frac{\Delta (\vartheta )}{ 1-\vartheta } \sum_{i=0}^{\infty} \biggl( \frac{-\vartheta }{1-\vartheta} \biggr)^{i} \frac {\Gamma (\beta +1)}{\Gamma (i\vartheta +\beta -n+1)} \bigl[\phi ( \mathrm{u})-\phi (\mathrm{\iota})\bigr]^{i\vartheta +\beta -n} \\ &\quad=\frac{\Delta (\mu -n )}{ n+1-\mu } \sum_{i=0}^{\infty} \biggl( \frac{-(\mu -n) }{n+1-\mu} \biggr)^{i} \frac {\Gamma (\beta +1)}{\Gamma (i(\mu -n)+\beta -n+1)} \bigl[\phi ( \mathrm{u})-\phi (\mathrm{\iota})\bigr]^{i(\mu -n)+\beta -n}. \end{aligned}$$ -
(iii)
By applying Definitions 2.7 and 3.2, we obtain
$$\begin{aligned} &{}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }\bigl[\phi ( \mathrm{u})-\phi ( \mathrm{\iota})\bigr]^{\zeta} \\ &\quad={}^{ABC}\mathfrak{D}_{\iota}^{\vartheta ,\phi } \biggl( \frac {1}{\phi '(\mathrm{u})} \frac {d}{d\mathrm{u}} \biggr)^{n}\bigl[ \phi ( \mathrm{u})-\phi (\mathrm{\iota})\bigr]^{\zeta} \\ &\quad={}^{ABC}\mathfrak{D}_{\iota}^{\vartheta ,\phi } \frac {\Gamma (\zeta +1)}{\Gamma (\zeta -n+1)}\bigl[\phi (\mathrm{u})- \phi (\mathrm{\iota}) \bigr]^{\zeta -n} \\ &\quad=\frac{\Delta (\vartheta )}{ 1-\vartheta }\int _{\iota}^{\mathrm{u}}\mathbb{E}_{\vartheta } \biggl( \frac{-\vartheta }{1-\vartheta}\bigl(\phi (\mathrm{u})-\phi (\mathrm{v}) \bigr)^{ \vartheta } \biggr) \frac {\Gamma (\zeta +1)}{\Gamma (\zeta -n+1)} \frac {d}{d\mathrm{v}}\bigl[\phi (\mathrm{v})-\phi ( \mathrm{\iota})\bigr]^{ \zeta -n}\,d\mathrm{v} \\ &\quad=0. \end{aligned}$$ -
(iv)
and \((\mathrm{v})\) can be concluding by putting \(\varrho =\zeta =0\) in parts \((i)\) and \((iii)\), respectively.
□
3.2 Gronwall’s inequality
At the beginning of this subsection, we will state the following generalization of Gronwall’s inequality.
Lemma 3.8
([23])
Consider \(\mu >0\) and \(\phi \in \mathcal{C}^{1}(\mathrm{J},\mathbb{R}^{+})\) to be an increasing function such that \(\phi ^{\prime }(\mathrm{u})\neq 0\), \(\forall \mathrm{u}\in \mathrm{J}\). Suppose that \(\mathcal{V}(\mathrm{u})\) is a nonnegative function locally integrable on J and \(\mathcal{U}(\mathrm{u}) \) is nonnegative and nondecreasing, and also assume that ω is nonnegative and locally integrable on J, such that
then, for every \(\mathrm{u}\in \mathrm{J}\), we obtain
Lemma 3.9
([23])
Under the conditions of Lemma 3.8, if \(\mathcal{V}(\mathrm{u})\) is a nondecreasing function on J. Then, we have
In this position, we will introduce a new Gronwall inequality in the framework of the \(\phi -AB\) fractional operator.
Lemma 3.10
Let \(\mu \in (0,1] \) and \(\phi \in \mathcal{C}^{1}(\mathrm{J},\mathbb{R}^{+})\) be an increasing function such that \(\phi ^{\prime }(\mathrm{u})\neq 0\), \(\forall \mathrm{u}\in \mathrm{J}\). Suppose that \(\mathcal{X}(\mathrm{u})= \frac {\mathcal{G}(\mathrm{u})\Delta (\mu )}{\Delta (\mu )-(1-\mu )\mathcal{H}(\mathrm{u})}\) is a nonnegative function locally integrable on J, \(\mathcal{Y}(\mathrm{u})= \frac {\mu \mathcal{H}(\mathrm{u})}{\Delta (\mu )-(1-\mu )\mathcal{H}(\mathrm{u})} \) is nonnegative and nondecreasing, and assume also that ω is nonnegative and locally integrable on J, such that
then, for every \(\mathrm{u}\in \mathrm{J}\), we obtain
Proof
From Inequality (3.4) and Definition 2.8, we have
Hence,
Due to Lemma 3.8, we obtain
Therefore, Inequality (3.5) holds. □
Corollary 3.11
Under the conditions of Lemma 3.10, if \(\mathcal{X}(\mathrm{u})\) is a nondecreasing function on J, then we have
Proof
In view of Lemma 3.9, we have
which satisfies Inequality (3.6). □
Herein, we will conclude a new Gronwall inequality in the sense of the \(\phi -ABK\) fractional operator.
Corollary 3.12
For \(\mu >0\), suppose that \(\mathcal{X}(\mathrm{u})= \frac {\mathcal{G}(\mathrm{u})\Delta (\mu )}{\Delta (\mu )-(1-\mu )\mathcal{H}(\mathrm{u})}\) is a nonnegative function locally integrable on J, \(\mathcal{Y}(\mathrm{u})= \frac {\mu \mathcal{H}(\mathrm{u})}{\Delta (\mu )-(1-\mu )\mathcal{H}(\mathrm{u})} \) is nonnegative and nondecreasing, and assume also that ω is nonnegative and locally integrable on J, such that
then, for every \(\mathrm{u}\in \mathrm{J}\), we obtain
Proof
By putting \(\phi (\mathrm{u})=\frac {\mathrm{u}^{\rho}}{\rho}\) in Lemma 3.10, the proof is finished. □
Corollary 3.13
Under conditions of Corollary 3.12, if \(\mathcal{X}(\mathrm{u})\) is a nondecreasing function on J, then we have
Proof
By putting \(\phi (\mathrm{u})=\frac {\mathrm{u}^{\rho}}{\rho}\) in Corollary 3.11, the proof is finished. □
3.3 Existence and uniqueness results
In this subsection, we will study the existence and uniqueness of solution of the following initial fractional differential equation:
where \({}^{ABC}\mathfrak{D}_{\iota}^{\mu ,\phi }\) denotes the μth \(\phi -ABC\) fractional derivative such that \(\mu \in (n,n+1]\). The constants \(\lambda _{k}\in \mathbb{R} \) (\(k=0,1,\dots , n\)), \(\mathfrak{h}: \mathrm{J}\times \mathbb{R}\rightarrow \mathbb{R}\) is a continuous function, and \(\omega (\mathrm{u})\in \mathcal{C}^{n}(\mathrm{J},\mathbb{R})\) is a known function such that \(\omega _{\phi}^{(k)}(u)= ( \frac{1}{\phi '(u) } \frac{\mathrm{d}}{\mathrm{d}u} )^{k}\omega (u)\) and \(\omega _{\phi}^{(0)}(\mathrm{u})=\omega (\mathrm{u})\). Furthermore, \(\phi :[\iota ,\tau ]\rightarrow \mathbb{R}^{+}\) is an increasing function with \(\phi '(u)\in \mathcal{C}^{n}(\mathrm{J},\mathbb{R}^{+})\) and \(\phi ^{\prime }(\mathrm{u}) \neq 0\), \(\forall \mathrm{u}\in \mathrm{J}\).
Indeed, by applying the μth left-sided \(\phi -AB\) fractional integral operator on both sides of (3.10) and by using Proposition 3.6along with the initial boundary condition (3.11), we have
Now, we will prove the existence and uniqueness of the solution for the system (3.10) and (3.11) by using Picard’s iterative method [20].
Theorem 3.14
Assume that there is a constant \(\mathcal{M}>0\) such that \(\sup_{\mathrm{u}\in \mathrm{J}} \vert \mathfrak{h}(\mathrm{u}, \omega _{0}({\mathrm{u}})) \vert \leq \mathcal{M}\), and there is a constant \(\ell >0 \) such that \(\vert \mathfrak{h}(\mathrm{u},\omega _{1} )-\mathfrak{h}( \mathrm{u},\omega _{2} ) \vert \leq \ell \vert \omega _{1}- \omega _{2} \vert \), for all \(\mathrm{u}\in \mathrm{J}\), \(\omega _{1}, \omega _{2}\in \mathcal{C}^{n}(\mathrm{J},\mathbb{R})\). Then, there is one and only one solution \(\omega (\mathrm{u})\) of the system (3.10) and (3.11) on J, provided that
Proof
Clearly, the system (3.10) and (3.11) has a solution equivalent to the solution of the fractional integral equation (3.12). Set
and
Obviously, the series \(\omega _{0}(\mathrm{u})+ \sum_{j=1}^{\infty} (\omega _{j}( \mathrm{u})-\omega _{j-1}(\mathrm{u}) )\) has the partial sum \(\omega _{i}(\mathrm{u})=\omega _{0}(\mathrm{u})+ \sum_{j=1}^{i} (\omega _{j}(\mathrm{u})-\omega _{j-1}(\mathrm{u}) )\). Our aim is to show that the sequence \(\{\omega _{i}(\mathrm{u})\}\) converges to \(\omega (\mathrm{u})\).
Due to mathematical induction, for all \(\mathrm{u}\in [\iota ,\tau ]\), we investigate that
According to the equations (3.14) and (3.15) and Proposition 3.7 part \((\mathrm{iv})\), we have
Therefore, for \(i=1\) the inequality (3.16) holds. Next, we assume that the inequality (3.16) is fulfilled for \(i =r\). Then,
Thus, the identity (3.16) holds for \(i=r+1\). Then, in view of mathematical induction the relation (3.16) holds for every \(i\in \mathbb{N}\) and all \(\mathrm{u}\in [\iota ,\tau ]\). Hence, we obtain
Due to the condition (3.13), the series on the right-hand side of the above inequality is convergent, and so \(\sum_{i=1}^{\infty} \Vert \omega _{i}-\omega _{i-1} \Vert \) is also convergent, which proves that \(\omega _{0}+\sum_{i=1}^{\infty} \Vert \omega _{i}-\omega _{i-1} \Vert \) converges.
Let us set \(\omega =\omega _{0}+\sum_{i=1}^{\infty} \Vert \omega _{i}- \omega _{i-1} \Vert \), it follows that
which shows that the solution of the system (3.10) and (3.11) exists. In fact, by (3.18), we have
Thus,
Therefore, by taking the limits on both sides of (3.15) as \(i\to \infty \) and applying (3.19), we deduce that
which represent the solution of the system (3.10) and (3.11).
Lastly, in order to show the solution ω is unique, we suppose that ω̃ is another solution of the system (3.10) and (3.11). Thus, we have
In view of the condition (3.13), we conclude that should be \(\Vert \omega -\tilde{\omega}\Vert =0\), it follows that, \(\omega (\mathrm{u})=\tilde{\omega}(\mathrm{u})\). Thus, the proof is completed. □
4 Examples
Here, we examine validating the main results by the following illustrative examples:
Example 4.1
Consider the following initial fractional differential equation:
where \(\mu =1.7\in (1,2]\), \(\phi (\mathrm{u})=ln(\mathrm{u})\).
Now, we will check the conditions of Theorem 3.14 as follows:
then \(\ell =\frac{1}{2}>0\), and by taking \(\Delta (\mu -n )=1\), we have
Hence, all the conditions of Theorem 3.14 hold. Therefore, the solution of the system (4.1) and (4.2) exists and is unique.
Example 4.2
Consider the following initial fractional differential equation:
where \(\mu =2.5\in (2,3]\), \(\phi (\mathrm{u})=\mathrm{u}\), and has an exact solution \(\omega (\mathrm{u})=\mathrm{u}^{2}\).
Now, we will check the conditions of Theorem 3.14 as follows:
then \(\ell =1>0\), and by taking \(\Delta (\mu -n )=1\), we have
Hence, all the conditions of Theorem 3.14 hold. Therefore, the solution of the system (4.4) and (4.5) exists and is unique.
Next, we will compute the solution of the system (4.4) and (4.5) by Picard’s iterative method as follows:
Then,
which matches the exact solution.
5 Conclusion
We conclude the following:
-
We have extended \(\phi -ABC\) and \(\phi -ABR\) fractional derivatives to higher arbitrary orders. The corresponding \(\phi -AB\) fractional integrals are presented as well.
-
The introduced generalization in the Caputo sense agrees with and generalizes those presented by Abdeljawad in [2]. However, our approach in this work is different in the Reimann–Liouville case (ABR) for either the derivative or the corresponding integral. Applying the nth-order derivative with respect to another function outside in the ABR higher-order case and the Riemann–Liouville integral of order n with respect to another function outside in the AB-integral higher case shows that the integral and differential \(ABR\) operators are inverses of each other for all orders and not only for the order between 0 and 1, as was the case for the higher-order extension obtained in [2].
-
Some properties and actions of the extended higher-order integrals and derivatives on each other have been given.
-
Gronwall’s inequality has been established in the framework of a \(\phi -AB\) fractional integral operator.
-
The existence and uniqueness theory for initial value problems in the sense of higher-order \(ABC\) of a function with respect to another function has been studied briefly.
-
Some examples to illustrate the new extensions have been given.
-
This work is a key attraction to researchers to study this type of extended calculus. Thus, in the future we will focus our attention to apply these extension operators on real-life dynamics systems along with investigating new properties and inequities related to such operators.
Availability of data and materials
Not applicable.
References
Abbas, M.I., Ghaderi, M., Rezapour, S., Thabet, S.T.M.: On a coupled system of fractional differential equations via the generalized proportional fractional derivatives. J. Funct. Spaces 2022, 4779213 (2022). https://doi.org/10.1155/2022/4779213
Abdeljawad, T.: A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 130, 1–11 (2017). https://doi.org/10.1186/s13660-017-1400-5
Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 9, 1098–1107 (2017)
Abdo, M.S., Abdeljawad, T., Ali, S.M., Shah, K.: On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions. Adv. Differ. Equ. 2021, 37 (2021). https://doi.org/10.1186/s13662-020-03196-6. 1–21
Abdo, M.S., Abdeljawad, T., Kucche, K.D., Alqudah, M.A., Ali, S.M., Jeelani, M.B.: On nonlinear pantograph fractional differential equations with Atangana—Baleanu—Caputo derivative. Adv. Differ. Equ. 2021, 65 (2021). https://doi.org/10.1186/s13662-021-03229-8. 1–17
Abdo, M.S., Abdeljawad, T., Shah, K., Jarad, F.: Study of impulsive problems under Mittag–Leffler power law. Heliyon 6, e05109 (2020). https://doi.org/10.1016/j.heliyon.2020.e05109
Ahmad, Z., et al.: A global report on the dynamics of COVID-19 with quarantine and hospitalization: a fractional order model with non-local kernel. Comput. Biol. Chem. 98, 107645 (2022)
Ahmad, Z., Ali, F., Khan, N., Khan, I.: Dynamics of fractal-fractional model of a new chaotic system of integrated circuit with Mittag-Leffler kernel. Chaos Solitons Fractals 153, 111602 (2021)
Ahmad, Z., Bonanomi, G., di Serafino, D., Giannino, F.: Transmission dynamics and sensitivity analysis of pine wilt disease with asymptomatic carriers via fractal-fractional differential operator of Mittag-Leffler kernel. Appl. Numer. Math. 185, 446–465 (2023)
Almeida, R., Malinowska, A.B., Monteiro, M.T.T.: Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications. Math. Methods Appl. Sci. 41(1), 336–352 (2018)
Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
Ayari, M.I., Thabet, S.T.M.: Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator. Arab J. Math. Sci. (2023). https://doi.org/10.1108/AJMS-06-2022-0147
Fernandez, A., Baleanu, D.: Differintegration with respect to functions in fractional models involving Mittag-Leffler functions. In: Proceedings of International Conference on Fractional Differentiation and Its Applications (ICFDA) (2018). https://doi.org/10.2139/ssrn.3275746
Hilfer, R.: Applications of Fractional Calculus in Physics, vol. 35. World Scientific, Singapore (2000)
Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)
Kashuri, A.: Hermite-Hadamard type inequalities for the ABK-fractional integrals. J. Comput. Anal. Appl. 29, 309–326 (2021)
Khan, M., Ahmad, Z., Ali, F., Khan, N., Khan, I., Nisar, K.S.: Dynamics of two-step reversible enzymatic reaction under fractional derivative with Mittag-Leffler kernel. PLoS ONE 18(3), e0277806 (2023). https://doi.org/10.1371/journal.pone.0277806
Khan, N., Ali, F., Ahmad, Z., Murtaza, S., Ganie, A.H., Khan, I., Eldin, S.M.: A time fractional model of a Maxwell nanofluid through a channel flow with applications in grease. Sci. Rep. 13, 4428 (2023). https://doi.org/10.1038/s41598-023-31567-y
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)
Lyons, R., Vatsala, A., Chiquet, R.: Picard’s iterative method for Caputo fractional differential equations with numerical results. Mathematics 5(4), 65 (2017)
Mohammed, P.O., Abdeljawad, T.: Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 363 (2020)
Samko, S.K., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, Switzerland (1993)
Sousa, J.V.C., Oliveira, E.C.: A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differ. Equ. Appl. 11, 87–106 (2019)
Thabet, S.T.M., Abdo, M.S., Shah, K.: Theoretical and numerical analysis for transmission dynamics of COVID-19 mathematical model involving Caputo—Fabrizio derivative. Adv. Differ. Equ. 2021, 184 (2021). https://doi.org/10.1186/s13662-021-03316-w. 1–17
Thabet, S.T.M., Abdo, M.S., Shah, K., Abdeljawad, T.: Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative. Results Phys. 19, 103507 (2020). https://doi.org/10.1016/j.rinp.2020.103507
Thabet, S.T.M., Dhakne, M.B.: On boundary value problems of higher order abstract fractional integro-differential equations. Int. J. Nonlinear Anal. Appl. 7, 165–184 (2016)
Thabet, S.T.M., Dhakne, M.B.: On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions. Malaya J. Mat. 7, 20–26 (2019). https://doi.org/10.26637/MJM0701/0005
Thabet, S.T.M., Dhakne, M.B., Salman, M.A., Gubran, R.: Generalized fractional Sturm-Liouville and Langevin equations involving Caputo derivative with nonlocal conditions. Prog. Fract. Differ. Appl. 6, 225–237 (2020). https://doi.org/10.18576/pfda/060306
Thabet, S.T.M., Matar, M.M., Salman, M.A., Samei, M.E., Vivas-Cortez, M., Kedim, I.: On coupled snap system with integral boundary conditions in the G-Caputo sense. AIMS Math. 8(6), 12576–12605 (2023). https://doi.org/10.3934/math.2023632
Acknowledgements
The authors T. Abdeljawad and A. Khan would like to thank Prince Sultan University for the support through the TAS research lab. This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444). The authors express their gratitude to the dear unknown referees for their helpful suggestions that improved the final version of this paper.
Funding
This work was conducted during my work at University of Lahej, and there is no funding provided for this work.
Author information
Authors and Affiliations
Contributions
All authors have equal contributions. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Abdeljawad, T., Thabet, S.T.M., Kedim, I. et al. A higher-order extension of Atangana–Baleanu fractional operators with respect to another function and a Gronwall-type inequality. Bound Value Probl 2023, 49 (2023). https://doi.org/10.1186/s13661-023-01736-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01736-z
Keywords
- Fractional differential equations
- Fractional calculus
- Nonsingular fractional operators
- Picard’s iterative method