- Research
- Open Access
- Published:
Solutions to a \((p(x),q(x))\)-biharmonic elliptic problem on a bounded domain
Boundary Value Problems volume 2023, Article number: 53 (2023)
Abstract
Using variational methods and critical point results, we prove the existence and multiplicity of weak solutions of a \((p(x),q(x))\)-biharmonic elliptic equation along with a singular term under Navier boundary conditions.
1 Introduction
One of the important applied problems in analytical methods is solving the singular boundary value problems for differential equations. Singular problems have been intensively studied in the last decades. They arise naturally and repeatedly in physical models, often because of the coordinate system. These kinds of problems also appear in glacial advance, in transport of coal slurries down conveyor belts and in some other geophysical and industrial contents [8, 13, 21].
In the present paper, we consider the following \((p(x),q(x))\)-biharmonic problem
where \(\Omega \subset \mathbb{R}^{N}\) (\(N>2\)) is a bounded domain with boundary of class \(C^{1}\); \(p, q\in C_{+}(\overline{\Omega})\) satisfying the following inequalities
And,
denotes \(r(x)\)-biharmonic operator for \(r\in \{p,q\}\); \(\theta \in L^{\infty }(\Omega )\) is a real function with \(\operatorname*{ess\inf}_{x \in \overline{\Omega}}\theta (x)>0\); s is a constant such that \(1< s< N/2\); \(\lambda >0 \) is a real parameter, and \(f:\Omega \times \mathbb{R}\to \mathbb{R}\) is a Carathéodory function, which holds the following growth condition:
for \((x,s) \in \Omega \times \mathbb{R}\), where \(a_{1}\) and \(a_{2}\) are positive constants and \(\gamma \in C(\Omega )\) such that
In 2014, the existence of multiple weak solutions for the following nonlinear elliptic problem with the Navier boundary value involving the p-biharmonic operator was studied [4]
where Ω is an open bounded subset of \(\mathbb{R}^{n}\) with a smooth enough boundary ∂Ω, λ is a positive parameter, and f is a suitable continuous function defined on the set \(\overline{\Omega}\times \mathbb{R}\).
The existence of the solutions to the following weighted \((p(x), q(x))\)-Laplacian problem consisting of a singular term
has been proved [17], where \(\Omega \subset \mathbb{R}^{N} \) is a bounded domain with smooth boundary, \(a,b\in L^{\infty }(\Omega )\) are positive functions with \(a(x)\geq 1\) a.e. on Ω; \(\lambda >0 \) is a real parameter, \(f:\Omega \times \mathbb{R}\to \mathbb{R}\) is a Carathéodory function satisfying the following growth condition
for all \((x,t)\in \Omega \times \mathbb{R}\). See also [2, 3] and the references therein. The existence of at least one positive radial solution of the p-biharmonic problem
with the Navier boundary condition on a Korányi ball was proved [25] via a variational principle, where \(w\in A_{s}\) is a Muckenhoupt weight function, and \(\Delta ^{2}_{\mathbb{H}^{n}, p}\) is the Heisenberg p-biharmonic operator.
The purpose of this paper is to prove the existence and multiplicity of weak solutions to the problem (1.1).
The structure of the paper is as follows: in Sect. 2, we recall some basic facts, which will be used later, and we also introduce our main tools. In Sect. 3, the existence of one weak solution for the problem (1.1) is proved; in Sect. 4, the existence of multiple weak solutions for the problem (1.1) is verified.
2 Basic definitions and preliminary results
Through the paper, we assume that \(\Omega \subset \mathbb{R}^{N}\) (\(N>2\)) is a bounded domain with boundary of class \(C^{1}\); \(p,q \in C(\overline{\Omega})\), which hold the following inequalities
where
for \(r\in \{p,q\}\). We denote the variable exponent Lebesgue space by \(L^{p(x)}(\Omega )\), i.e.,
with the Luxemburg norm [10]
For any \(u\in L^{p(x)}(\Omega )\) and \(v \in L^{p' (x)}(\Omega )\), where \(L^{p' (x)}(\Omega )\) is the conjugate space of \(L^{p (x)}(\Omega )\), the Hölder type inequality
holds true.
Following the authors of [22], for any \(\kappa >0\), we put
and,
for \(r\in C_{+}(\Omega )\). The following proposition is well-known in Lebesgue spaces with variational exponent (for instance, see [15, Proposition 2.7]).
Proposition 2.1
For each \(u\in L^{p(x)}(\Omega )\), we have
Proposition 2.2
([12])
Let \(p, q\in C_{+}(\overline{\Omega})\). If \(q(x)\leq p(x)\), a.e. on Ω, then \(L^{p(x)}(\Omega )\hookrightarrow L^{q(x)}(\Omega )\); moreover, there is a constant \(k_{q}\) such that
We denote the variable exponent Sobolev space \(W^{k,p(x)}(\Omega )\) for \(k=1,2\), by
that in which \(D^{\alpha} u= \frac{\partial ^{\vert \alpha \vert}}{\partial ^{\alpha _{1}}x_{1}...\partial ^{\alpha _{N}}x_{N}}\) where \(\alpha =(\alpha _{1},\alpha _{2},\ldots ,\alpha _{N})\) is a multi-index with \(\vert \alpha \vert =\Sigma _{i=1}^{N} \alpha _{i}\). The space \(W^{k,p(x)}(\Omega )\) with the norm
is a Banach separable and reflexive space. We assume that \(W_{0}^{1,p(x)}(\Omega )\) is the closure of \(C_{0}^{\infty}(\Omega )\) in \(W^{1,p(x)}(\Omega )\), which has the norm \(\Vert u \Vert _{1,p(x)}=| D u |_{p(x)}\). In what follows, we set
endowed with the norm
Remark 2.1
As a consequence of Proposition 2.2, if \(q(x) \leq p(x)\) a.e on Ω, one has
In a special case,
On the other hand, because \(p^{-}>N/2\), so
Thus, the embedding \(X\hookrightarrow C^{0}(\overline{\Omega})\) is compact; moreover, there exists constant \(L>0 \) such that
where \(| u |_{\infty}=\sup_{x\in \Omega} u(x)\).
Here, we recall the classical Hardy-Rellich inequality mentioned in [9].
Lemma 2.1
Let \(1< s< N/2\). Then for \(u \in W^{1,s}_{0}(\Omega )\cap W^{2,s}(\Omega )\), one has
where \(\mathcal{H}_{s}:= (\frac {N(s-1)(N-2s)}{s^{2}})^{s}\).
We mean by weak solution of the problem (1.1) is as follows.
Definition 2.1
We say that function \(u \in X\) is a weak solution of Problem (1.1) if \(u =\Delta u= 0\) on ∂Ω and
for every \(v \in X\).
We continue by introducing the main tools of this paper. Do to this, we need the following definition.
Definition 2.2
Let Φ and Ψ be two continuously Gâteaux differentiable functionals defined on a real Banach space X and fix \(r \in \mathbb{R}\). The functional \(I :=\Phi - \Psi \) is said to verify the Palais-Smale condition cut of upper at r (in short \((PS)^{[r]}\)) if any sequence \(\{u_{n}\}_{n \in \mathbb{N}} \in X\) such that
-
\({I(u_{n})}\) is bounded;
-
\(\lim_{n\rightarrow +\infty} \Vert I^{\prime}(u_{n})\Vert _{X^{\ast}}=0\);
-
\(\Phi (u_{n})< r\) for each \(n \in \mathbb{N}\);
has a convergent subsequence.
If \(r= \infty \), we say that the functional \(I :=\Phi - \Psi \) verify the Palais-Smale condition.
The following is one of the main tools of the next section established in [6].
Theorem 2.1
Let X be a real Banach space, and let \(\Phi , \Psi : X\longrightarrow \mathbb{R} \) be two continuously Gâteaux differentiable functionals such that
Assume that there exists positive constant \(r \in \mathbb{R}\) and \(\overline{x} \in X\) with \(0<\Phi (\overline{x})<r\) such that
and for each
the functional \(I_{\lambda}= \Phi -\lambda \Psi \) satisfies the \((PS)^{[r]}\)-condition, then for each \(\lambda \in \Lambda \), there is \(x_{\lambda} \in \Phi ^{-1}(]0 , r[)\) such that \(I_{\lambda}(x_{\lambda}) \leqslant I_{\lambda}(x)\) for all \(x \in \Phi ^{-1}(]0 , r[)\) and \(I_{\lambda}^{\prime}(u_{\lambda})=0\).
The other tool is the following abstract result proved in [5].
Theorem 2.2
Let X be a real Banach space and \(\Phi , \Psi :X \to \mathbb{R} \) be two continuously Gâteaux differentiable functionals such that Φ is bounded from below and \(\Phi (0)= \Psi (0)=0\). Fix \(r>0\) and assume that for each
the functional \(I_{\lambda}:=\Phi -\lambda \Psi \) satisfies the Palais-Smale condition, and it is unbounded from below. Then, for each
the functional \(I_{\lambda}\) admits two distinct critical points.
The other tool is the following theorem from [7].
Theorem 2.3
Let X be a reflexive real Banach space, \(\Phi :X \to \mathbb{R} \) be a coercive, continuously Gâteaux differentiable and sequentially weakly lower semi-continuous functional whose Gâteaux derivative admits a continuous inverse on \(X^{*}\), \(\Psi :X \to \mathbb{R} \) be a continuously Gâteaux differentiable whose Gâteaux derivative is compact such that
Assume that there exist \(r>0\) and \(\bar{x}\in X\), with \(r<\Phi (\bar{x})\), such that
- \((i)\):
-
\(\frac{\sup_{\Phi (x)< r}\Psi (x)}{r}< \frac{\Psi (\overline{x})}{\Phi (\overline{x})}\);
- \((ii)\):
-
for each \(\lambda \in \Lambda _{r}:={] \frac{\Phi (\overline{x})}{\Psi (\overline{x})}, \frac{r}{\sup_{\Phi (x)< r}\Psi (x)}[}\), the functional \(I_{\lambda}:=\Phi -\lambda \Psi \) is coercive.
Then, for each \(\lambda \in \Lambda _{r}\), the functional \(\Phi -\lambda \Psi \) has at least three distinct critical points in X.
In the sequel, we put
Obviously, there exists \(x^{0}=(x^{0}_{1},\ldots ,x^{0}_{N})\in \Omega \) such that
3 Existence result
Let \(\Phi :X \to \mathbb{R} \) be a functional defined by
where \(1< s< N/2\), and the inequalities (2.1) hold.
Remark 3.1
Under the above assumptions, we gain
where \(K=\max \lbrace \frac{2}{s}, \frac{2 | \theta | _{\infty} }{s\mathcal{H}_{s}} \rbrace \).
Proof
Because \(1< s< N/2< q^{-}\leq q^{+}< p^{-}\leq p^{+}\), we have
By applying the Hardy’s inequality, we gain
where \(K=\max \lbrace \frac{2}{s}, \frac{2 | \theta | _{\infty} }{s\mathcal{H}_{s}} \rbrace \), and then the proof is completed. □
It is known that Φ is a continuously Gâteaux differentiable functional; moreover,
for \(u,v\in X\) (see [18]). Let \(f:\Omega \times \mathbb{R}\to \mathbb{R}\) be a Carathéodory function with the growth condition (1.2) and define
Then the functional \(\Psi :X\to \mathbb{R} \) with
for every \(u\in X\) is continuously Gâteaux differentiable with the following compact derivative
for every u, v in X (see [1]). Now, define
If \(I_{\lambda}'(u)=0\), we have
for every \(u,v \in X\), then the critical points of \(I_{\lambda}\) are the weak solutions of Problem (1.1).
Lemma 3.1
The functional \(I_{\lambda}\) verifies the Palais-Smale condition for every \(\lambda >0\).
Proof
Let \(\{u_{n} \}\subseteq X\) be a Palais-Smale sequence, that is
We prove that \(\{u_{n} \}\subseteq X\) contains a convergent subsequence. By using (1.2), the Hölder inequality, and (2.4), we have
where \(|\Omega |\) is the Lebesgue measure of Ω. So, for n large enough, from Remark 3.1 and (3.3), one has
Then, by applying (3.2), we have
since \(\gamma (x)\leq p(x)\), it follows that \(\{u_{n} \}\) is bounded. By the Eberlian-Smulyan theorem, passing to a subsequence if necessary, we can assume that \(u_{n} \rightharpoonup u\). Then \(\Psi ^{\prime } (u_{n})\longrightarrow \Psi ^{\prime } (u)\) because of compactness. Since \(I^{\prime }_{\lambda} (u_{n})=\Phi ^{\prime }(u_{n})- \lambda \Psi ^{\prime }(u_{n}) \longrightarrow 0\), then \(\Phi ^{\prime }(u_{n}) \longrightarrow \lambda \Psi ^{\prime }(u_{n})\). By [11, Theorem 3.1], \(\Phi ^{\prime }\) is a homeomorphism, then \(u_{n} \longrightarrow u\), and so \(I_{\lambda}\) satisfies the Palais-Smale compactness condition. □
The next is one of the main results of this paper.
Theorem 3.1
Let \(f:\Omega \times \mathbb{R} \longrightarrow \mathbb{R}\) be Carathéodory function satisfying (1.2). Assume that there exist \(r>0\) and \(\delta >0\) such that
where \(m:=\frac {\pi ^{N/2}}{N/2\Gamma (N/2)}\) is the measure of unit ball of \(\mathbb{R}^{N}\), and Γ is the Gamma function. Then, for each \(\lambda \in {]A_{r,\delta},B_{r}[}\), where
and
Problem (1.1) admits at least one non-trivial weak solution.
Proof
Using Theorem 2.1, one can prove the theorem. Thus, we need to show that the hypotheses of Theorem 2.1 are hold.
First of all, for the given \(\lambda >0\), from Lemma 3.1, the functional \(I_{\lambda}\) satisfies the \((PS)^{[r]}\) condition. Let \(r>0\) and \(\delta >0\) be as in (3.4) and the function \(w \in X\) be defined by
where \(x=(x_{1},\ldots ,x_{N})\in \Omega \). Then,
So, by applying Remark 3.1, one has
then, we gain \(\Phi (w)< r\). Plus that, one has
Then, we deduce that
On the other side, using Remark 3.1, for each \(u \in \Phi ^{-1} ( (-\infty ,1 [ )\), we have
Hence, from (3.6) and (3.3), we deduce
Therefore, the conditions of Theorem 2.1 are verified. So, for each
the functional \(I_{\lambda}\) has at least one non-zero critical point, which is the weak solution of Problem (1.1). □
4 Multiplicity of weak solutions
Theorem 4.1
Let \(f:\Omega \times \mathbb{R} \longrightarrow \mathbb{R}\) be Carathéodory function satisfying Condition (1.2), and there exist constants \(\mu >p^{+}\), \(D>0\) such that
for all \(x \in \Omega \) and \(\vert t \vert >D\). Then, for each \(\lambda \in {]0,B_{r}[}\), where
the problem (1.1) admits at least two distinct weak solution.
Proof
By hypothesis (4.1) and simple computations, there exists \(\alpha ,\beta >0\) such that
for all \(x \in \Omega \) and \(\vert t \vert >D\). We show that \(I_{\lambda}\) is unbounded from below for \(r>1\)
since \(\mu >p^{+}>s\), so, \(I_{\lambda}\) is unbounded from below, and from Lemma 3.1, the functional \(I_{\lambda}\) verifies the Palais-Smale condition, so all hypotheses of Theorem 2.2 are verified. Then, for each \(\lambda \in {]0,B_{r}[}\), \(I_{\lambda}\) admits at least two distinct critical points that are weak solutions of Problem (1.1). □
Theorem 4.2
Let \(f:\Omega \times \mathbb{R} \longrightarrow \mathbb{R}\) be a Carathéodory function satisfying (1.2). Then, for each \(\lambda \in {]A_{r,\delta},B_{r}[}\), where \(A_{r,\delta}\) and \(B_{r}\) are given as in Theorem 3.1, those are
and
the problem (1.1) has at least three weak solutions.
Proof
The functionals Φ and Ψ defined in previous section satisfy all regularity assumptions requested in Theorem 2.3. So, our aim is to verify \((i)\) and \((ii)\) of Theorem 2.3. Put
and consider \(w \in X\) as above, that is
So, by applying Remark 3.1, we gain
Therefore, the assumption \((i)\) of Theorem 2.3 is satisfied. Now, we prove that the functional \(I_{\lambda}\) is coercive for all \(\lambda >0\).
From (3.3), we have
and, from Remark 3.1, \(\frac{1}{p^{+}} \Vert u \Vert ^{\check{p}} \leq \Phi (u)\). So, we gain that
since \(\check{p}> \hat{\gamma}>1\), the functional \(I_{\lambda}\) is coercive. Then condition \((ii)\) holds. So, all hypotheses of Theorem 2.3 are verified. Then, for each \(\lambda \in {]A_{r,\delta},B_{r}[}\), the functional \(I_{\lambda}\) admits at least three distinct critical points that are weak solutions of Problem (1.1). □
Remark 4.1
An interesting problem is to probe the existence and multiplicity of solutions of this equation under the Steklov-type boundary conditions [16, 19, 20, 24, 26] or in the Heisenberg Sobolev spaces and Orlicz-Sobolev spaces. Interested readers can see details of these spaces in [14, 22, 23, 25] and references therein.
Availability of data and materials
Not applicable.
References
Allaoui, M., El Amrouss, A.R., Ourraoui, A.: Existence and multiplicity of solutions for a Steklov problem involving the \(p(x)\)-Laplace operator. Electron. J. Differ. Equ. 2012, 132, 1–12 (2012)
Behboudi, F., Razani, A.: Two weak solutions for a singular \((p, q)\)-Laplacian problem. Filomat 33(11), 3399–3407 (2019)
Behboudi, F., Razani, A., Oveisiha, M.: Existence of a mountain pass solution for a nonlocal fractional \((p, q)\)-Laplacian problem. Bound. Value Probl. 2020(1), 1 (2020). https://doi.org/10.1186/s13661-020-01446-w
Bisci, G.M., Repovš, D.: Multiple solutions of p-biharmonic equations with Navier boundary conditions. Complex Var. Elliptic Equ. 59(2), 271–284 (2014)
Bonanno, G.: A critical point theorem via the Ekeland variational principle. Nonlinear Anal. 75, 2992–3007 (2012)
Bonanno, G., Candito, P., D’Aguì, G.: Variational methods on finite dimensional Banach spaces and discrete problems. Adv. Nonlinear Stud. 14(4), 915–939 (2014)
Bonanno, G., Marano, S.A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition. Appl. Anal. 89, 1–18 (2010)
Cohen, Y., Galiano, G.: On a singular perturbation problem arising in the theory of evolutionary distributions. Comput. Math. Appl. 69, 145–156 (2015)
Davis, E.B., Hinz, A.M.: Explicit constants for Rellich inequalities in \(L_{p} (\Omega ) \). Math. Z. 227, 511–523 (1998)
Evans, L.C.: Partial Diffrential Equations. Am. Math. Soc., Providence (1983)
Fan, X., Zhang, Q.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal. 12, 1843–1852 (2003)
Fan, X.-L., Zhao, D.: On the generalized Orlicz-Sobolev space \(W^{k,p(x)}(\Omega )\). J. Gansu Educ. College 12(1), 1–6 (1998)
Hamad, A., Tadi, M., Radenkovic, M.: A numerical method for singular boundary-value problems. J. Appl. Math. Phys. 2(9), 882–887 (2014)
Heidari, S., Razani, A.: Infinitely many solutions for \((p(x),q(x))\)-Laplacian-like systems. Commun. Korean Math. Soc. 36(1), 51–62 (2021)
Karagiorgos, Y., Yannakaris, N.: A Neumann problem involving the \(p(x)\)-Laplacian with \(p=\infty \) in a subdomain. Adv. Calc. Var. 9(1), 65–76 (2016)
Khaleghi, A., Razani, A.: Existence and multiplicity of solutions for \(p(x)\)-Laplacian problem with Steklov boundary condition. Bound. Value Probl. 2022, 39, 11 pages (2022). https://doi.org/10.1186/s13661-022-01624-y
Mahshid, M., Razani, A.: A weak solution for a \((p (x), q (x)) \)-Laplacian elliptic problem with a singular term. Bound. Value Probl. 1, 1–9 (2021)
Montefusco, E.: Lower semicontinuity of functional via concentration-compactness principle. J. Math. Anal. Appl. 263, 264–276 (2001)
Musbah, Z., Razani, A.: Multiple solutions for a fourth order problem involving Leray-Lions type operator. São Paulo J. Math. Sci. 16, 1343–1354 (2022)
Musbah, Z., Razani, A.: A class of biharmonic nonlocal quasilinear systems consisting of Leray-Lions type operators with Hardy potentials. Bound. Value Probl. 1, 1–14 (2022)
Nachman, A., Callegari, A.: A nonlinear singular boundary value problem in the theory of pseudoplasticuids. SIAM J. Appl. Math. 38(2), 275–281 (1980)
Ragusa, M.A., Razani, A., Safari, F.: Existence of radial solutions for a \(p(x)\)-Laplacian Dirichlet problem. Adv. Differ. Equ. 1, 1–14 (2021)
Razani, A., Safari, F.: Existence of radial weak solutions to Steklov problem involving Leray-Lions type operator. J. Nonlinear Math. Phys. (2022). https://doi.org/10.1007/s44198-022-00078-1. 17 pages
Razani, A., Safari, F.: Existence of solutions for a \((p, q) \)-Laplace equation with Steklov boundary conditions. Int. J. Nonlinear Anal. Appl. (2022). https://doi.org/10.22075/ijnaa.2022.7160
Safari, F., Razani, A.: Existence of radial solutions for a weighted p-biharmonic problem with Navier boundary condition on the Heisenberg group. Math. Slovaca 72(3), 677–692 (2022). https://doi.org/10.1515/ms-2022-0046
Soltani, T., Razani, A.: Solutions to some systems of nonlocal problems on a bounded domain. Iran. J. Sci. Technol. Trans. A, Sci. 46, 1461–1468 (2022). https://doi.org/10.1007/s40995-022-01356-9
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Khaleghi, A., Razani, A. Solutions to a \((p(x),q(x))\)-biharmonic elliptic problem on a bounded domain. Bound Value Probl 2023, 53 (2023). https://doi.org/10.1186/s13661-023-01741-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01741-2
MSC
- 35J60
- 35J50
- 35J20
- 35J75
- 35J91
- 35J92
Keywords
- \((p(x),q(x))\)-Biharmonic elliptic problem
- Singular term
- Variational methods