Skip to main content

Existence and H-U stability of a tripled system of sequential fractional differential equations with multipoint boundary conditions

Abstract

In this paper, we introduce a new coupled system of sequential fractional differential equations with coupled boundary conditions. We establish existence and uniqueness results using the Leray–Schauder alternative and Banach contraction principle. We examine the stability of the solutions involved in the Hyers–Ulam type. As an application, we present a few examples to illustrate the main results.

1 Introduction

Over the last few decades, fractional calculus (FC) has evolved as an interesting subject of research. The FC methods greatly improved the study of integer-order mathematical models associated with real-world problems in a variety of scientific and technological disciplines, including finance, control theory [1], ecology [2], signal and image processing [3], blood flow phenomena [4], biophysics [5], and chaotic synchronization [6]. Fractional differential equations (FDEs) are more effective than classic integer-order differential equations (DEs) at representing real-world phenomena such as the knowledge and heredity properties of various materials. As a result, numerous scholars have examined FDEs in the mathematical modeling of a wide range of physical and technical processes [713]. Along with Riemann–Liouville, these operators are referred to in the literature as Grünwald–Letnikov, Caputo, Hilfer, and Hadamard.

Coupled systems with fractional differential equations are very important to study since they appear to have a wide range of problems in a variety of real-world scenarios. Scholars have also done numerous investigations of coupled systems of FDEs. Consider the following example: some of the most current results on the problem are contained in a series of papers [11, 1417] and the references given in [1822].

Stability analysis is another field of research that has received much attention to fractional differential equations in the last few decades. Various kinds of stability have been investigated in the literature, including Mittag-Leffler, Lyapunov, and others. To our knowledge, the Ulam–Hyers stability of a coupled system of fractional differential equations has been studied very rarely.

Ulam and Hyers discovered a novel type of stability called the Hyers–Ulam stability. This type of research can aid in understanding biochemical processes and fluid motion, as well as semiconductors, population dynamics, heat conduction, and elasticity. This paper summarizes research on integral and nonlocal boundary value problems for coupled FDEs. The papers [16, 2329] provide more insight into the theoretical approaches to the topic.

Zada, Yar, and Li [26] studied the nonlinear sequential coupled system of Caputo fractional differential equations

$$ \textstyle\begin{cases} (\mathcal{D}^{\eta }+ \varphi \mathcal{D}^{\eta -1}) \mathfrak{p}( \varsigma )= \hat{\mathcal{F}_{1}} (\varsigma ,\mathfrak{p}( \varsigma ),\mathfrak{q}(\varsigma )), \quad 2< \eta \leq 3, \\ (\mathcal{D}^{\xi}+ \varphi \mathcal{D}^{\xi -1})\mathfrak{q}( \varsigma )= \hat{\mathcal{F}_{2}}(\varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma )), \quad 2< \xi \leq 3, \\ \mathfrak{p}(0)={0}, \qquad \mathfrak{p}(T)= \sum_{j=1}^{k} \eta _{j} \mathcal{I}^{\rho _{j}} \mathfrak{q}(\varrho _{j}), \\ \mathfrak{q}(0)={0}, \qquad \mathfrak{q}(T)= \sum_{j=1}^{k} \beta _{j} \mathcal{I}^{\gamma _{j}} \mathfrak{q}(\varpi _{j}), \end{cases} $$

where \({}^{c}\mathcal{D}^{\eta}\) and \({}^{c}\mathcal{D}^{\xi}\) denote the Caputo fractional derivatives of orders η and ξ, \(\mathcal{I}^{\rho _{j}}\)and \(\mathcal{I}^{\gamma _{j}}\) are the Riemann–Liouville fractional integrals of orders \({\rho _{j}} ,{\gamma _{j}} > 0\), \(\beta _{j},\eta _{j} \in (0, T)\), \(k \in \mathbbm{(}\mathbb{R}\mathbbm{)}^{+}\), \(\hat{\mathcal{F}_{1}}\), \(\hat{\mathcal{F}_{2}} : [0, T] \times \mathbb{R}\in \mathbb{R}^{2} \rightarrow \mathbb{R}\), and \({\rho _{j}} ,{\gamma _{j}} \in \mathbb{R}\), \(i = 1, 2, \ldots , n\), \(j = 1, 2, \ldots , m\), are real constants. The existence of solutions is established by the Banach contraction principle, and the uniqueness of solutions is established by the Leray–Schauder alternative. The Hyers–Ulam stability was also considered.

In [27] the authors studied a new kind of coupled system of three fractional differential equations with coupled boundary conditions:

$$ \textstyle\begin{cases} {}^{C}{D}_{a^{+}}^{\eta }u(\varsigma )= \rho (\varsigma ,u(\varsigma ), \hat{\mathcal{G}_{1}}(\varsigma ),\hat{\mathcal{G}_{2}}(\varsigma )),\quad 1< \eta \leq 2, \varsigma \in [a,b], \\ {}^{C}{D}_{a^{+}}^{\xi }\hat{\mathcal{G}_{1}}(\varsigma )= \varphi ( \varsigma ,u(\varsigma ),\hat{\mathcal{G}_{1}}(\varsigma ), \hat{\mathcal{G}_{2}}(\varsigma )), \quad 1< \xi \leq 2, \varsigma \in [a,b], \\ {}^{C}{D}_{a^{+}}^{\zeta }\hat{\mathcal{G}_{2}}(\varsigma )= \psi ( \varsigma ,u(\varsigma ),\hat{\mathcal{G}_{1}}(\varsigma ), \hat{\mathcal{G}_{2}}(\varsigma )),\quad 2< \zeta \leq 3, \varsigma \in [a,b], \\ u(a)=u_{0}, \qquad u(b)= \sum_{i=1}^{m} p_{i} \hat{\mathcal{G}_{1}}(\alpha _{i}), \\ \hat{\mathcal{G}_{1}}(a)=0, \qquad \hat{\mathcal{G}_{1}}(b)= \sum_{j=1}^{n} q_{j} \hat{\mathcal{G}_{2}}(\beta _{j}), \\ \hat{\mathcal{G}_{2}}(\xi _{1})=0, \qquad \hat{\mathcal{G}_{2}}(\xi _{2})=0,\qquad \hat{\mathcal{G}_{2}}(b)= \sum_{k=1}^{l}r_{k} u( \gamma _{k}), \\ a< \xi _{1} < \xi _{2} < \alpha _{1}< \cdots < \alpha _{m}< \beta _{1}< \cdots < \beta _{n}< \gamma _{1}< \cdots < \gamma _{l}< b, \end{cases} $$

where \({}^{C}{D}^{\chi }\) is the Caputo fractional derivative of order \(\chi \in \{\eta ,\xi ,\zeta \}\), ρ, φ, \(\psi :[a,b]\times \mathbb{R}\times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) are given functions, and \(p_{i},q_{j}, r_{k} \in \mathbb{R}\), \(i=1,\ldots ,m\), \(j=1,\ldots ,n\), \(k=1, \ldots ,l\). The existence is proved via the Leray–Schauder alternative, whereas the existence of a unique solution is established via the Banach contraction mapping principle. We suggest the reader a series of publications on FDE-coupled systems [27, 28, 3034]. In the last two decades, the fractional-order differential equations appeared and began to study the predator–prey models in the fractional-order form. In [35] the authors studied the predator–prey model of Holling-type II with harvesting and predator in disease

$$ \textstyle\begin{cases} \frac{dx}{dt} = rx(1-\frac{x}{k})-\frac{ayx}{m+x}-azx-h_{1}x, \\ \frac{dy}{dt} = bxy+\alpha yz+\frac{\gamma yx}{m+x}-h_{2}y, \\ \frac{dz}{dt} = bzx-\alpha yz-dz, \end{cases} $$

where x, y, and z are the prey, infected predator, and susceptible predator, respectively, and r, k, a, b, γ, α, \(h_{1}\), \(h_{2}\), d are assumed to be positive constants. They have studied the existence of a positive biological equilibrium and the uniform boundedness of the system. Local stability conditions are also defined based on Routh–Hurwitz. In [36] the authors discussed the fractional-order model of a two-prey-one-predator system

$$ \textstyle\begin{cases} {{}^{{c}}{D}}^{\alpha}_{*}x_{1}(t) = f_{1}(x_{1},x_{2},x_{3}) = a x_{1}(t)(1-x_{1}(t))-x_{1}(t)x_{3}(t)+x_{1}(t)x_{2}(t)x_{3}(t), \quad t\in [0,T], \\ {{}^{{c}}{D}}^{\alpha}_{*}x_{2}(t) = f_{2}(x_{1},x_{2},x_{3}) = b x_{2}(t)(1-x_{2}(t))-x_{2}(t)x_{3}(t)+x_{1}(t)x_{2}(t)x_{3}(t), \quad t\in [0,T], \\ {{}^{{c}}{D}}^{\alpha}_{*}x_{3}(t) = f_{3}(x_{1},x_{2},x_{3}) = -c x_{3}^{2}(t)+d x_{1}(t)x_{3}(t)+e x_{2}(t)x_{3}(t), \quad t\in [0,T], \end{cases} $$

where c is the death rate of the predator, \(0 \leq \alpha \leq 1\), \(x_{1}(t)\geq 0\), \(x_{2}(t)\geq 0\), \(x_{3}(t)\geq 0\), and a, b, c, d, and e are all positive constants. They have studied the local asymptotic stability of the equilibrium solutions of the proposed model. One of the most important disciplines in the study of fractional-order differential equations is the theory of existence, uniqueness, and stability of solutions. In the present paper, inspired by the above-mentioned works, we introduce and investigate the existence and stability of solutions for the following coupled system of sequential fractional differential equations with nonlocal multipoint coupled boundary conditions:

$$ \textstyle\begin{cases} ({}^{c}{\mathcal{D}}^{\eta }+ \varphi {}^{c}{\mathcal{D}}^{\eta -1}) \mathfrak{p}(\varsigma )= \hat{\mathcal{F}_{1}} (\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )), \quad 1< \eta \leq 2, \\ ({}^{c}{\mathcal{D}}^{\xi}+ \varphi {}^{c}{\mathcal{D}}^{\xi -1}) \mathfrak{q}(\varsigma )= \hat{\mathcal{F}_{2}}(\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )),\quad 1< \xi \leq 2, \\ ({}^{c}{\mathcal{D}}^{\zeta}+ \varphi {}^{c}{\mathcal{D}}^{\zeta -1}) \mathfrak{r}(\varsigma )= \hat{\mathcal{F}_{3}} (\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) ), \quad 2< \zeta \leq 3, \\ \mathfrak{p}(0)={0}, \qquad \mathfrak{p}(1)=\beta _{1} \sum_{j=1}^{k-2} w_{j} \mathfrak{q}(\varrho _{j}), \\ \mathfrak{q}(0)={0}, \qquad \mathfrak{q}(1)= \beta _{2} \sum_{j=1}^{k-2} v_{j} \mathfrak{r}(\varpi _{j}), \\ \mathfrak{r}(0)=0, \qquad \mathfrak{r}'(0)=0, \qquad \mathfrak{r}(1)= \beta _{3} \sum_{j=1}^{k-2}\vartheta _{j} \mathfrak{p}( \rho _{j}), \\ 0 < \varrho _{1} < \varpi _{1} < \rho _{1}< \varrho _{2} < \varpi _{2} < \rho _{2} \ldots < \varrho _{k-2} < \varpi _{k-2} < \rho _{k-2}< 1, \end{cases} $$
(1)

where \({}^{c}{\mathcal{D}}^{\chi}\) is the Caputo fractional derivative (CFD) of order \(\chi \in \{\eta ,\xi ,\zeta \}\), f, g, \(h :[0,1]\times \mathbb{R}\times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \) are given functions, φ is a positive real number, and \(w_{j},v_{j}, \vartheta _{j} \in \mathbb{R}\), \(j=1,\ldots ,k-2\), \(\beta _{1}\), \(\beta _{2}\), and \(\beta _{3}\) are real constants.

The CFD \({}^{c}\mathcal{D}^{\chi}\) of order χ is defined by

$$\begin{aligned} &{}^{C}\mathcal{D}^{\chi}v{(\varsigma )}= \frac{1}{\Gamma (\mathfrak{n}-\chi )} \int ^{\varsigma}_{0} ( \varsigma -\mathfrak{s})^{\mathfrak{n}-\chi -1} \biggl( \frac{d}{d\mathfrak{s}} \biggr)^{\mathfrak{n}}v(\mathfrak{s})\,d\mathfrak{s},\quad \mathfrak{n}-1< \chi < \mathfrak{n}, \\ & \mathfrak{n} = [\chi ]+1, \end{aligned}$$

and the Riemann–Liouville integral of fractional order χ is defined by

$$\begin{aligned} {}^{\mathrm{RL}}\mathcal{I}^{\chi}v{(\varsigma )}=\frac{1}{\Gamma (\chi )} \int ^{\varsigma}_{0} (\varsigma -\mathfrak{s})^{\chi -1}v( \mathfrak{s})\,d\mathfrak{s},\quad \chi > 0, \end{aligned}$$

This investigation is unique in that it also investigates a coupled system of three sequential fractional differential equations (SFDEs) of various orders in an arbitrary domain with multipoint boundary conditions. The multipoint boundary conditions, as we can see, are cyclic in nature and occur in a variety of nonlocal areas. As a result, our findings are more general and have a considerable impact on current research. Existence and uniqueness results can be obtained using fixed point theory. The Hyers–Ulam stability study is also performed.

The rest of the paper is organized as follows. In Sect. 2, we discuss several fundamental definitions and lemmas of fractional calculus. Additionally, we prove an auxiliary lemma involving a linear function of (1), which is necessary for obtaining the main results.

Section 3 summarizes the main results. We obtain the existence of a solution to the problem at hand using the Leray–Schauder alternative and also verify the existence of a unique solution using Banach’s contraction mapping principle.

In Sect. 4, we prove that the proposed problem (1) is Ulam–Hyers stable under certain conditions.

In Sect. 5, we provide examples to illustrate the theoretical results.

2 Preliminaries

Here we recall some notations and definitions of fractional calculus [710, 37, 38].

Definition 1

The fractional integral of order α with the lower limit zero for a function \(\mathfrak{f}\) is defined as

$$ I^{\alpha} \mathfrak{f}(\varsigma )= \frac{1}{\varGamma (\alpha )} \int _{0}^{\varsigma} \frac{\mathfrak{f}(s)}{(\varsigma -s)^{1-\alpha}}\,ds,\quad \varsigma > 0 , \alpha > 0, $$
(2)

provided that the right-hand side is pointwise defined on \([0,\infty )\), where Γ is the gamma function defined by \(\varGamma (\alpha ) = \int _{0}^{\infty} \varsigma ^{\alpha -1} e^{- \varsigma}\,d\varsigma \).

Definition 2

The Riemann–Liouville fractional derivative of order \(\alpha > 0 \), \(n-1 < \alpha < n \), \(n \in \mathbb{N}\mathbbm{,} \) is defined as

$$\begin{aligned} D^{\alpha}_{0+} \mathfrak{f}(\varsigma ) = \frac{1}{\varGamma (n-\alpha )} \biggl(\frac{d}{d\varsigma} \biggr)^{n} \int _{0}^{\varsigma} (\varsigma -s)^{n-\alpha -1} \mathfrak{f}(s)\,ds, \quad \varsigma > 0, \end{aligned}$$
(3)

where the function \(\mathfrak{f}\) has absolutely continuous derivatives up to order \((n-1)\).

Definition 3

The Caputo derivative of order \(r \in {[n-1,n)}\) for a function \(\mathfrak{f} : [0,\infty )\rightarrow \mathbb{R}\) can be written as

$$\begin{aligned} {}^{c}\mathcal{D}^{r}_{0+}\mathfrak{f} {( \varsigma )}=\mathcal{D}^{r}_{0+} \Biggl( {\mathfrak{f}}( \varsigma )-\sum_{k=0}^{n-1} \frac{\varsigma ^{k}}{k!}\mathfrak{f}^{(k)}(0) \Biggr),\quad \varsigma >0 , n-1< r< n. \end{aligned}$$
(4)

Note that the Caputo fractional derivative of order \(r \in {[n-1,n)}\) exists almost everywhere on \([0,\infty )\) if \(\mathfrak{f} \in \mathcal{AC}^{n}([0,\infty ),\mathbbm{(}\mathbb{R}\mathbbm{)})\).

Remark 1

If \(\mathfrak{f} \in \mathcal{C}^{n}[0,\infty ) \), then

$$\begin{aligned} ^{c}D^{r}_{0+} \hat{\mathfrak{f}}(\varsigma ) = \frac{1}{\varGamma (n-r)} \int _{0}^{\varsigma } \frac{\mathfrak{f}^{(n)}(s)}{(\varsigma -s)^{r+1-n}}\,ds = I^{n-r} \mathfrak{f}^{(n)} (\varsigma ),\quad \varsigma > 0, n-1 < r < n. \end{aligned}$$

Now we are ready to present an essential solution we obtained for (1).

Lemma 1

Let \(\hat{\mathcal{G}_{1}}, \hat{\mathcal{G}_{2}},\hat{\mathcal{G}_{3}} \in \mathcal{C}[0,1]\) and \(\Upsilon \ne 0\). Then the unique solution of the system

$$ \textstyle\begin{cases} (^{c}\mathcal{D}^{\eta }+ \varphi ^{c}\mathcal{D}^{\eta -1}) \mathfrak{p}(\varsigma )= \hat{\mathcal{G}_{1}}(\varsigma ),\quad 1< \eta \leq 2, \varsigma \in [0,1], \\ (^{c}\mathcal{D}^{\xi}+ \varphi ^{c}\mathcal{D}^{\xi -1})\mathfrak{q}( \varsigma )= \hat{\mathcal{G}_{2}}(\varsigma ), \quad 1< \xi \leq 2, \varsigma \in [0,1], \\ (^{c}\mathcal{D}^{\zeta}+ \varphi ^{c}\mathcal{D}^{\zeta -1}) \mathfrak{r}(\varsigma )= \hat{\mathcal{G}_{3}}(\varsigma ), \quad 2< \zeta \leq 3, \varsigma \in [0,1], \\ \mathfrak{p}(0)={0}, \qquad \mathfrak{p}(1)=\beta _{1} \sum_{j=1}^{k-2} w_{j} \mathfrak{q}(\varrho _{j}), \\ \mathfrak{q}(0)={0}, \qquad \mathfrak{q}(1)= \beta _{2} \sum_{j=1}^{k-2} v_{j} \mathfrak{r}(\varpi _{j}), \\ \mathfrak{r}(0)=0, \qquad \mathfrak{r}'(0)=0,\qquad \mathfrak{r}(1)= \beta _{3} \sum_{j=1}^{k-2}\vartheta _{j} \mathfrak{p}( \rho _{j}), \\ 0 < \varrho _{1} < \varpi _{1} < \rho _{1}< \varrho _{2} < \varpi _{2} < \rho _{2} \ldots < \varrho _{k-2} < \varpi _{k-2} < \rho _{k-2}< 1, \end{cases} $$
(5)

is given by

$$\begin{aligned} &\mathfrak{p}(\varsigma )= \biggl( \frac{1-e^{-\varphi \varsigma}}{\varphi \Upsilon} \biggr) \end{aligned}$$
(6)
$$\begin{aligned} &\hphantom{\mathfrak{p}(\varsigma )=}{} \times \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{p}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \Biggr) \\ &\hphantom{\mathfrak{p}(\varsigma )=}{} -\hat{\mathfrak{A}_{5}}\hat{\mathfrak{A}_{2}} \Biggl( \beta _{2} \sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{p}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \Biggr) \\ &\hphantom{\mathfrak{p}(\varsigma )=}{} + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{3}} \Biggl( \beta _{3} \sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi ( \rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{p}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \Biggr) \Biggr\rbrace \\ & \hphantom{\mathfrak{p}(\varsigma )=}{}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds, \end{aligned}$$
(7)
$$\begin{aligned} &\mathfrak{q}(\varsigma )= \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \Biggl\lbrace \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{ \varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{q}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{q}(\varsigma )=}{} - \frac{1}{\Upsilon} \Biggl[ {\hat{\mathfrak{A}_{1}} \hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}} \Biggl(\beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{q}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \Biggr) \\ &\hphantom{\mathfrak{q}(\varsigma )=}{} - \hat{\mathfrak{A}_{1}}\hat{ \mathfrak{A}_{5}} \mathfrak{A}_{2} \Biggl( \beta _{2}\sum_{j=1}^{k-2} v_{j} \int _{0}^{ \varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{q}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \Biggr) \\ &\hphantom{\mathfrak{q}(\varsigma )=}{} + \hat{\mathfrak{A}_{1}} \mathfrak{A}_{2} \hat{\mathfrak{A}_{3}} \Biggl(\beta _{3}\sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{q}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\ &\hphantom{\mathfrak{q}(\varsigma )=}{}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds, \end{aligned}$$
(8)
$$\begin{aligned} &\mathfrak{r}(\varsigma )= \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\Upsilon \varphi ^{2}} \\ &\hphantom{\mathfrak{r}(\varsigma )=}{}\times \Biggl\lbrace \hat{\mathfrak{A}_{1}}\hat{ \mathfrak{A}_{4}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathfrak{r}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \Biggr) \\ \begin{aligned}&\hphantom{\mathfrak{r}(\varsigma )=}{} - \Biggl[ \hat{\mathfrak{A}_{6}}\hat{\mathfrak{A}_{4}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\ & \hphantom{\mathfrak{r}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \Biggr) \end{aligned}\\ & \hphantom{\mathfrak{r}(\varsigma )=}{} - \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \Biggl( \beta _{2}\sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{- \varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \\ & \hphantom{\mathfrak{r}(\varsigma )=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\ &\hphantom{\mathfrak{r}(\varsigma )=}{}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds, \end{aligned}$$
(9)

where

$$\begin{aligned} &\hat{\mathfrak{A}_{1}}= \frac{(1-e^{-\varphi})}{\varphi}, \qquad \mathfrak{A}_{2}=-\beta _{1}\sum _{j=1}^{k-2}w_{j} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi}, \\ \begin{aligned}&\hat{\mathfrak{A}_{3}}=-\beta _{2}\sum _{j=1}^{k-2}v_{j} \frac{(\varphi \varpi _{j}-1+e^{-\varphi \varpi _{j}})}{\varphi},\qquad \hat{ \mathfrak{A}_{4}}=\frac{(1-e^{-\varphi})}{\varphi}, \\ &\hat{\mathfrak{A}_{5}} = \frac{(\varphi -1+e^{-\varphi})}{\varphi ^{2}},\qquad \hat{ \mathfrak{A}_{6}}=-\beta _{3}\sum _{j=1}^{k-2}\vartheta _{j} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi}, \end{aligned} \end{aligned}$$
(10)
$$\begin{aligned} &\Upsilon = (\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}} \hat{\mathfrak{A}_{5}}+\hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{3}} \hat{\mathfrak{A}_{6}}), \\ &\mathcal{I}_{1}=\beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{ \varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathcal{I}_{1}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds, \\ \begin{aligned}&\mathcal{I}_{2}=\beta _{2}\sum _{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathcal{I}_{2}=}{}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds, \end{aligned}\\ &\mathcal{I}_{3}=\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{ \rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\ &\hphantom{\mathcal{I}_{3}=}{}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds. \end{aligned}$$
(11)

Proof

As argued in [9], the solution of FDEs (5) can be written as

$$\begin{aligned}& \mathfrak{p}(\varsigma )= c_{0}e^{-\varphi \varsigma} + \frac{c_{1}}{\varphi} \bigl(1-e^{-\varphi \varsigma}\bigr)+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds, \end{aligned}$$
(12)
$$\begin{aligned}& \mathfrak{q}(\varsigma )= d_{0}e^{-\varphi \varsigma} + \frac{d_{1}}{\varphi} \bigl(1-e^{-\varphi \varsigma}\bigr)+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds, \end{aligned}$$
(13)
$$\begin{aligned}& \mathfrak{r}(\varsigma )= b_{0}e^{-\varphi \varsigma} + \frac{b_{1}}{\varphi} \bigl(1-e^{-\varphi \varsigma}\bigr)+ \frac{b_{2}}{\varphi ^{2}}\bigl(\varphi \varsigma -1+e^{-\varphi \varsigma}\bigr) \\& \hphantom{\mathfrak{r}(\varsigma )=}{} + \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds. \end{aligned}$$
(14)

Using the condition \(\mathfrak{p}(0)=0\) in (12), we get \(c_{0}= 0\), and the condition \(\mathfrak{q}(0)=0\) in (13) yields \(d_{0} = 0 \), whereas the conditions \(\mathfrak{r}(0)={(0)} \) and \(r'{0}=(0)\) in (14) yield \(b_{0}=0 \) and \(b_{1}={0}\). Consequently, we have

$$ \begin{aligned} &\mathfrak{p}(\varsigma )= \frac{c_{1}}{\varphi}\bigl(1-e^{-\varphi \varsigma}\bigr)+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds, \\ &\mathfrak{q}(\varsigma )= \frac{d_{1}}{\varphi}\bigl(1-e^{-\varphi \varsigma}\bigr)+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds, \\ &\mathfrak{r}(\varsigma )=\frac{b_{2}}{\varphi ^{2}}\bigl(\varphi \varsigma -1+e^{-\varphi \varsigma}\bigr)+ \int _{0}^{\varsigma} e^{- \varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds. \end{aligned} $$
(15)

Using the conditions \(\mathfrak{p}(1)=\beta _{1} \sum_{j=1}^{k-2} w_{j} \mathfrak{q}(\varrho _{j})\), \(\mathfrak{q}(1)= \beta _{2}\sum_{j=1}^{k-2} v_{j} \mathfrak{r}(\varpi _{j})\), and \(\mathfrak{r}(1)=\beta _{3} \sum_{j=1}^{k-2}\vartheta _{j} \mathfrak{p}(\rho _{j})\) in (15), we find that

$$\begin{aligned}& c_{1}= \frac{1}{\Upsilon} \Biggl\lbrace \hat{\mathfrak{A}_{4}} \hat{\mathfrak{A}_{5}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{ \varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\& \hphantom{ c_{1}= }{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \Biggr) \\& \begin{aligned} & \hphantom{ c_{1}= }{} -\hat{\mathfrak{A}_{5}}\mathfrak{A}_{2} \Biggl( \beta _{2} \sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \\ & \hphantom{ c_{1}= }{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \Biggr) \end{aligned} \end{aligned}$$
(16)
$$\begin{aligned}& \hphantom{ c_{1}= }{} + \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi ( \rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\& \hphantom{ c_{1}= }{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \Biggr) \Biggr\rbrace , \\& d_{1}= \frac{1}{\mathfrak{A}_{2}} \Biggl\lbrace \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\& \hphantom{d_{1}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\& \hphantom{d_{1}=}{} - \frac{1}{\Upsilon} \Biggl[ {\hat{\mathfrak{A}_{1}} \hat{ \mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}} \Biggl(\beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\& \begin{aligned} &\hphantom{d_{1}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \Biggr) \\ &\hphantom{d_{1}=}{} - \hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{5}} \mathfrak{A}_{2} \Biggl( \beta _{2}\sum _{j=1}^{k-2} v_{j} \int _{0}^{ \varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \end{aligned} \end{aligned}$$
(17)
$$\begin{aligned}& \hphantom{d_{1}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \Biggr) \\& \hphantom{d_{1}=}{} + \hat{\mathfrak{A}_{1}}\mathfrak{A}_{2} \hat{\mathfrak{A}_{3}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\& \hphantom{d_{1}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace , \\& b_{2}= \frac{1}{\Upsilon} \Biggl\lbrace \hat{\mathfrak{A}_{1}} \hat{\mathfrak{A}_{4}} \Biggl(\beta _{3}\sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \\& \hphantom{ b_{2}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \Biggr) \\& \begin{aligned}& \hphantom{ b_{2}=}{} - \Biggl[ \hat{\mathfrak{A}_{6}}\hat{\mathfrak{A}_{4}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \\ &\hphantom{ b_{2}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{G}_{1}}(u)\,du \biggr)\,ds \Biggr) \end{aligned}\\& \hphantom{ b_{2}=}{} - \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \Biggl( \beta _{2}\sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{- \varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{G}_{3}}(u)\,du \biggr)\,ds \\& \hphantom{ b_{2}=}{} - \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{G}_{2}}(u)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace , \end{aligned}$$
(18)

from which by substituting into (15), we get the solutions (6)–(8)–(9). The converse follows by direct computation. This completes the proof. □

3 Main results

Let \(\mathcal{J}=\mathcal{C}([0,1],\mathbb{R})\) be space equipped with the norm \(\Vert \mathfrak{q}\Vert =\sup \{\vert \mathfrak{q}(\varsigma )\vert , \varsigma \in [0,1]\}\). Obviously, (\(\mathcal{J}\), \(\|\cdot \|\)) is a Banach space, and, consequently, \((\mathcal{J} \times \mathcal{J} \times \mathcal{J}, \Vert ( \mathfrak{p},\mathfrak{q},\mathfrak{r} )\Vert _{\mathcal{J}})\) is also a Banach space equipped with the norm \(\Vert (\mathfrak{p},\mathfrak{q},\mathfrak{r} )\Vert _{\mathcal{J}}= \Vert \mathfrak{p} \Vert + \Vert \mathfrak{q} \Vert +\Vert \mathfrak{r}\Vert , \mathfrak{p},\mathfrak{q}\), \(\mathfrak{r} \in \mathcal{J}\).

In view of Lemma 1, we define the operator \(\mathcal{S} :\mathcal{J} \times \mathcal{J} \times \mathcal{J} \rightarrow \mathcal{J} \times \mathcal{J} \times \mathcal{J} \) by \(\mathcal{S} (\mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ), \mathfrak{r}(\varsigma ) )= (\mathcal{S}_{1} ( \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) ),\mathcal{S}_{2} (\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}(\varsigma ) ),\mathcal{S}_{3} (\mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) ) )\), where

$$\begin{aligned}& \mathcal{S}_{1} \bigl(\mathfrak{p}( \varsigma ),\mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \\& \quad = \biggl( \frac{1-e^{-\varphi \varsigma}}{\varphi \Upsilon} \biggr) \\& \qquad {}\times \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}-\hat{\mathfrak{A}_{5}}\mathfrak{A}_{2} \Biggl( \beta _{2} \sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u,\mathfrak{p}(u),\mathfrak{q}(u),\mathfrak{r}(u) \bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi ( \rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \Biggr\rbrace \\& \qquad {}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)}\hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds, \\& \mathcal{S}_{2} \bigl(\mathfrak{p}(\varsigma ),\mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \\& \quad = \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \\& \qquad {}\times \Biggl\lbrace \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{ \varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \frac{1}{\Upsilon} \Biggl[ {\hat{\mathfrak{A}_{1}} \hat{ \mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}} \\& \qquad {}\times \Biggl(\beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u,\mathfrak{p}(u),\mathfrak{q}(u),\mathfrak{r}(u) \bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}- \hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{5}} \mathfrak{A}_{2} \Biggl( \beta _{2}\sum _{j=1}^{k-2} v_{j} \int _{0}^{ \varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{1}}\mathfrak{A}_{2} \hat{\mathfrak{A}_{3}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\& \qquad {}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)}\hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds, \\& \mathcal{S}_{3} \bigl(\mathfrak{p}(\varsigma ),\mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \\& \quad = \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\Upsilon \varphi ^{2}} \\& \qquad {}\times \Biggl\lbrace \hat{\mathfrak{A}_{1}}\hat{ \mathfrak{A}_{4}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}- \Biggl[ \hat{\mathfrak{A}_{6}}\hat{\mathfrak{A}_{4}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}- \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \Biggl( \beta _{2}\sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{- \varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}- \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\& \qquad {}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds. \end{aligned}$$

We further use the following notations:

$$\begin{aligned}& {\mathcal{W}_{1}}= \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\Upsilon} \biggr) \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr] + \hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl[ \beta _{3}\sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr] \Biggr\rbrace \\& \hphantom{{\mathcal{W}_{1}}=}{}+ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )}, \\& {\mathcal{V}_{1}}= \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\Upsilon} \biggr) \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \biggl(\mathfrak{A}_{2}{\hat{ \mathfrak{A}_{5}}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \biggr) \Biggr\rbrace , \\& {\mathcal{U}_{1}}= \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\Upsilon} \biggr) \Biggl\lbrace \hat{\mathfrak{A}_{3}}\mathfrak{A}_{2} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr] + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace , \\& {\mathcal{W}_{2}}= \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \Biggl\lbrace \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}}}{\Upsilon} \Biggl( \beta _{3}\sum _{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr) + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \biggl(\frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr) \\& \hphantom{{\mathcal{W}_{2}}=}{} + \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \Biggr\rbrace , \\& {\mathcal{V}_{2}}= \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \Biggl\lbrace \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) \\& \hphantom{{\mathcal{V}_{2}}=}{} + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) \\& \hphantom{{\mathcal{V}_{2}}=}{} + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \Biggr\rbrace + \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr], \\& {\mathcal{U}_{2}}= \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \Biggl\lbrace \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}}}{\Upsilon} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr) + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \Biggl( \beta _{2}\sum_{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace , \\& {\mathcal{W}_{3}}= \biggl( \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr) \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{1}} \Biggl( \beta _{3}\sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr) + \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr) \Biggr\rbrace , \\& {\mathcal{V}_{3}}= \biggl( \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr) \Biggl\lbrace \hat{\mathfrak{A}_{6}}\hat{\mathfrak{A}_{4}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr)+\hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr) \Biggr\rbrace , \\& {\mathcal{U}_{3}}= \biggl( \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr) \Biggl\lbrace \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \Biggl( \beta _{2}\sum_{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) + \hat{\mathfrak{A}_{1}}\hat{ \mathfrak{A}_{4}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr) \Biggr\rbrace \\& \hphantom{{\mathcal{U}_{3}}=}{} +\frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )}. \end{aligned}$$
(19)

Now we provide our first finding, a proof of the existence of a solution to problem (1) using the Leray–Schauder alternative [39].

Lemma 2

Let \(\mathfrak{E}: \mathfrak{I}\rightarrow \mathfrak{I}\) be a completely continuous (c.c.) operator. Let \(\mathcal{Y} (\mathfrak{E})=\{ \mathfrak{q} \in \mathfrak{I}: \mathfrak{q} = \eta \mathfrak{E}(\mathfrak{q}) \textit{ for some } 0 < \eta <1\}\).

Then either the set \(\mathcal{Y}(\mathfrak{E})\) is unbounded, or \(\mathfrak{E}\) has at least one fixed point (Leray–Schauder alternative) [39].

Theorem 1

Let \(\Upsilon \ne 0\), where ϒ is defined by (10).

Assume that \((\mathscr{M}_{2}) : \hat{\mathcal{F}_{1}},\hat{\mathcal{F}_{2}}, \hat{\mathcal{F}_{3}}:[0,1]\times \mathbb{R} \times \mathbb{R}\times \mathbb{R} \rightarrow \mathbb{R}\) are continuous functions and there exist constants \(\kappa _{i},\lambda _{i},\varepsilon _{i}\geq 0\) (\(i=1,2,3\)) and \(\kappa _{0}>0\), \(\lambda _{0}>0\), \(\varepsilon _{0}>0\) such that for all \(\mathfrak{p},\mathfrak{q},\mathfrak{r} \in \mathbb{R}\) and \(\varsigma \in [0,1]\),

$$ \begin{aligned} & \bigl\vert \hat{\mathcal{F}_{1}}( \varsigma ,\mathfrak{p}, \mathfrak{q},\mathfrak{r}) \bigr\vert \leq \kappa _{0}+ \kappa _{1} \vert \mathfrak{p} \vert + \kappa _{2} \vert \mathfrak{q} \vert + \kappa _{3} \vert \mathfrak{r} \vert , \\ & \bigl\vert \hat{\mathcal{F}_{2}}(\varsigma ,\mathfrak{p}, \mathfrak{q},\mathfrak{r}) \bigr\vert \leq \lambda _{0}+ \lambda _{1} \vert \mathfrak{p} \vert + \lambda _{2} \vert \mathfrak{q} \vert + \lambda _{3} \vert \mathfrak{r} \vert , \\ & \bigl\vert \hat{\mathcal{F}_{3}}(\varsigma ,\mathfrak{p}, \mathfrak{q},\mathfrak{r}) \bigr\vert \leq \varepsilon _{0}+ \varepsilon _{1} \vert \mathfrak{p} \vert + \varepsilon _{2} \vert \mathfrak{q} \vert + \varepsilon _{3} \vert \mathfrak{r} \vert . \end{aligned} $$

Then problem (1) has at least one solution on \([0,1]\), provided that

$$ \begin{aligned} & ( {\mathcal{W}_{1}} + { \mathcal{W}_{2}} + {\mathcal{W}_{3}})\kappa _{1} +({\mathcal{V}_{1}}+ {\mathcal{V}_{2}} + { \mathcal{V}_{3}})\lambda _{1} + ({\mathcal{U}_{1}}+{ \mathcal{U}_{2}}+{\mathcal{U}_{3}}) \varepsilon _{1}< 1, \\ & ( {\mathcal{W}_{1}}+ {\mathcal{W}_{2}} + { \mathcal{W}_{3}})\kappa _{2}+({ \mathcal{V}_{1}} +{\mathcal{V}_{2}} +{\mathcal{V}_{3}}) \lambda _{2}+({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{2} < 1, \\ & ( {\mathcal{W}_{1}}+ {\mathcal{W}_{2}} + { \mathcal{W}_{3}})\kappa _{3}+({ \mathcal{V}_{1}} +{\mathcal{V}_{2}} +{\mathcal{V}_{3}}) \lambda _{3}+({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{3} < 1, \end{aligned} $$
(20)

where \(\mathcal{W}_{i},\mathcal{V}_{i},\mathcal{U}_{i}\), \(i=1,2,3\), are given in (19).

Proof

The operator \(\mathcal{S}: \mathcal{J} \times \mathcal{J} \times \mathcal{J} \rightarrow \mathcal{J} \times \mathcal{J}\times \mathcal{J} \) is completely continuous since the functions \(\hat{\mathcal{F}_{1}}\), \(\hat{\mathcal{F}_{2}}\), and \(\hat{\mathcal{F}_{3}}\) are completely continuous Next, let \(\hat{\Omega}_{1} \subset \mathcal{J} \times \mathcal{J} \times \mathcal{J}\) be a bounded set to show the uniform boundedness. The operator \(\mathcal{S}\) is also continuous such that

$$ \begin{aligned} & \bigl\vert \hat{\mathcal{F}_{1}} \bigl(\varsigma ,\mathfrak{p}( \varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert \leq \wp _{1}, \\ & \bigl\vert \hat{\mathcal{F}_{2}} \bigl(\varsigma ,\mathfrak{p}( \varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\vert \leq \wp _{2}, \\ & \bigl\vert \hat{\mathcal{F}_{3}} \bigl(\varsigma ,\mathfrak{p}( \varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\vert \leq \wp _{3},\quad (\mathfrak{p},\mathfrak{q}, \mathfrak{r}) \in \hat{ \Omega}_{1} , \end{aligned} $$

for nonnegative constants \(\wp _{1}\), \(\wp _{2}\), and \(\wp _{3}\). Then, for any \((\mathfrak{p},\mathfrak{q},\mathfrak{r}) \in \hat{\Omega}_{1}\),

$$\begin{aligned}& \bigl\vert \mathcal{S}_{1} \bigl(\mathfrak{p}(\varsigma ), \mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\vert \\& \quad \leq \biggl( \frac{1-e^{-\varphi \varsigma}}{\varphi \Upsilon} \biggr) \\& \qquad {}\times \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \bigl\vert \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \bigl\vert \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \\& \qquad {}+\hat{\mathfrak{A}_{5}}\mathfrak{A}_{2} \Biggl( \beta _{2} \sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u,\mathfrak{p}(u),\mathfrak{q}(u),\mathfrak{r}(u) \bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \bigl\vert \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi ( \rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \bigl\vert \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \Biggr\rbrace \\& \qquad {}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \bigl\vert \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \quad \leq \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\Upsilon} \biggr) \Biggl\lbrace \hat{ \mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr] + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{3}} \Biggl[ \beta _{3}\sum _{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr] \Biggr\rbrace \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \biggl(\mathfrak{A}_{2}{\hat{ \mathfrak{A}_{5}}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \biggr) \Biggr\rbrace \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{3}}\mathfrak{A}_{2} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr] + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace \\& \qquad {}+ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \\& \quad \leq \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\Upsilon} \biggr) ({\mathcal{W}_{1}}\wp _{1}+{\mathcal{V}_{1}}\wp _{2}+{ \mathcal{U}_{1}}\wp _{3}), \end{aligned}$$

which implies that

$$\begin{aligned} \bigl\Vert \mathcal{S}_{1} \bigl(\mathfrak{p}(\varsigma ), \mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\Vert _{\mathcal{J}}\leq \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\Upsilon} \biggr) ({ \mathcal{W}_{1}} \wp _{1}+{\mathcal{V}_{1}}\wp _{2}+{ \mathcal{U}_{1}} \wp _{3}). \end{aligned}$$

Similarly, we can conclude that

$$\begin{aligned} \bigl\Vert \mathcal{S}_{2} \bigl(\mathfrak{p}(\varsigma ), \mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\Vert _{\mathcal{J}}\leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\mathfrak{A}_{2}\varphi} \biggr) ({\mathcal{W}_{2}} \wp _{1}+{\mathcal{V}_{2}}\wp _{2}+{ \mathcal{U}_{2}}\wp _{3}) \end{aligned}$$

and

$$\begin{aligned}& \bigl\vert \mathcal{S}_{3} \bigl(\mathfrak{p}(\varsigma ), \mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\vert \\& \quad \leq \sup _{ \varsigma \in [0,1]} \biggl\vert \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr\vert \\& \qquad {}\times \Biggl\lbrace \hat{\mathfrak{A}_{1}}\hat{ \mathfrak{A}_{4}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \bigl\vert \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \\& \qquad {}+ \Biggl[ \hat{\mathfrak{A}_{6}}\hat{\mathfrak{A}_{4}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \bigl\vert \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \bigl\vert \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \Biggl( \beta _{2}\sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{- \varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \bigl\vert \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\& \qquad {}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \quad \leq \biggl( \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr) \Biggl[ \Biggl\lbrace \hat{ \mathfrak{A}_{4}} \hat{\mathfrak{A}_{1}} \Biggl( \beta _{3}\sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr) + \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr) \Biggr\rbrace \\& \qquad {}+ \Biggl\lbrace \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr)+\hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr) \Biggr\rbrace \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{6}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) + \hat{ \mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr) \Biggr\rbrace \Biggr] +\frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \\& \quad \leq \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] ({\mathcal{W}_{3}}\wp _{1}+{\mathcal{V}_{3}}\wp _{2}+{ \mathcal{U}_{3}}\wp _{3}), \end{aligned}$$

which accumulates to

$$\begin{aligned} \bigl\Vert \mathcal{S}_{3} \bigl(\mathfrak{p}(\varsigma ), \mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\Vert _{\mathcal{J}}\leq \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] ({\mathcal{W}_{3}} \wp _{1}+{\mathcal{V}_{3}}\wp _{2}+{ \mathcal{U}_{3}}\wp _{3}). \end{aligned}$$

As a result, the operator \(\mathcal{S}\) is uniformly bounded, that is,

$$\begin{aligned} &\bigl\Vert \mathcal{S} \bigl(\mathfrak{p}(\varsigma ),\mathfrak{q}( \varsigma ),\mathfrak{r}(\varsigma ) \bigr) \bigr\Vert _{\mathcal{J}} \\ &\quad \leq \biggl[ \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) + \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\mathfrak{A}_{2}\varphi} \biggr) + \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] \\ &\qquad {}+({\mathcal{W}_{1}}+{\mathcal{W}_{2}}+{ \mathcal{W}_{3}})\wp _{1}+ ({ \mathcal{V}_{1}}+{ \mathcal{V}_{2}}+{\mathcal{V}_{3}})\wp _{2} + ({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{\mathcal{U}_{3}}) \wp _{3}. \end{aligned}$$

Next, we show that \(\mathcal{S}\) is equicontinuous.

Let \(\varsigma _{1}, \varsigma _{2} \in [0,1]\) with \(\varsigma _{1}< \varsigma _{2}\). Then we have

$$\begin{aligned}& \bigl\vert \mathcal{S}_{1} \bigl(\mathfrak{p}(\varsigma _{2}),\mathfrak{q}( \varsigma _{2}),\mathfrak{r}(\varsigma _{2}) \bigr)-\mathcal{S}_{1} \bigl(\mathfrak{p}(\varsigma _{1}),\mathfrak{q}(\varsigma _{1}), \mathfrak{r}(\varsigma _{1}) \bigr) \bigr\vert \\& \quad \leq \frac{(e^{-\varphi{\varsigma _{2}}}-e^{-\varphi{\varsigma _{1}}})}{\Upsilon \varphi} \\& \qquad {}\times \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}+\hat{\mathfrak{A}_{5}}\mathfrak{A}_{2} \Biggl( \beta _{2} \sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u,\mathfrak{p}(u),\mathfrak{q}(u),\mathfrak{r}(u) \bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi ( \rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \Biggr\rbrace \\& \qquad {}+ \biggl\vert \int _{0}^{\varsigma _{1}} \bigl(e^{-\varphi (\varsigma _{2}-s)}-e^{- \varphi (\varsigma _{1}-s)} \bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{\varsigma _{2}}^{\varsigma _{1}} e^{-\varphi ( \varsigma _{2}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \biggr\vert \\& \quad \leq \frac{(e^{-\varphi{\varsigma _{2}}}-e^{-\varphi{\varsigma _{1}}})}{\Upsilon \varphi} \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr] + \hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl[ \beta _{3}\sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr] \Biggr\rbrace \wp _{1} \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \biggl(\mathfrak{A}_{2}{\hat{ \mathfrak{A}_{5}}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \biggr) \Biggr\rbrace \wp _{2} \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{3}}\mathfrak{A}_{2} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr] + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace \wp _{3} \\& \qquad {}+ \biggl\vert \int _{0}^{\varsigma _{1}} \bigl(e^{-\varphi (\varsigma _{2}-s)}-e^{- \varphi (\varsigma _{1}-s)} \bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)}\,du \biggr)\,ds \\& \qquad {}+ \int _{\varsigma _{2}}^{\varsigma _{1}} e^{-\varphi ( \varsigma _{2}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)}\,du \biggr)\,ds \biggr\vert \wp _{1}. \end{aligned}$$

In a similar way,

$$\begin{aligned}& \bigl\vert \mathcal{S}_{2} \bigl(\mathfrak{p}(\varsigma _{2}),\mathfrak{q}( \varsigma _{2}),\mathfrak{r}(\varsigma _{2}) \bigr)-\mathcal{S}_{2} \bigl(\mathfrak{p}(\varsigma _{1}),\mathfrak{q}(\varsigma _{1}), \mathfrak{r}(\varsigma _{1}) \bigr) \bigr\vert \\& \quad \leq \frac{(e^{-\varphi \varsigma _{2}}-e^{-\varphi \varsigma _{1}})}{\varphi \Upsilon} \\& \qquad {}\times \Biggl\lbrace \beta _{1}\sum _{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \frac{1}{\Upsilon} \Biggl[ {\hat{\mathfrak{A}_{1}} \hat{ \mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}} \\& \qquad {}\times \Biggl(\beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u,\mathfrak{p}(u),\mathfrak{q}(u),\mathfrak{r}(u) \bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{5}} \mathfrak{A}_{2} \Biggl( \beta _{2}\sum _{j=1}^{k-2} v_{j} \int _{0}^{ \varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{1}}\mathfrak{A}_{2} \hat{\mathfrak{A}_{3}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\& \qquad {}+ \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)}\hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds, \\& \qquad {}+ \biggl\vert \int _{0}^{\varsigma _{1}} \bigl(e^{-\varphi (\varsigma _{2}-s)}-e^{- \varphi (\varsigma _{1}-s)} \bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \\& \qquad {}+ \int _{\varsigma _{1}}^{\varsigma _{2}} \bigl(e^{-\varphi ( \varsigma _{2}-s)}\bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr)\,du \biggr)\,ds \biggr\vert \\& \quad \leq \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \\& \qquad {}\times \Biggl[ \Biggl\lbrace \frac{\hat{\mathfrak{A}_{1}} \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}}}{\Upsilon} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr) \\& \qquad {}+ \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \biggl(\frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr)+ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \Biggr\rbrace \wp _{1} \\& \qquad {}+ \Biggl\lbrace \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) \\& \qquad {}+ \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \Biggr\rbrace \wp _{2} + \Biggl\lbrace \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}}}{\Upsilon} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr) \\& \qquad {}+ \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace \wp _{3} \Biggr] \\& \qquad {}+ \biggl\vert \int _{0}^{\varsigma _{1}} \bigl(e^{-\varphi (\varsigma _{2}-s)}-e^{- \varphi (\varsigma _{1}-s)} \bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)}\,du \biggr)\,ds \\& \qquad {}+ \int _{\varsigma _{1}}^{\varsigma _{2}} \bigl(e^{-\varphi ( \varsigma _{2}-s)}\bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)}\,du \biggr)\,ds \biggr\vert \wp _{2}, \end{aligned}$$

and

$$\begin{aligned}& \bigl\vert \mathcal{S}_{3} \bigl(\mathfrak{p}(\varsigma _{2}),\mathfrak{q}( \varsigma _{2}),\mathfrak{r}(\varsigma _{2}) \bigr)-\mathcal{S}_{3} \bigl(\mathfrak{p}(\varsigma _{1}),\mathfrak{q}(\varsigma _{1}), \mathfrak{r}(\varsigma _{1}) \bigr) \bigr\vert \\& \quad \leq \biggl\vert \frac{(\varphi (\varsigma _{2}-\varsigma _{1}) +e^{-\varphi \varsigma _{2}}-e^{-\varphi \varsigma _{1}} )}{\varphi ^{2}{\Upsilon}} \biggr\vert \\& \qquad {}\times \Biggl\lbrace \hat{\mathfrak{A}_{1}}\hat{ \mathfrak{A}_{4}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \bigl\vert \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \\& \qquad {}+ \Biggl[ \hat{\mathfrak{A}_{6}}\hat{\mathfrak{A}_{4}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \bigl\vert \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \bigl\vert \hat{ \mathcal{F}_{1}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \\& \qquad {}+ \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \Biggl( \beta _{2}\sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{- \varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \bigl\vert \hat{ \mathcal{F}_{2}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\& \qquad {}+ \biggl\vert \int _{0}^{\varsigma _{1}} \bigl(e^{-\varphi (\varsigma _{2}-s)}-e^{- \varphi (\varsigma _{1}-s)} \bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \\& \qquad {}+ \int _{\varsigma _{1}}^{\varsigma _{2}} e^{-\varphi ( \varsigma _{2}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \bigl\vert \hat{ \mathcal{F}_{3}}\bigl(u, \mathfrak{p}(u),\mathfrak{q}(u), \mathfrak{r}(u)\bigr) \bigr\vert \,du \biggr)\,ds \biggr\vert \\& \quad \leq \biggl\vert \frac{(\varphi (\varsigma _{2}-\varsigma _{1}) +e^{-\varphi \varsigma _{2}}-e^{-\varphi \varsigma _{1}} )}{\varphi ^{2}{\Upsilon}} \biggr\vert \\& \qquad {}\times \Biggl[ \Biggl\lbrace \hat{\mathfrak{A}_{4}} \hat{ \mathfrak{A}_{1}} \Biggl( \beta _{3}\sum _{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr) + \hat{ \mathfrak{A}_{4}}\hat{\mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr) \Biggr\rbrace \wp _{1} \\& \qquad {}+ \Biggl\lbrace \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr)+\hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr) \Biggr\rbrace \wp _{2} \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{6}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) + \hat{ \mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr) \Biggr\rbrace \wp _{3} \Biggr] \\& \qquad {}+ \biggl\vert \int _{0}^{\varsigma _{1}} \bigl(e^{-\varphi (\varsigma _{2}-s)}-e^{- \varphi (\varsigma _{1}-s)} \bigr) \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)}\,du \biggr)\,ds \\& \qquad {}+ \int _{\varsigma _{1}}^{\varsigma _{2}} e^{-\varphi ( \varsigma _{2}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)}\,du \biggr)\,ds \biggr\vert \wp _{3}. \end{aligned}$$

As \(\varsigma _{1}\rightarrow \varsigma _{2}\) is independent of \(\mathfrak{p}\), \(\mathfrak{q}\), \(\mathfrak{r}\) with respect to the boundedness of \(\hat{\mathcal{F}_{1}}\), \(\hat{\mathcal{F}_{2}}\), and \(\hat{\mathcal{F}_{3}}\), the operator \(\mathcal{S}(\mathfrak{p},\mathfrak{q},\mathfrak{r})\) is equicontinuous. Thus the operator \(\mathcal{S}(\mathfrak{p},\mathfrak{q},\mathfrak{r})\) is completely continuous.

Finally, we show that the set \(\mathcal{P} = \lbrace (\mathfrak{p},\mathfrak{q},\mathfrak{r}) \in \mathcal{J} \times \mathcal{J} \times \mathcal{J}:(\mathfrak{p}, \mathfrak{q},\mathfrak{r})= \nu \mathcal{S}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}), 0 \leq \nu \leq 1\rbrace \) t is bounded. Let \((\mathfrak{p},\mathfrak{q},\mathfrak{r}) \in \mathcal{P}\) with \((\mathfrak{p},\mathfrak{q},\mathfrak{r})= \nu \mathcal{S}( \mathfrak{p},\mathfrak{q},\mathfrak{r})\). For any \(\varsigma \in [0,1]\), we have

$$\begin{aligned} &\mathfrak{p}(\varsigma )=\nu \mathcal{S}_{1}(\mathfrak{p}, \mathfrak{q},\mathfrak{r}) (\varsigma ), \\ & \mathfrak{q}(\varsigma )=\nu \mathcal{S}_{2}(\mathfrak{p}, \mathfrak{q},\mathfrak{r}) (\varsigma ), \\ & \mathfrak{r}(\varsigma )=\nu \mathcal{S}_{3}(\mathfrak{p}, \mathfrak{q},\mathfrak{r}) (\varsigma ). \end{aligned}$$

Then by \((\mathscr{M}_{2})\)

$$\begin{aligned}& \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) +{ \mathcal{W}_{1}} \bigl( \kappa _{0}+ \kappa _{1} \vert \mathfrak{p} \vert + \kappa _{2} \vert \mathfrak{q} \vert + \kappa _{3} \vert \mathfrak{r} \vert \bigr) \\& \hphantom{ \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert \leq }{} + {\mathcal{V}_{1}} \bigl(\lambda _{0}+ \lambda _{1} \vert \mathfrak{p} \vert + \lambda _{2} \vert \mathfrak{q} \vert + \lambda _{3} \vert \mathfrak{r} \vert \bigr) + {\mathcal{U}_{1}} \bigl(\varepsilon _{0} + \varepsilon _{1} \vert \mathfrak{p} \vert + \varepsilon _{2} \vert \mathfrak{q} \vert + \varepsilon _{3} \vert \mathfrak{r} \vert \bigr) \\& \hphantom{ \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert }\leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr)+ {\mathcal{W}_{1}}\kappa _{0}+ {\mathcal{V}_{1}} \lambda _{0} + { \mathcal{U}_{1}} \varepsilon _{0} \\& \hphantom{ \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert \leq }{} + ({\mathcal{W}_{1}}\kappa _{1}+ {\mathcal{V}_{1}} \lambda _{1} + { \mathcal{U}_{1}} \varepsilon _{1}) \vert \mathfrak{p} \vert \\& \hphantom{ \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert \leq }{} + ({\mathcal{W}_{1}}\kappa _{2}+ {\mathcal{V}_{1}} \lambda _{2}+ { \mathcal{U}_{1}} \varepsilon _{2}) \vert \mathfrak{q} \vert \\& \hphantom{ \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert \leq }{} + ({\mathcal{W}_{1}}\kappa _{3}+ {\mathcal{V}_{1}} \lambda _{3} + { \mathcal{U}_{1}} \varepsilon _{3}) \vert \mathfrak{r} \vert , \\& \bigl\vert \mathfrak{q}(\varsigma ) \bigr\vert \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\varphi \mathfrak{A}_{2}} \biggr) + { \mathcal{W}_{2}}\kappa _{0}+ {\mathcal{V}_{2}} \lambda _{0} + { \mathcal{U}_{2}} \varepsilon _{0} \\& \hphantom{\bigl\vert \mathfrak{q}(\varsigma ) \bigr\vert \leq}{} + ({\mathcal{W}_{2}}\kappa _{1}+ {\mathcal{V}_{2}} \lambda _{1}+ { \mathcal{U}_{2}} \varepsilon _{1}) \vert \mathfrak{p} \vert {} \\& \hphantom{\bigl\vert \mathfrak{q}(\varsigma ) \bigr\vert \leq}{} + ({\mathcal{W}_{2}}\kappa _{2}+ {\mathcal{V}_{2}} \lambda _{2} + { \mathcal{U}_{2}} \varepsilon _{2}) \vert \mathfrak{q} \vert {} \\& \hphantom{\bigl\vert \mathfrak{q}(\varsigma ) \bigr\vert \leq}{} + ({\mathcal{W}_{2}}\kappa _{3}+ {\mathcal{V}_{2}} \lambda _{3} + { \mathcal{U}_{2}} \varepsilon _{3}) \vert \mathfrak{r} \vert , \end{aligned}$$

and

$$ \begin{aligned} \bigl\vert \mathfrak{r}(\varsigma ) \bigr\vert \leq {}& \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] + {\mathcal{W}_{3}}\kappa _{0}+ {\mathcal{V}_{3}} \lambda _{0} + { \mathcal{U}_{3}} \varepsilon _{0} \\ &{} + ({\mathcal{W}_{3}}\kappa _{1}+ {\mathcal{V}_{3}} \lambda _{1}+ { \mathcal{U}_{3}} \varepsilon _{1}) \vert \mathfrak{p} \vert {} \\ &{}+ ({\mathcal{W}_{3}} \kappa _{2}+ {\mathcal{V}_{3}} \lambda _{2} + { \mathcal{U}_{3}} \varepsilon _{2}) \vert \mathfrak{q} \vert \\ &{}+ ({\mathcal{W}_{3}}\kappa _{3}+ {\mathcal{V}_{3}} \lambda _{3} + { \mathcal{U}_{3}} \varepsilon _{3}) \vert \mathfrak{r} \vert . \end{aligned} $$

As a result, we can conclude that

$$\begin{aligned}& \bigl\Vert \mathfrak{p}(\varsigma ) \bigr\Vert \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr)+ { \mathcal{W}_{1}}\kappa _{0}+ { \mathcal{V}_{1}} \lambda _{0} + { \mathcal{U}_{1}} \varepsilon _{0} + ({\mathcal{W}_{1}}\kappa _{1}+ { \mathcal{V}_{1}} \lambda _{1} + { \mathcal{U}_{1}} \varepsilon _{1}) \Vert \mathfrak{p} \Vert \\& \hphantom{\bigl\Vert \mathfrak{p}(\varsigma ) \bigr\Vert \leq }{} + ({\mathcal{W}_{1}}\kappa _{2}+ {\mathcal{V}_{1}} \lambda + { \mathcal{U}_{1}} \varepsilon _{2}) \Vert \mathfrak{q} \Vert + ({ \mathcal{W}_{1}}\kappa _{3}+ { \mathcal{V}_{1}} \lambda _{3} + { \mathcal{U}_{1}} \varepsilon _{3}) \Vert \mathfrak{r} \Vert , \\& \bigl\Vert \mathfrak{q}(\varsigma ) \bigr\Vert \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\varphi \mathfrak{A}_{2}} \biggr) + { \mathcal{W}_{2}}\kappa _{0}+ {\mathcal{V}_{2}} \lambda _{0} + { \mathcal{U}_{2}} \varepsilon _{0} + ({\mathcal{W}_{2}}\kappa _{1}+ { \mathcal{V}_{2}} \lambda _{1}+ { \mathcal{U}_{2}} \varepsilon _{1}) \Vert \mathfrak{p} \Vert \\& \hphantom{\bigl\Vert \mathfrak{q}(\varsigma ) \bigr\Vert \leq}{}+ ({\mathcal{W}_{2}}\kappa _{2}+ { \mathcal{V}_{2}}\lambda _{2} + { \mathcal{U}_{2}} \varepsilon _{2}) \Vert \mathfrak{q} \Vert {}+ ({ \mathcal{W}_{2}}\kappa _{3}+ {\mathcal{V}_{2}} \lambda _{3} + { \mathcal{U}_{2}} \varepsilon _{3}) \Vert \mathfrak{r} \Vert , \\& \bigl\Vert \mathfrak{r}(\varsigma ) \bigr\Vert \leq \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] + {\mathcal{W}_{3}}\kappa _{0}+ {\mathcal{V}_{3}} \lambda _{0} + { \mathcal{U}_{3}} \varepsilon _{0} + ({\mathcal{W}_{3}} \kappa _{1}+ { \mathcal{V}_{3}} \lambda _{1}+ { \mathcal{U}_{3}} \varepsilon _{1}) \Vert \mathfrak{p} \Vert \\& \hphantom{\bigl\Vert \mathfrak{r}(\varsigma ) \bigr\Vert \leq}{}+ ({\mathcal{W}_{3}} \kappa _{2}+ { \mathcal{V}_{3}}\lambda _{2} + { \mathcal{U}_{3}} \varepsilon _{2}) \Vert \mathfrak{q} \Vert + ({ \mathcal{W}_{3}} \kappa _{3}+ {\mathcal{V}_{3}} \lambda _{3} + {\mathcal{U}_{3}} \varepsilon _{3}) \Vert \mathfrak{r} \Vert . \end{aligned}$$

By the previous three inequalities we arrive at

$$\begin{aligned}& \Vert \mathfrak{p} \Vert + \Vert \mathfrak{q} \Vert + \Vert \mathfrak{r} \Vert \\& \quad \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) + \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\mathfrak{A}_{2}\varphi} \biggr)+ \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] \\& \qquad {}+ ({\mathcal{W}_{1}}+ {\mathcal{W}_{2}}+{ \mathcal{W}_{3}})\kappa _{0} +({\mathcal{V}_{1}}+ {\mathcal{V}_{2}}+{\mathcal{V}_{3}})\lambda _{0} {}+ ({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}})\varepsilon _{0} \\& \qquad {}+ \bigl[({\mathcal{W}_{1}}+ {\mathcal{W}_{2}}+{ \mathcal{W}_{3}}) \kappa _{1}+({\mathcal{V}_{1}}+ {\mathcal{V}_{2}}+{\mathcal{V}_{3}}) \lambda _{1} + ({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{1} \bigr] \Vert \mathfrak{p} \Vert \\& \qquad {}+ \bigl[({\mathcal{W}_{1}}+ {\mathcal{W}_{2}}+{ \mathcal{W}_{3}}) \kappa _{2} +({\mathcal{V}_{1}}+ {\mathcal{V}_{2}}+{\mathcal{V}_{3}}) \lambda _{2} +({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{2} \bigr] \Vert \mathfrak{q} \Vert \\& \qquad {}+ \bigl[({\mathcal{W}_{1}}+ {\mathcal{W}_{2}}+{ \mathcal{W}_{3}}) \kappa _{3} +({\mathcal{V}_{1}}+ {\mathcal{V}_{2}}+{\mathcal{V}_{3}}) \lambda _{3} +({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{3} \bigr] \Vert \mathfrak{r} \Vert , \end{aligned}$$

implying that

$$ \begin{aligned} \bigl\Vert (\mathfrak{p},\mathfrak{q},\mathfrak{r}) \bigr\Vert _{\mathcal{J}} \leq {}& \frac{1}{\Phi} \biggl[ \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) + \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\varphi \mathfrak{A}_{2}} \biggr)+ \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] \\ & {} +({\mathcal{W}_{1}}+ {\mathcal{W}_{2}}+{ \mathcal{W}_{3}}) \kappa _{0}+({\mathcal{V}_{1}}+ {\mathcal{V}_{2}}+{\mathcal{V}_{3}}) \lambda _{0} {}+({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{0} \biggr] , \end{aligned} $$

where \(\Phi =\min \lbrace 1-[({\mathcal{W}_{1}}+{\mathcal{W}_{2}}+{ \mathcal{W}_{3}})\kappa _{i}+({\mathcal{V}_{1}}+{\mathcal{V}_{2}}+{ \mathcal{V}_{3}}) \lambda _{i} +({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}})\varepsilon _{i}],i=1,2,3 \rbrace \). which means that \(\mathcal{P}\) is bounded. Thus by the Leray–Schauder alternative [39] the operator \(\mathcal{S}\) has at least one fixed point, which implies that problem (1) has at least one solution on \([0,1]\). This completes the proof. □

Banach’s principle of contraction mapping provides the basis for our next results on the existence and uniqueness.

Theorem 2

Let \(\Upsilon \neq 0\), where ϒ is defined by (10) and (11). In addition, we assume that

\((\mathcal{T}_{1})\) \(\hat{\mathcal{F}_{1}},\hat{\mathcal{F}_{2}},\hat{\mathcal{F}_{3}}:[0,1] \times \mathbb{R}\times \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R} \) are continuous functions, and there exist nonnegative constants \(\Theta _{1}\), \(\Theta _{2}\), and \(\Theta _{3}\) such that for all \(\varsigma \in [0,1]\) and \(\mathfrak{p}_{i},\mathfrak{q}_{i},\mathfrak{r}_{i} \in \mathbb{R}\), \(i = 1,2,3\), we have

$$ \begin{aligned} & \bigl\vert \hat{\mathcal{F}_{1}} ( \varsigma , \mathfrak{q}_{1}, \mathfrak{q}_{2}, \mathfrak{q}_{3}) - \hat{\mathcal{F}_{1}} ( \varsigma , \mathfrak{r}_{1} , \mathfrak{r}_{2}, \mathfrak{r}_{3}) \bigr\vert \leq \Theta _{1} \bigl( \vert \mathfrak{q}_{1}- \mathfrak{r}_{1} \vert + \vert \mathfrak{q}_{2} - \mathfrak{r}_{2} \vert + \vert \mathfrak{q}_{3} - \mathfrak{r}_{3} \vert \bigr), \\ & \bigl\vert \hat{\mathcal{F}_{2}} (\varsigma , \mathfrak{q}_{1}, \mathfrak{q}_{2},\mathfrak{q}_{3}) - \hat{\mathcal{F}_{2}} ( \varsigma , \mathfrak{r}_{1} , \mathfrak{r}_{2},\mathfrak{r}_{3}) \bigr\vert \leq \Theta _{2} \bigl( \vert \mathfrak{q}_{1}- \mathfrak{r}_{1} \vert + \vert \mathfrak{q}_{2} -\mathfrak{r}_{2} \vert + \vert \mathfrak{q}_{3} - \mathfrak{r}_{3} \vert \bigr), \\ & \bigl\vert \hat{\mathcal{F}_{3}} (\varsigma , \mathfrak{q}_{1}, \mathfrak{q}_{2},\mathfrak{q}_{3})- \hat{\mathcal{F}_{3}} (\varsigma , \mathfrak{r}_{1}, \mathfrak{r}_{2},\mathfrak{r}_{3}) \bigr\vert \leq \Theta _{3} \bigl( \vert \mathfrak{q}_{1}- \mathfrak{r}_{1} \vert + \vert \mathfrak{q}_{2}- \mathfrak{r}_{2} \vert + \vert \mathfrak{q}_{3} - \mathfrak{r}_{3} \vert \bigr) \end{aligned} $$

if

$$ ({\mathcal{W}_{1}}+{\mathcal{W}_{2}}+{ \mathcal{W}_{3}})\Theta _{1}+({ \mathcal{V}_{1}}+{ \mathcal{V}_{2}}+{\mathcal{V}_{3}})\Theta _{2}+({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{\mathcal{U}_{3}}) \Theta _{3}< 1, $$
(21)

where \(\mathcal{W}_{i}\), \(\mathcal{V}_{i}\), \(\mathcal{U}_{i}\) are given in (19). Then system (1) has a unique solution on \([0,1]\).

Proof

Let \(\sup_{\varsigma \in [0,1]} \hat{\mathcal{F}_{1}} (\varsigma ,0,0,0)=Q_{1}< \infty \), \(\sup_{\varsigma \in [0,1]} \hat{\mathcal{F}_{2}} (\varsigma ,0,0,0)=Q_{2}< \infty \), and \(\sup_{\varsigma \in [0,1]}\hat{\mathcal{F}_{3}} (\varsigma ,0,0,0)=Q_{3}< \infty \), and let \(\varPsi > 0\) be such that

$$ \varPsi > \frac{ ( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} ) + ( \frac{1-e^{-\varphi{\varsigma}}}{\mathfrak{A}_{2}\varphi } )+ [ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} ] + \mathcal{O}_{1}}{1-({\mathcal{W}_{1}}+{\mathcal{W}_{2}}+{\mathcal{W}_{3}})\Theta _{1} -({\mathcal{V}_{1}}+{\mathcal{V}_{2}}+{\mathcal{V}_{3}})\Theta _{2}-({\mathcal{U}_{1}} +{\mathcal{U}_{2}}+{\mathcal{U}_{3}})\Theta _{3}}, $$

where \(\mathcal{O}_{1}=({\mathcal{W}_{1}}+{\mathcal{W}_{2}}+{\mathcal{W}_{3}})Q_{1}+({ \mathcal{V}_{1}}+{\mathcal{V}_{2}}+{\mathcal{V}_{3}})Q_{2} +({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{\mathcal{U}_{3}})Q_{3}\).

We will show that \(\mathcal{S}B_{\varPsi} \subset B_{\varPsi}\), where \(B_{\varPsi} = \lbrace (\mathfrak{p},\mathfrak{q},\mathfrak{r})\in X \times X \times X : \Vert (\mathfrak{p},\mathfrak{q},\mathfrak{r}) \Vert \leq \varPsi \rbrace \).

By assumption \((\mathscr{M}_{2})\), for \((\mathfrak{p},\mathfrak{q},\mathfrak{r})\subset B_{\varPsi}\), \(\varsigma \in [0,1]\), we have

$$\begin{aligned} \begin{aligned} &\bigl\vert \mathfrak{p} \bigl( \varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert \leq \bigl\vert \mathfrak{p} \bigl(\varsigma , \mathfrak{p}( \varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{q}(\varsigma ) \bigr)- \mathfrak{p} (\varsigma ,0,0,0) \bigr\vert \\ &\hphantom{\bigl\vert \mathfrak{p} \bigl( \varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert }\leq \Theta _{1} \bigl( \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{q}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{r}(\varsigma ) \bigr\vert \bigr)+ Q_{1} \\ &\hphantom{\bigl\vert \mathfrak{p} \bigl( \varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert }\leq \Theta _{1} \bigl( \Vert \mathfrak{p} \Vert + \Vert \mathfrak{q} \Vert + \Vert \mathfrak{r} \Vert \bigr)+ Q_{1} \leq \Theta _{1}\varPsi + Q_{1}, \end{aligned} \end{aligned}$$
(22)
$$\begin{aligned} \begin{aligned} &\bigl\vert \mathfrak{q} \bigl( \varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert \leq \bigl\vert \mathfrak{q} \bigl(\varsigma , \mathfrak{p}( \varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{q}(\varsigma ) \bigr)- \mathfrak{q} (\varsigma ,0,0,0) \bigr\vert \\ &\hphantom{\bigl\vert \mathfrak{q} \bigl( \varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert }\leq \Theta _{2} \bigl( \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{q}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{r}(\varsigma ) \bigr\vert \bigr)+ Q_{2} \\ &\hphantom{\bigl\vert \mathfrak{q} \bigl( \varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert }\leq \Theta _{2} \bigl( \Vert \mathfrak{p} \Vert + \Vert \mathfrak{q} \Vert + \Vert \mathfrak{r} \Vert \bigr)+ Q_{2} \leq \Theta _{2}\varPsi + Q_{2}, \end{aligned} \end{aligned}$$
(23)
$$\begin{aligned} \begin{aligned} \bigl\vert \mathfrak{r} \bigl( \varsigma ,\mathfrak{p}(\varsigma ), \mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma ) \bigr) \bigr\vert \leq & \bigl\vert \mathfrak{r} \bigl(\varsigma , \mathfrak{p}( \varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{q}(\varsigma ) \bigr)- \mathfrak{r} (\varsigma ,0,0,0) \bigr\vert \\ \leq & \Theta _{3} \bigl( \bigl\vert \mathfrak{p}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{q}(\varsigma ) \bigr\vert + \bigl\vert \mathfrak{r}(\varsigma ) \bigr\vert \bigr)+ Q_{3} \\ \leq & \Theta _{3} \bigl( \Vert \mathfrak{p} \Vert + \Vert \mathfrak{q} \Vert + \Vert \mathfrak{r} \Vert \bigr)+ Q_{3} \leq \Theta _{3}\varPsi + Q_{3}, \end{aligned} \end{aligned}$$
(24)

using (22), (23), and (24), This leads to

$$\begin{aligned}& \bigl\vert \mathcal{S}_{1} \bigl((\mathfrak{p},\mathfrak{q}, \mathfrak{r}) ( \varsigma ) \bigr) \bigr\vert \\& \quad \leq \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\Upsilon} \biggr) \\& \qquad {}\times \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr] + \hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl[ \beta _{3}\sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr] \Biggr\rbrace \Vert \hat{\mathcal{F}_{1}} \Vert \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}} \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \biggl(\mathfrak{A}_{2}{\hat{ \mathfrak{A}_{5}}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \biggr) \Biggr\rbrace \Vert \hat{\mathcal{F}_{2}} \Vert \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{3}}\mathfrak{A}_{2} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr] + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace \Vert \hat{\mathcal{F}_{3}} \Vert \\& \qquad {}+ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \\& \quad \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr)+ {\mathcal{W}_{1}} (\Theta _{1} \varPsi + Q_{1}) + { \mathcal{V}_{1}}( \Theta _{2} \varPsi +Q_{2}) +{\mathcal{U}_{1}}( \Theta _{3} \varPsi +Q_{3}) \\& \quad \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) + ({\mathcal{W}_{1}} \Theta _{1} + {\mathcal{V}_{1}} \Theta _{2} + { \mathcal{U}_{1}} \Theta _{3})\varPsi + { \mathcal{W}_{1}} Q_{1} + { \mathcal{V}_{1}} Q_{2} + {\mathcal{U}_{1}} Q_{3}, \end{aligned}$$

which, on taking the norm on \(\varsigma \in [0,1]\), yields

$$\begin{aligned} \bigl\Vert \mathcal{S}_{1}(\mathfrak{p},\mathfrak{q},\mathfrak{r}) \bigr\Vert _{\mathcal{J}} \leq {}& \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr)+({ \mathcal{W}_{1}}\Theta _{1}+ {\mathcal{V}_{1}} \Theta _{2} + { \mathcal{U}_{1}} \Theta _{3}) \varPsi \\ &{}+ {\mathcal{W}_{1}}Q_{1}+ {\mathcal{V}_{1}}Q_{2}+{ \mathcal{U}_{1}} Q_{3}. \end{aligned}$$

Likewise, we can find that

$$\begin{aligned} \bigl\Vert \mathcal{S}_{2}(\mathfrak{p},\mathfrak{q},\mathfrak{r}) \bigr\Vert _{\mathcal{J}} \leq {}& \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\mathfrak{A}_{2}\varphi} \biggr)+({ \mathcal{W}_{2}}\Theta _{1}+ {\mathcal{V}_{2}} \Theta _{2} + { \mathcal{U}_{2}} \Theta _{3}) \varPsi \\ &{}+ {\mathcal{W}_{2}}Q_{1}+ {\mathcal{V}_{2}}Q_{2}+{ \mathcal{U}_{2}} Q_{3} \end{aligned}$$

and

$$\begin{aligned} \bigl\Vert \mathcal{S}_{3}(\mathfrak{p},\mathfrak{q},\mathfrak{r}) \bigr\Vert _{\mathcal{J}} \leq {}& \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] +({ \mathcal{W}_{3}}\Theta _{1}+ {\mathcal{V}_{3}} \Theta _{2}+{ \mathcal{U}_{3}}\Theta _{3})\varPsi \\ &{}+ {\mathcal{W}_{3}}Q_{1}+ {\mathcal{V}_{3}}Q_{2}+{ \mathcal{U}_{3}} Q_{3}. \end{aligned}$$

Consequently,

$$ \begin{aligned} \bigl\Vert \mathcal{S}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) \bigr\Vert _{\mathcal{J}} \leq {}& \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) + \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\mathfrak{A}_{2}\varphi} \biggr)+ \biggl[ \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr] \\ &{}+ \bigl[({\mathcal{W}_{1}}+{\mathcal{W}_{2}}+{ \mathcal{W}_{3}}) \Theta _{1}+ ({\mathcal{V}_{1}}+{ \mathcal{V}_{2}}+{\mathcal{V}_{3}}) \Theta _{2} {}+({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \Theta _{3} \bigr]\varPsi \\ &{} + ({\mathcal{W}_{1}}+{\mathcal{W}_{2}}+{ \mathcal{W}_{3}})Q_{1}+({ \mathcal{V}_{1}}+{ \mathcal{V}_{2}}+{\mathcal{V}_{3}})Q_{2} {}+ ({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{\mathcal{U}_{3}})Q_{3} \\ \leq{}& \varPsi . \end{aligned} $$

Now, for \((\mathfrak{p}_{1},\mathfrak{q}_{1},\mathfrak{r}_{1}),(\mathfrak{p}_{2}, \mathfrak{q}_{2},\mathfrak{r}_{2}) \in \mathcal{J}\times \mathcal{J} \times \mathcal{J}\) and for any \(\varsigma \in [0,1]\), we get

$$\begin{aligned}& \bigl\vert \mathcal{S}_{1} \bigl((\mathfrak{p}_{2}, \mathfrak{q}_{2}, \mathfrak{r}_{2}) (\varsigma ) \bigr)- \mathcal{S}_{1} \bigl(( \mathfrak{p}_{1}, \mathfrak{q}_{1},\mathfrak{r}_{1}) (\varsigma ) \bigr) \bigr\vert \\& \quad \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) \\& \qquad {}\times \Biggl[ \Biggl\lbrace \hat{\mathfrak{A}_{4}} \hat{ \mathfrak{A}_{5}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr] + \hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl[ \beta _{3}\sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr] \Biggr\rbrace \\& \qquad {}\times \Theta _{1}\bigl( \Vert \mathfrak{p}_{2}- \mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}- \mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}- \mathfrak{r}_{1} \Vert \bigr) \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{4}} \hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \biggl( \mathfrak{A}_{2}{\hat{\mathfrak{A}_{5}}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \biggr) \Biggr\rbrace \\& \qquad {}\times \Theta _{2}\bigl( \Vert \mathfrak{p}_{2}- \mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}- \mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}- \mathfrak{r}_{1} \Vert \bigr) \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{3}}\mathfrak{A}_{2} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr] + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace \Biggr] \\& \qquad {}\times \Theta _{3}\bigl( \Vert \mathfrak{p}_{2}- \mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}- \mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}- \mathfrak{r}_{1} \Vert \bigr)+ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \\& \quad \leq (\mathcal{W}_{1}\Theta _{1}+\mathcal{V}_{1} \Theta _{2}+ \mathcal{U}_{1}\Theta _{3}) \bigl( \Vert \mathfrak{p}_{2}-\mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}-\mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}-\mathfrak{r}_{1} \Vert \bigr), \end{aligned}$$

from which we obtain

$$\begin{aligned} & \bigl\Vert \mathcal{S}_{1} \bigl((\mathfrak{p}_{2}, \mathfrak{q}_{2}, \mathfrak{r}_{2}) (\varsigma ) \bigr)- \mathcal{S}_{1} \bigl(( \mathfrak{p}_{1}, \mathfrak{q}_{1},\mathfrak{r}_{1}) (\varsigma ) \bigr) \bigr\Vert _{\mathcal{J}} \\ &\quad \leq (\mathcal{W}_{1}\Theta _{1}+\mathcal{V}_{1} \Theta _{2}+ \mathcal{U}_{1}\Theta _{3}) \bigl( \Vert \mathfrak{p}_{2}-\mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}-\mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}-\mathfrak{r}_{1} \Vert \bigr). \end{aligned}$$

Similarly,

$$\begin{aligned} & \bigl\Vert \mathcal{S}_{2} \bigl((\mathfrak{p}_{2}, \mathfrak{q}_{2}, \mathfrak{r}_{2}) (\varsigma ) \bigr)- \mathcal{S}_{2} \bigl(( \mathfrak{p}_{1}, \mathfrak{q}_{1},\mathfrak{r}_{1}) (\varsigma ) \bigr) \bigr\Vert _{ \mathcal{J}} \\ &\quad \leq (\mathcal{W}_{2}\Theta _{1}+\mathcal{V}_{2} \Theta _{2}+ \mathcal{U}_{2}\Theta _{3}) \bigl( \Vert \mathfrak{p}_{2}-\mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}-\mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}-\mathfrak{r}_{1} \Vert \bigr), \end{aligned}$$

and

$$\begin{aligned}& \bigl\Vert \mathcal{S}_{3} \bigl((\mathfrak{p}_{2}, \mathfrak{q}_{2}, \mathfrak{r}_{2}) (\varsigma ) \bigr)- \mathcal{S}_{3} \bigl(( \mathfrak{p}_{1}, \mathfrak{q}_{1},\mathfrak{r}_{1}) (\varsigma ) \bigr) \bigr\Vert _{ \mathcal{J}} \\& \quad \leq (\mathcal{W}_{3}\Theta _{1}+\mathcal{V}_{3} \Theta _{2}+ \mathcal{U}_{3}\Theta _{3}) \bigl( \Vert \mathfrak{p}_{2}-\mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}-\mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}-\mathfrak{r}_{1} \Vert \bigr), \\& \bigl\Vert \mathcal{S}(\mathfrak{p}_{2}, \mathfrak{q}_{2}, \mathfrak{r}_{2})- \mathcal{S}( \mathfrak{p}_{1},\mathfrak{q}_{1}, \mathfrak{r}_{1}) \bigr\Vert _{\mathcal{J}} \\& \quad \leq \bigl[({\mathcal{W}_{1}}+ {\mathcal{W}_{2}}+{ \mathcal{W}_{3}}) \Theta _{1} + ({\mathcal{V}_{1}}+ {\mathcal{V}_{2}}+{\mathcal{V}_{3}}) \Theta _{2}+({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \Theta _{3} \bigr] \\& \qquad {}\times \bigl( \Vert \mathfrak{p}_{2}-\mathfrak{p}_{1} \Vert + \Vert \mathfrak{q}_{2}-\mathfrak{q}_{1} \Vert + \Vert \mathfrak{r}_{2}-\mathfrak{r}_{1} \Vert \bigr). \end{aligned}$$

In view of this inequality and (21), \(\mathcal{S}\) is a contraction. As a result of Banach’s fixed point theorem, there exists a unique fixed point for the operator \(\mathcal{ S}\), which corresponds to a unique solution to problem (1) on \([0,1]\). The proof is complete. □

4 Hyers–Ulam stability

Let us define the nonlinear operators \(\mathfrak{Z}_{1},\mathfrak{Z}_{2}, \mathfrak{Z}_{3} \in \mathcal{C}([0,1], \mathbb{R})\times \mathcal{C}([0,1], \mathbb{R})\times \mathcal{C}([0,1], \mathbb{R}) \to \mathcal{C}([0,1],\mathbb{R})\) by

$$ \textstyle\begin{cases} ({}^{c}{\mathcal{D}}^{\eta }+ \varphi {}^{c}{\mathcal{D}}^{\eta -1}) \mathfrak{p}(\varsigma )- \hat{\mathcal{F}_{1}} (\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )) ={\mathfrak{Z}}_{1}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma ), \\ ({}^{c}{\mathcal{D}}^{\xi }+ \varphi {}^{c}{\mathcal{D}}^{\xi -1}) \mathfrak{q}(\varsigma )- \hat{\mathcal{F}_{2}} (\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )) = {\mathfrak{Z}}_{2}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma ), \\ ({}^{c}{\mathcal{D}}^{\zeta }+ \varphi {}^{c}{\mathcal{D}}^{\zeta -1}) \mathfrak{r}(\varsigma )- \hat{\mathcal{F}_{3}}(\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )) = {\mathfrak{Z}}_{3}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma ) \end{cases} $$
(25)

for \(\varsigma \in [0,1]\) For some \(\pi _{1},\pi _{2},\pi _{3}>0\), we consider the following inequalities:

$$\begin{aligned} &\bigl\Vert {\mathfrak{Z}}_{1}(\mathfrak{p}, \mathfrak{q},\mathfrak{r}) \bigr\Vert \leq \pi _{1}, \qquad \bigl\Vert { \mathfrak{Z}}_{2} ( \mathfrak{p},\mathfrak{q},\mathfrak{r}) \bigr\Vert \leq \pi _{2},\qquad \bigl\Vert {\mathfrak{Z}}_{3} ( \mathfrak{p},\mathfrak{q}, \mathfrak{r}) \bigr\Vert \leq \pi _{3}. \end{aligned}$$
(26)

Definition 4

The coupled system (1) is said to be stable in the Hyers–Ulam sense if there exist \(\mathscr{K}_{1}, \mathscr{K}_{2}, \mathscr{K}_{3}>0\) such that there is a unique solution \((\mathfrak{p},\mathfrak{q},\mathfrak{r})\in \mathcal{C}([0,1], \mathbb{R})\times \mathcal{C}([0,1],\mathbb{R})\times \mathcal{C}([0,1], \mathbb{R})\) of problem (1) with

$$\begin{aligned} \bigl\Vert (\mathfrak{p},\mathfrak{q},\mathfrak{r})-( \widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) \bigr\Vert \leq \mathcal{K}_{1}\pi _{1}+ \mathcal{K}_{2}\pi _{2} + \mathcal{K}_{3}\pi _{3} \end{aligned}$$

for every solution \((\widehat{\mathfrak{p}},\widehat{\mathfrak{q}}, \widehat{\mathfrak{r}})\) belonging to \(\mathcal{C}([0,1],\mathbb{R})\times \mathcal{C}([0,1],\mathbb{R}) \times \mathcal{C}([0,1],\mathbb{R})\) of inequality (26).

Theorem 3

Suppose that \((\mathscr{M}_{2})\) holds. Then the BVP (1) is Hyers–Ulam stable.

Proof

Let \((\mathfrak{p},\mathfrak{q},\mathfrak{r})\in \mathcal{C}([0,1], \mathbb{R})\times \mathcal{C}([0,1],\mathbb{R})\times \mathcal{C}([0,1], \mathbb{R})\) be a solution of problem (1) that satisfies the main results. Let \((\widehat{\mathfrak{p}},\widehat{\mathfrak{q}}, \widehat{\mathfrak{r}})\) be any solution satisfying (26):

$$ \textstyle\begin{cases} ({}^{c}{\mathcal{D}}^{\eta }+ \varphi {}^{c}{\mathcal{D}}^{\eta -1}) \mathfrak{p}(\varsigma )= \hat{\mathcal{F}_{1}} (\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )) +{\mathfrak{Z}}_{1}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma ), \\ ({}^{c}{\mathcal{D}}^{\xi }+ \varphi {}^{c}{\mathcal{D}}^{\xi -1}) \mathfrak{q}(\varsigma )= \hat{\mathcal{F}_{2}} (\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )) +{\mathfrak{Z}}_{2}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma ), \\ ({}^{c}{\mathcal{D}}^{\zeta }+ \varphi {}^{c}{\mathcal{D}}^{\zeta -1}) \mathfrak{r}(\varsigma )= \hat{\mathcal{F}_{3}}(\varsigma , \mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ),\mathfrak{r}( \varsigma )) + {\mathfrak{Z}}_{3}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma ) \end{cases} $$
(27)

for \(\varsigma \in [0,1]\). Then

$$\begin{aligned}& \widehat{\mathfrak{p}}(\varsigma )=\mathcal{S}_{1}( \widehat{ \mathfrak{p}},\widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) ( \varsigma )+ \biggl( \frac{1-e^{-\varphi \varsigma}}{\varphi \Upsilon} \biggr) \\& \hphantom{\widehat{\mathfrak{p}}(\varsigma )=}{}\times \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \mathfrak{Z}_{2}( \mathfrak{p},\mathfrak{q},\mathfrak{r})\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{p}}(\varsigma )=}{} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \mathfrak{Z}_{1}( \mathfrak{p},\mathfrak{q},\mathfrak{r})\,du \biggr)\,ds \Biggr) \\& \hphantom{\widehat{\mathfrak{p}}(\varsigma )=}{} +\hat{\mathfrak{A}_{5}}\mathfrak{A}_{2} \Biggl( \beta _{2} \sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \mathfrak{Z}_{3}(\mathfrak{p},\mathfrak{q},\mathfrak{r})\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{p}}(\varsigma )=}{} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \mathfrak{Z}_{2}( \mathfrak{p},\mathfrak{q},\mathfrak{r})\,du \biggr)\,ds \Biggr) \\& \hphantom{\widehat{\mathfrak{p}}(\varsigma )=}{} + \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi ( \rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \mathfrak{Z}_{1}( \mathfrak{p},\mathfrak{q},\mathfrak{r})\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{p}}(\varsigma )=}{} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \mathfrak{Z}_{3}( \mathfrak{p},\mathfrak{q},\mathfrak{r})\,du \biggr)\,ds \Biggr) \Biggr\rbrace \\& \hphantom{\widehat{\mathfrak{p}}(\varsigma )=}{} + \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \mathfrak{Z}_{1}( \mathfrak{p},\mathfrak{q},\mathfrak{r})\,du \biggr)\,ds, \\& \bigl\vert \widehat{\mathfrak{p}}(\varsigma )-\mathcal{S}_{1}( \widehat{\mathfrak{p}},\widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) ( \varsigma ) \bigr\vert \\& \quad \leq \biggl( \frac{1-e^{-\varphi \varsigma}}{\varphi \Upsilon} \biggr) \\& \qquad {} \times \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{- \varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \pi _{2}\,du \biggr)\,ds \\& \qquad {} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \pi _{1}\,du \biggr)\,ds \Biggr) \\& \qquad {} +\hat{\mathfrak{A}_{5}}\mathfrak{A}_{2} \Biggl( \beta _{2} \sum_{j=1}^{k-2} v_{j} \int _{0}^{\varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \pi _{3}\,du \biggr)\,ds \\& \qquad {} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} \pi _{2}\,du \biggr)\,ds \Biggr) \\& \qquad {} + \hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi ( \rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} \pi _{1}\,du \biggr)\,ds \\& \qquad {} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} \pi _{3}\,du \biggr)\,ds \Biggr) \Biggr\rbrace \\& \qquad {} + \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)}\pi _{1}\,du \biggr)\,ds \\& \quad \leq \biggl( \frac{1-e^{-\varphi{\varsigma}}}{\Upsilon \varphi} \biggr) \\& \qquad {} \times \Biggl[ \Biggl\lbrace \hat{\mathfrak{A}_{4}} \hat{ \mathfrak{A}_{5}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr] + \hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}} \Biggl[ \beta _{3}\sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr] \pi _{1} \Biggr\rbrace \\& \qquad {} + \Biggl\lbrace \hat{\mathfrak{A}_{4}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \biggl( \mathfrak{A}_{2}{\hat{\mathfrak{A}_{5}}} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \biggr) \Biggr\rbrace \pi _{2} \\& \qquad {} + \Biggl\lbrace \hat{\mathfrak{A}_{3}}\mathfrak{A}_{2} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr] + \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{5}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace \pi _{3} \Biggr] \\& \qquad {}+\frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \\& \quad \leq (\mathcal{W}_{1}\pi _{1}+{\mathcal{V}_{1}} \pi _{2}+{ \mathcal{U}_{1}}\pi _{3}). \end{aligned}$$

In the same way,

$$\begin{aligned}& \widehat{\mathfrak{q}}(\varsigma )=\mathcal{S}_{2}( \widehat{ \mathfrak{p}},\widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) ( \varsigma )+ \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} \times \Biggl\lbrace \beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{ \varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} G_{2}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} G_{1}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \frac{1}{\Upsilon} \Biggl[ {\hat{\mathfrak{A}_{1}} \hat{ \mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}} \Biggl(\beta _{1}\sum_{j=1}^{k-2} w_{j} \int _{0}^{\varrho _{j}} e^{-\varphi (\varrho _{j}-s)} \biggl( \int _{0}^{s}\frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} G_{2}({ \mathfrak{p}}, {\mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} G_{1}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \Biggr) \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{5}} \mathfrak{A}_{2} \Biggl( \beta _{2}\sum _{j=1}^{k-2} v_{j} \int _{0}^{ \varpi _{j}} e^{-\varphi (\varpi _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} G_{3}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)} G_{2}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \Biggr) \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \hat{\mathfrak{A}_{1}}\mathfrak{A}_{2} \hat{\mathfrak{A}_{3}} \Biggl(\beta _{3}\sum _{j=1}^{k-2} \vartheta _{j} \int _{0}^{\rho _{j}} e^{-\varphi (\rho _{j}-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\eta -2}}{\varGamma (\eta -1)} G_{1}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \int _{0}^{1} e^{-\varphi (1-s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\zeta -2}}{\varGamma (\zeta -1)} G_{3}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds \Biggr) \Biggr] \Biggr\rbrace \\& \hphantom{\widehat{\mathfrak{q}}(\varsigma )=}{} + \int _{0}^{\varsigma} e^{-\varphi (\varsigma -s)} \biggl( \int _{0}^{s} \frac{(s-u)^{\xi -2}}{\varGamma (\xi -1)}G_{2}({ \mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}}) (u)\,du \biggr)\,ds, \\& \bigl\vert \widehat{\mathfrak{q}}(\varsigma )-\mathcal{S}_{2}( \widehat{\mathfrak{p}},\widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) ( \varsigma ) \bigr\vert \\& \quad \leq \biggl( \frac{1-e^{-\varphi \varsigma}}{{\varphi}\mathfrak{A}_{2}} \biggr) \\& \qquad {}\times \Biggl[ \Biggl\lbrace \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}}}{\Upsilon} \Biggl( \beta _{3} \sum_{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr) \\& \qquad {} + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \biggl(\frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr)+ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \Biggr\rbrace \pi _{1} \\& \qquad {} + \Biggl\lbrace \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \Biggl( \beta _{1}\sum_{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr) \\& \qquad {} + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \biggl[ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr] \Biggr\rbrace \pi _{2} + \Biggl\lbrace \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{2}}\hat{\mathfrak{A}_{3}}}{\Upsilon} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr) \\& \qquad {} + \frac{\hat{\mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}}\hat{\mathfrak{A}_{5}}}{\Upsilon} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) \Biggr\rbrace \pi _{3} \Biggr]+ \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \\& \quad \leq ({\mathcal{W}_{2}}\pi _{1}+{\mathcal{V}_{2}} \pi _{2}+{ \mathcal{U}_{2}}\pi _{3}). \end{aligned}$$

Similarly,

$$\begin{aligned}& \bigl\vert \widehat{\mathfrak{r}}(\varsigma )-\mathcal{S}_{3}( \widehat{\mathfrak{p}},\widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) ( \varsigma ) \bigr\vert \\& \quad \leq \biggl( \frac{(\varphi \varsigma -1+e^{-\varphi \varsigma})}{\varphi ^{2}{\Upsilon}} \biggr) \\& \qquad {}\times \Biggl[ \Biggl\lbrace \hat{\mathfrak{A}_{4}} \hat{ \mathfrak{A}_{1}} \Biggl( \beta _{3}\sum _{j=1}^{k-2} \vert \vartheta _{j} \vert \rho _{j}^{\eta -1} \frac{(1-e^{-\varphi \rho _{j}})}{\varphi \varGamma (\eta )} \Biggr) + \hat{ \mathfrak{A}_{4}}\hat{\mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\eta )} \biggr) \Biggr\rbrace \pi _{1} \\& \qquad {}+ \Biggl\lbrace \Biggl( \beta _{1}\sum _{j=1}^{k-2} \vert w_{j} \vert \varrho _{j}^{\xi -1} \frac{(1-e^{-\varphi \varrho _{j}})}{\varphi \varGamma (\xi )} \Biggr)+\hat{ \mathfrak{A}_{2}}\hat{\mathfrak{A}_{6}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\xi )} \biggr) \Biggr\rbrace \pi _{2} \\& \qquad {}+ \Biggl\lbrace \hat{\mathfrak{A}_{2}}\hat{ \mathfrak{A}_{6}} \Biggl( \beta _{2}\sum _{j=1}^{k-2} \vert v_{j} \vert \varpi _{j}^{\zeta -1} \frac{(1-e^{-\varphi \varpi _{j}})}{\varphi \varGamma (\zeta )} \Biggr) + \hat{ \mathfrak{A}_{1}}\hat{\mathfrak{A}_{4}} \biggl( \frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \biggr) \Biggr\rbrace \pi _{3} \Biggr] \\& \qquad {}+\frac{(1-e^{-\varphi})}{\varphi \varGamma (\zeta )} \\& \quad \leq ({\mathcal{W}_{3}}\pi _{1}+{\mathcal{V}_{3}} \pi _{2}+{ \mathcal{U}_{3}}\pi _{3}), \end{aligned}$$

where \(\mathcal{W}_{1}\), \(\mathcal{W}_{2}\), \(\mathcal{W}_{3}\), \(\mathcal{V}_{1}\), \(\mathcal{V}_{2}\), \(\mathcal{V}_{3}\), \(\mathcal{U}_{1}\), \(\mathcal{U}_{2}\), and \(\mathcal{U}_{3}\) are describes in the main results. Therefore the operator \(\mathcal{S}\) defined in the main results can be excluded from the fixed point property as follows. We have

$$ \begin{aligned} \bigl\vert \mathfrak{p}(\varsigma )- \widehat{\mathfrak{p}}(\varsigma ) \bigr\vert ={} & \bigl\vert \mathfrak{p}( \varsigma )-\mathcal{S}_{1}( \widehat{\mathfrak{p}}, \widehat{ \mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma )+\mathcal{S}_{1}( \widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma )- \widehat{\mathfrak{p}}(\varsigma ) \bigr\vert \\ \leq {}& \bigl\vert \mathcal{S}_{1}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma )-\mathcal{S}_{1}(\widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma ) \bigr\vert + \bigl\vert \mathcal{S} _{1}( \widehat{\mathfrak{\mathfrak{p}}}, \widehat{ \mathfrak{q}}, \widehat{\mathfrak{r}}) (\varsigma )-\widehat{\mathfrak{p}}( \varsigma ) \bigr\vert \\ \leq {}& ({\mathcal{W}_{1}} {k}_{1}+ {\mathcal{V}_{1}} {\lambda}_{1}+ \mathcal{U}_{1}\varepsilon _{1})+ ({\mathcal{W}_{1}} {k}_{2}+ { \mathcal{V}_{1}} { \lambda}_{2}+\mathcal{U}_{1}\varepsilon _{2}) \\ & {}+({\mathcal{W}_{1}} {k}_{3}+ {\mathcal{V}_{1}} {\lambda}_{3}+ \mathcal{U}_{1}\varepsilon _{3}) \bigl\Vert (\mathfrak{p}, \mathfrak{q},\mathfrak{r})-(\widehat{\mathfrak{p}}- \widehat{\mathfrak{q}}-\widehat{\mathfrak{r}}) \bigr\Vert {} \\ & {}+({\mathcal{W}_{1}}\pi _{1}+{\mathcal{V}_{1}} \pi _{2}+{\mathcal{U}_{1}} \pi _{3}), \end{aligned} $$
(28)

so we obtain

$$ \begin{aligned} \bigl\vert \mathfrak{q}(\varsigma )- \widehat{\mathfrak{q}}(\varsigma ) \bigr\vert ={} & \bigl\vert \mathfrak{q}( \varsigma )-\mathcal{S}_{2}( \widehat{\mathfrak{p}}, \widehat{ \mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma )+\mathcal{S} _{2}( \widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma )- \widehat{\mathfrak{q}}(\varsigma ) \bigr\vert \\ \leq{} & \bigl\vert \mathcal{S}_{2}(\mathfrak{p},\mathfrak{q}, \mathfrak{r}) (\varsigma )-\mathcal{S}_{2}(\widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma ) \bigr\vert + \bigl\vert \mathcal{S}_{2}(\widehat{\mathfrak{p}}, \widehat{\mathfrak{q}}, \widehat{\mathfrak{r}}) (\varsigma )- \widehat{\mathfrak{q}}(\varsigma ) \bigr\vert \\ \leq{} & ({\mathcal{W}_{2}} {k}_{1}+ {\mathcal{V}_{2}} {\lambda}_{1}+ \mathfrak {N}_{2}\varepsilon _{1})+ ({\mathcal{W}_{2}} {k}_{2}+ { \mathcal{V}_{2}} {\lambda}_{2}+\mathcal{U}_{2} \varepsilon _{2}) \\ &{} +({\mathcal{W}_{2}} {k}_{3}+ {\mathcal{V}_{2}} {\lambda}_{3}+ \mathcal{U}_{2}\varepsilon _{3}) \bigl\Vert (\mathfrak{p}, \mathfrak{q},\mathfrak{r})-(\widehat{\mathfrak{p}}- \widehat{\mathfrak{q}}-\widehat{\mathfrak{r}}) \bigr\Vert {} \\ &{} +({\mathcal{W}_{2}}\pi _{1}+{\mathcal{V}_{2}} \pi _{2}+{\mathcal{U}_{2}} \pi _{3}) \end{aligned} $$
(29)

and, in the same way,

$$ \begin{aligned} \bigl\vert \mathfrak{r}(\varsigma )-\widehat{ \mathfrak{r}}(\varsigma ) \bigr\vert ={} & \bigl\vert \mathfrak{r}(\varsigma )-\mathcal{S}_{3}( \widehat{\mathfrak{p}}, \widehat{\mathfrak{q}}, \widehat{\mathfrak{r}}) (\varsigma )+\mathcal{S}_{3}(\widehat{ \mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma )- \widehat{\mathfrak{r}}(\varsigma ) \bigr\vert \\ \leq{}& \bigl\vert \mathcal{S}_{3}({\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}}) (\varsigma )-\mathcal{S}_{3}(\widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma ) \bigr\vert + \bigl\vert \mathcal{S} _{3}(\widehat{\mathfrak{p}}, \widehat{ \mathfrak{q}},\widehat{\mathfrak{r}}) (\varsigma )- \widehat{\mathfrak{r}}( \varsigma ) \bigr\vert \\ \leq{}& ({\mathcal{W}_{3}} {k}_{1}+ {\mathcal{V}_{3}} {\lambda}_{1}+ \mathcal{U}_{3}\varepsilon _{1})+ ({\mathcal{W}_{3}} {k}_{2}+ { \mathcal{V}_{3}} { \lambda}_{2}+\mathcal{U}_{3}\varepsilon _{2}) \\ & {}+({\mathcal{W}_{3}} {k}_{3}+ {\mathcal{V}_{3}} {\lambda}_{3}+ \mathcal{U}_{3}\varepsilon _{3}) \big\Vert ({\mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}})-(\widehat{\mathfrak{p}}- \widehat{\mathfrak{q}}-\widehat{\mathfrak{r}}) \big\Vert \\ &{} +({\mathcal{W}_{3}}\pi _{1}+{\mathcal{V}_{3}} \pi _{2}+{\mathcal{U}_{3}} \pi _{3}). \end{aligned} $$
(30)

From (28), (29), and (4) it follows that

$$\begin{aligned}& \big\Vert ({\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}})-( \widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{ \mathfrak{r}}) \big\Vert \\& \quad\leq (\mathcal{W}_{1}+ \mathcal{W}_{2}+ \mathcal{W}_{3}){ \pi }_{1}+(\mathcal{V}_{1}+ \mathcal{V}_{2}+\mathcal{V}_{3}){\pi}_{2}+( \mathcal{U}_{1}+\mathcal{U}_{2}+\mathcal{U}_{3}){ \pi}_{3} \\& \qquad {}+(\mathcal{W}_{1}+ \mathcal{W}_{2}+\mathcal{W}_{3}) (\kappa _{1}+ \lambda _{1}+\varepsilon _{1}) \\& \qquad {}+(\mathcal{V}_{1}+\mathcal{V}_{2}+\mathcal{V}_{3}) (\kappa _{2}+ \lambda _{2}+\varepsilon _{2}) \\& \qquad {}+(\mathcal{U}_{1}+\mathcal{U}_{2}+\mathcal{U}_{3}) (\kappa _{3}+ \lambda _{3}+\varepsilon _{3}) \big\Vert ({\mathfrak{p}}, { \mathfrak{q}},{\mathfrak{r}})- (\widehat{\mathfrak{p}}- \widehat{\mathfrak{q}}-\widehat{\mathfrak{r}}) \big\Vert , \\& \big\| ({\mathfrak{p}}, {\mathfrak{q}},{\mathfrak{r}})-( \widehat{\mathfrak{p}}, \widehat{\mathfrak{q}},\widehat{\mathfrak{r}}) \big\| \\& \quad \leq \frac{(\mathcal{W}_{1} +\mathcal{W}_{2} +\mathcal{W}_{3}){\pi }_{1} +(\mathcal{V}_{1} +\mathcal{V}_{2} +\mathcal{V}_{3}){\pi}_{2} +(\mathcal{U}_{1} +\mathcal{U}_{2} +\mathcal{U}_{3}){\pi}_{3}}{1-((\mathcal{W}_{1} + \mathcal{W}_{2} +\mathcal{W}_{3}) (\kappa _{1} +\lambda _{1} +\varepsilon _{1}) +(\mathcal{V}_{1} +\mathcal{V}_{2} +\mathcal{V}_{3}) (\kappa _{2} +\lambda _{2} +\varepsilon _{2}) +(\mathcal{U}_{1} +\mathcal{U}_{2} +\mathcal{U}_{3}) (\kappa _{3} +\beta _{3} +\varepsilon _{3}))} \\& \quad \leq \mathcal{K}_{1}\pi _{1}+\mathcal{K}_{2} \pi _{2}+\mathcal{K}_{3} \pi _{3} \end{aligned}$$

with

$$\begin{aligned} &\mathcal{K}_{1} \\ &\quad = \frac{ (\mathcal{W}_{1} +\mathcal{W}_{2} +\mathcal{W}_{3})}{1 - ((\mathcal{W}_{1} +\mathcal{W}_{2} +\mathcal{W}_{3}) (\kappa _{1} +\lambda _{1} +\varepsilon _{1}) + (\mathcal{V}_{1} +\mathcal{V}_{2} +\mathcal{V}_{3}) (\kappa _{2} +\lambda _{2} +\varepsilon _{2}) + (\mathcal{U}_{1} +\mathcal{U}_{2} +\mathcal{U}_{3}) (\kappa _{3} +\beta _{3} +\varepsilon _{3}))}, \\ &\mathcal{K}_{2} \\ & \quad =\frac{(\mathcal{V}_{1}+\mathcal{V}_{2}+\mathcal{V}_{3})}{1 - ((\mathcal{W}_{1} +\mathcal{W}_{2} +\mathcal{W}_{3}) (\kappa _{1} +\lambda _{1} +\varepsilon _{1}) + (\mathcal{V}_{1} +\mathcal{V}_{2} +\mathcal{V}_{3}) (\kappa _{2} +\lambda _{2} +\varepsilon _{2}) + (\mathcal{U}_{1} +\mathcal{U}_{2} +\mathcal{U}_{3}) (\kappa _{3} +\beta _{3} +\varepsilon _{3}))}, \\ &\mathcal{K}_{3} \\ & \quad =\frac{(\mathcal{U}_{1}+\mathcal{U}_{2}+\mathcal{U}_{3})}{1 - ((\mathcal{W}_{1} +\mathcal{W}_{2} +\mathcal{W}_{3}) (\kappa _{1} +\lambda _{1} +\varepsilon _{1}) + (\mathcal{V}_{1} +\mathcal{V}_{2} +\mathcal{V}_{3}) (\kappa _{2} +\lambda _{2} +\varepsilon _{2}) + (\mathcal{U}_{1} +\mathcal{U}_{2} +\mathcal{U}_{3}) (\kappa _{3} +\beta _{3} +\varepsilon _{3}))}. \end{aligned}$$

Therefore the BVPs (1) is H-U stable. □

5 Example

Example 1

Consider the following coupled fractional differential system:

$$ \textstyle\begin{cases} ({}^{c}{\mathcal{D}}^{\frac{3}{2}}+ \varphi {}^{c}{\mathcal{D}}^{{ \frac{3}{2}}-1}) \mathfrak{p}(\varsigma )= \hat{\mathcal{F}_{1}} ( \varsigma ,\mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ), \mathfrak{r}(\varsigma )), \quad 1< \eta \leq 2, \\ ({}^{c}{\mathcal{D}}^{\frac{3}{2}}+ \varphi {}^{c}{\mathcal{D}}^{{ \frac{3}{2}}-1})\mathfrak{q}(\varsigma )= \hat{\mathcal{F}_{2}}( \varsigma ,\mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ), \mathfrak{r}(\varsigma )), \quad 1< \xi \leq 2, \\ ({}^{c}{\mathcal{D}}^{\frac{1}{4}}+ \varphi {}^{c}{\mathcal{D}}^{{ \frac{1}{4}}-1})\mathfrak{r}(\varsigma )= \hat{\mathcal{F}_{3}} ( \varsigma ,\mathfrak{p}(\varsigma ),\mathfrak{q}(\varsigma ), \mathfrak{r}(\varsigma ) ), \quad 2< \zeta \leq 3, \\ \mathfrak{p}(0)={0},\qquad \mathfrak{p}(1)=\beta _{1}\sum_{j=1}^{4} w_{j} \mathfrak{q}(\varrho _{j}), \\ \mathfrak{q}(0)={0}, \qquad \mathfrak{q}(1)= \beta _{2}\sum_{j=1}^{4} v_{j} \mathfrak{r}(\varpi _{j}), \\ \mathfrak{r}(0)=0, \qquad \mathfrak{r}'(0)=0, \qquad \mathfrak{r}(1)= \beta _{3}\sum_{j=1}^{4}\vartheta _{j} \mathfrak{p}(\rho _{j}), \\ 0 < \varrho _{1} < \lambda _{1} < \vartheta _{1}< \varrho _{2} < \lambda _{2} < \vartheta _{2} \ldots < \varrho _{k-2} < \lambda _{k-2} < \vartheta _{k-2}< 1, \end{cases} $$
(31)

Here \(\eta = {\frac{3}{2}}\), \(\xi = {\frac{3}{2}}\), \(\zeta ={\frac{1}{4}}\), \(\beta _{1}= {\frac{3}{2}}\), \(\beta _{2}= {\frac{6}{5}}\), \(\beta _{3}={ \frac{1}{3}}\), \(w_{1}= {\frac{1}{40}}\), \(w_{2}= {\frac{7}{200}}\), \(w_{3}= { \frac{9}{200}}\), \(w_{4}= {\frac{11}{200}}\), \(\varrho _{1}= \frac{5}{4}\), \(\varrho _{2}= \frac{7}{5}\), \(\varrho _{1}= \frac{33}{20}\), \(\varrho _{4}= \frac{9}{5}\), \(v_{1}= \frac{1}{50}\), \(v_{2}= \frac{9}{200}\), \(v_{3}= \frac{3}{50}\), \(v_{4}= \frac{17}{200}\), \(\varpi _{1}= \frac{6}{5}\), \(\varpi _{2}= \frac{29}{20}\), \(\varpi _{3}= \frac{8}{5}\), \(\varpi _{4}= \frac{37}{20}\), \(\vartheta _{1}= \frac{1}{40}\), \(\vartheta _{2}= \frac{1}{25}\), \(\vartheta _{3}= \frac{13}{200}\), \(\vartheta _{4}= \frac{12}{25}\), \(\rho _{1}= \frac{21}{40}\), \(\rho _{2}= \frac{107}{200}\), \(\rho _{3}= \frac{109}{200}\), \(\rho _{4}= \frac{111}{200} \), With this data, we find that \({\mathcal{W}_{1}} = 0.8316369829\), \({\mathcal{W}_{2}}= 0.1631960492\), \({ \mathcal{W}_{3}}= 0.0482076794\), \({\mathcal{V}_{1}}= 0.1048341679\), \({ \mathcal{V}_{2}}= 0.8246454202\), \({\mathcal{V}_{3}}= 0.0008716269\), \({ \mathcal{U}_{1}}= 0.0186054209\), \({\mathcal{U}_{2}}= 0.0070833630\), \({\mathcal{U}_{3}}= 0.2236302088\).

(I) To illustrate Theorem 1, we take

$$\begin{aligned} \begin{aligned} &\hat{\mathcal{F}_{1}}( \varsigma ,{\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}}) = \frac{1}{30e} + \frac{7}{50} \mathfrak{p} \cos \mathfrak{q} + \frac{1}{40e} { \mathfrak{q}} \sin \mathfrak{r} + \frac{e^{-\varsigma}}{2} \mathfrak{r} \cos \mathfrak{p}, \\ & \hat{\mathcal{F}_{2}}(\varsigma ,{\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}}) = \varsigma \sqrt{\varsigma +3} + \frac{1}{189} \mathfrak{p} \tan ^{-1}\mathfrak{q}+ \frac{7}{\sqrt{48+\varsigma ^{2}}}\mathfrak{q} + \frac{1}{4} \mathfrak{r} \sin \mathfrak{p}, \\ &\hat{\mathcal{F}_{3}}(\varsigma ,{\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}}) = \frac{e^{-\varsigma}}{4} + \frac{e^{(-\varsigma )}}{3} \mathfrak{p} + \frac{1}{\varsigma +8} \mathfrak{q} + \frac{e^{-\varsigma}}{10} \mathfrak{r} \cos \mathfrak{q}. \end{aligned} \end{aligned}$$
(32)

It is easy to check that condition \((H_{2})\) is satisfied with \(\kappa _{0}= \frac{1}{30e}\), \(\kappa _{1}= \frac{7}{50}\), \(\kappa _{2}= \frac{1}{40e}\), \(\kappa _{3} = \frac{e^{-\varsigma}}{2}\), \(\lambda _{0}= 2\), \(\lambda _{1}= \frac{1}{189}\), \(\lambda _{2}= \frac{1}{7}\), \(\beta _{3}= \frac{1}{4}\), \(\varepsilon _{0}= \frac{e^{-\varsigma}}{4}\), \(\varepsilon _{1}= \frac{e^{-\varsigma}}{3}\), \(\varepsilon _{2}= \frac{1}{9}\), \(\varepsilon _{3}= \frac{e^{-\varsigma}}{10}\). Furthermore,

$$ \begin{aligned} & ( {\mathcal{W}_{1}} + { \mathcal{W}_{2}} + {\mathcal{W}_{3}})\kappa _{1} +({\mathcal{V}_{1}}+ {\mathcal{V}_{2}} + { \mathcal{V}_{3}})\lambda _{1} + ({\mathcal{U}_{1}}+{ \mathcal{U}_{2}}+{\mathcal{U}_{3}}) \varepsilon _{1} \simeq 0.4292961592 < 1, \\ & ( {\mathcal{W}_{1}}+ {\mathcal{W}_{2}} + { \mathcal{W}_{3}})\kappa _{2}+({ \mathcal{V}_{1}} +{\mathcal{V}_{2}} +{\mathcal{V}_{3}}) \lambda _{2}+({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{2} \simeq 0.1705329068 < 1, \\ & ( {\mathcal{W}_{1}}+ {\mathcal{W}_{2}} + { \mathcal{W}_{3}})\kappa _{3}+({ \mathcal{V}_{1}} +{\mathcal{V}_{2}} +{\mathcal{V}_{3}}) \lambda _{3}+({ \mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \varepsilon _{3} \simeq 0.7699169503 < 1. \end{aligned} $$

Clearly, the hypotheses of Theorem 1 are satisfied, and hence the conclusion of Theorem 1 applies to problem (31) with \(\mathfrak{p}\), \(\mathfrak{q}\), \(\mathfrak{r}\) given by (32).

Example 2

To illustrate Theorem 2, we take

$$\begin{aligned} \begin{aligned} &\hat{\mathcal{F}_{1}}( \varsigma ,{\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}}) = \frac{e^{-\varsigma}}{\sqrt{99+\varsigma ^{2}}} \cos \mathfrak{p} + \cos \varsigma , \\ & \hat{\mathcal{F}_{2}}(\varsigma ,{\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}}) = \frac{1}{ 9+\varsigma ^{2}} \bigl(\sin \mathfrak{p}+ \vert \mathfrak{q} \vert \bigr) +e^{-\varsigma}, \\ &\hat{\mathcal{F}_{3}}(\varsigma ,{\mathfrak{p}}, {\mathfrak{q}},{ \mathfrak{r}}) = \frac{e^{-\varsigma}}{9} \sin \mathfrak{r} +\tan ^{-1} \varsigma . \end{aligned} \end{aligned}$$
(33)

Then condition \((\mathscr{M}_{2})\) is clearly satisfied with \({\Theta _{1}} =\frac{1}{10e}\), \({\Theta _{2}}= \frac{1}{10}\), and \({\Theta _{3}} = \frac{1}{9e}\). Moreover,

$$ ( \mathcal{W}_{1} + \mathcal{W}_{2} + \mathcal{W}_{3})\Theta _{1} +({ \mathcal{V}_{1}}+ {\mathcal{V}_{2}} + {\mathcal{V}_{3}})\Theta _{2 } + ({\mathcal{U}_{1}}+{\mathcal{U}_{2}}+{ \mathcal{U}_{3}}) \Theta _{3} \simeq 0.2080311651 < 1, $$

Thus the hypothesis of Theorem 2 holds, and consequently there exists a unique solution for problem (31) on \([0,1]\) with \(\mathfrak{p}\), \(\mathfrak{q}\), \(\mathfrak{r}\) given by (33).

6 Conclusions

We examined the existence and stability of solutions to a linked system of Caputo sequential fractional differential equations with standard conditions using the Leray–Schauder alternative, Banach–Kranoselskii fixed-point theorem, and Hyer–Ulam stability. We obtain new results for the given system of three sequential fractional differential equations under the specified conditions when we apply the combined solution to all three case values (\(w_{j}=0\), \(j=1,\ldots,k-2\), \(v_{j}=0\), \(j=1,\ldots,k-2\), \(\vartheta _{j}=0\), \(j=1,\ldots,k-2\)) to the series of three sequential fractional differential equations. In a fragmented research field, it appears that the first multipoint boundary value problem to be stated in scientific research employs a triple system of sequential fractional differential equations. This paper discusses original research that contributes significantly to the body of expertise on the topic.

Availability of data and materials

Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

References

  1. Zabczyk, J.: Mathematical Control Theory. Springer, Berlin (2020)

    Book  MATH  Google Scholar 

  2. Takeuchi, Y., Iwasa, Y., Sato, K. (eds.): Mathematics for Ecology and Environmental Sciences Springer, Berlin (2007)

    MATH  Google Scholar 

  3. Damelin, S.B., Miller, W. Jr: The Mathematics of Signal Processing, vol. 48. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  4. Fasano, A., Sequeira, A.: Hemomath: The Mathematics of Blood, vol. 18. Springer, Berlin (2017)

    MATH  Google Scholar 

  5. Jue, T. (ed.): Fundamental Concepts in Biophysics. Science and Business Media, vol. 1. Springer, Berlin (2009)

    Google Scholar 

  6. Hashemi, S., Pourmina, M.A., Mobayen, S., Alagheband, M.R.: Design of a secure communication system between base transmitter station and mobile equipment based on finite-time chaos synchronisation. Int. J. Syst. Sci. 51(11), 1969–1986 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  8. Singh, H., Kumar, D., Baleanu, D.: Methods of Mathematical Modelling: Fractional Differential Equations. CRC Press, Boca Raton (2019)

    Book  MATH  Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  10. Zhou, Y., Wang, J., Zhang, L.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2016)

    Book  Google Scholar 

  11. Jiang, J., Liu, L.: Existence of solutions for a sequential fractional differential system with coupled boundary conditions. Bound. Value Probl. 2016(1), 1 (2016)

    Article  MathSciNet  Google Scholar 

  12. Subramanian, M., Muthu, S., Manigandan, M., Nandha, T.: On generalized Caputo fractional differential equations and inclusions with non-local generalized fractional integral boundary conditions. Malaya J. Mat. 8(3), 1099–1109 (2020)

    Article  MathSciNet  Google Scholar 

  13. Muthaiah, S., Baleanu, D., Murugesan, M., Palanisamy, D.: Existence of solutions for the Caputo–Hadamard fractional differential equations and inclusions. In: Journal of Physics: Conference Series, vol. 1850, p. 012107. IOP Publishing, Bristol (2021)

    Google Scholar 

  14. Samadi, A., Ntouyas, S.K., Tariboon, J.: Nonlocal fractional hybrid boundary value problems involving mixed fractional derivatives and integrals via a generalization of Darbo’s theorem. J. Math. 2021, Article ID 6690049 (2021)

    Article  MathSciNet  Google Scholar 

  15. Nain, A., Vats, R., Kumar, A.: Coupled fractional differential equations involving Caputo–Hadamard derivative with nonlocal boundary conditions. Math. Methods Appl. Sci. 44(5), 4192–4204 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boutiara, A., Etemad, S., Hussain, A., Rezapour, S.: The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving ϕ-Caputo fractional operators. Adv. Differ. Equ. 2021(1), 1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Baghani, H., Alzabut, J., Farokhi-Ostad, J., Nieto, J.J.: Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions. J. Pseudo-Differ. Oper. Appl. 11(4), 1731–1741 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Boutiara, A., Etemad, S., Alzabut, J., Hussain, A., Subramanian, M., Rezapour, S.: On a nonlinear sequential four-point fractional q-difference equation involving q-integral operators in boundary conditions along with stability criteria. Adv. Differ. Equ. 2021(1), 1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Etemad, S., Tellab, B., Alzabut, J., Rezapour, S., Abbas, M.I.: Approximate solutions and Hyers–Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform. Adv. Differ. Equ. 2021(1), 1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Manigandan, M., Muthaiah, S., Nandhagopal, T., Vadivel, R., Unyong, B., Gunasekaran, N.: Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Math. 7(1), 723–755 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ahmad, B., Hamdan, S., Alsaedi, A., Ntouyas, S.K.: A study of a nonlinear coupled system of three fractional differential equations with nonlocal coupled boundary conditions. Adv. Differ. Equ. 2021(1), 1 (2021)

    MathSciNet  MATH  Google Scholar 

  22. Alsaedi, A., Hamdan, S., Ahmad, B., Ntouyas, S.K.: Existence results for coupled nonlinear fractional differential equations of different orders with nonlocal coupled boundary conditions. J. Inequal. Appl. 2021(1), 1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rezapour, S., Tellab, B., Deressa, C.T., Etemad, S., Nonlaopon, K.: HU-type stability and numerical solutions for a nonlinear model of the coupled systems of Navier BVPs via the generalized differential transform method. Fractal Fract. 5(4), 166 (2021)

    Article  Google Scholar 

  24. Chikh, S.B., Amara, A., Etemad, S., Rezapour, S.: On Ulam–Hyers–Rassias stability of a generalized Caputo type multi-order boundary value problem with four-point mixed integro-derivative conditions. Adv. Differ. Equ. 2020(1), 1 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Chikh, S.B., Amara, A., Etemad, S., Rezapour, S.: On Hyers–Ulam stability of a multi-order boundary value problems via Riemann–Liouville derivatives and integrals (2020)

  26. Zada, A., Yar, M., Li, T.: Existence and stability analysis of nonlinear sequential coupled system of Caputo fractional differential equations with integral boundary conditions. Ann. Univ. Paedagog. Crac. Stud. Math. 17(1), 103–125 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Ahmad, B., Alghanmi, M., Alsaedi, A., Nieto, J.J.: Existence and uniqueness results for a nonlinear coupled system involving Caputo fractional derivatives with a new kind of coupled boundary conditions. Appl. Math. Lett. 116, 107018 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ahmad, B., Nieto, J.J.: Sequential fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 64(10), 3046–3052 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Deimling, K.: Multivalued Differential Equations. de Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  30. Zhai, C., Jiang, R.: Unique solutions for a new coupled system of fractional differential equations. Adv. Differ. Equ. 2018(1), 1 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Su, X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22(1), 64–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Aljoudi, S., Ahmad, B., Nieto, J.J., Alsaedi, A.: A coupled system of Hadamard type sequential fractional differential equations with coupled strip conditions. Chaos Solitons Fractals 91, 39–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jamil, M., Khan, R.A., Shah, K.: Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations. Bound. Value Probl. 2019(1), 1 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jamil, M., Khan, R.A., Shah, K., Abdalla, B., Abdeljawad, T.: Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Math. 7(10), 18708–18728 (2022)

    Article  MathSciNet  Google Scholar 

  35. Al Themairi, A., Alqudah, M.A.: Predator–prey model of Holling-type II with harvesting and predator in disease. Ital. J. Pure Appl. Math. 43, 744–753 (2020)

    Google Scholar 

  36. Elettreby, M.F., Al-Raezah, A.A., Nabil, T.: Fractional-order model of two-prey one-predator system. Math. Probl. Eng. 2017, Article ID 6714538 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dugundji, J.: Fixed Point Theory (1982)

    MATH  Google Scholar 

  38. Burton, T.A.: A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 11(1), 85–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Smart, D.R.: Fixed Point Theorems, vol. 66 (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

J. Alzabut is thankful to Prince Sultan University and OSTİM Technical University for their endless support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

M.M. and SM wrote the original version. J.A. checked the validation and confirm the correctness. T.N.G. search the sources and edit the original draft.

Corresponding author

Correspondence to Jehad Alzabut.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugesan, M., Muthaiah, S., Alzabut, J. et al. Existence and H-U stability of a tripled system of sequential fractional differential equations with multipoint boundary conditions. Bound Value Probl 2023, 56 (2023). https://doi.org/10.1186/s13661-023-01744-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13661-023-01744-z

Keywords