- Research
- Open Access
- Published:
Dynamics properties for a viscoelastic Kirchhoff-type equation with nonlinear boundary damping and source terms
Boundary Value Problems volume 2023, Article number: 58 (2023)
Abstract
This work is devoted to studying a viscoelastic Kirchhoff-type equation with nonlinear boundary damping-source interactions in a bounded domain. Under suitable assumptions on the kernel function g, density function, and M, the global existence and general decay rate of solution are established. Moreover, we prove the finite time blow-up result of solution with negative initial energy.
1 Introduction
Damping describes transformation of the mechanical energy of a structure that is subjected to an oscillatory deformation to a thermal energy and its dissipation per cycle of motion. Passive damping is used to reduce vibrations and noise resulting from a failure of one of the components of the material which has led many authors to study these kinds of problems.
In this paper, we consider the following viscoelastic Kirchhoff-type equation with velocity-dependent density and nonlinear boundary damping-source interaction:
where Ω is a bounded domain of \(R^{n}\) (\(n\geq 1\)) with a smooth boundary \(\Gamma =\Gamma _{0}\cup \Gamma _{1}\) such that \(\Gamma _{0}\cap \Gamma _{1}=\emptyset \), ρ, a, b, and \(\alpha >0\) are fixed positive constants, and we denote by ν and \(\frac{\partial}{\partial \nu}\) the outward normal and the unit outer normal derivative to Γ respectively. \(m\geq 2\), \(p>2\), and g is a positive nonincreasing kernel function.
Problem (1) with \(b=0\), without nonlinear boundary damping and source, has been extensively studied, and results concerning existence, asymptotic behavior, and blow-up have been established. Cavalcanti et al. [8] considered the following equation:
where \(\lambda >0\). By supposing the relaxation function \(g(t)\) decays exponentially, they established an exponential decay result of solution energy. Berrimi and Messaoudi [2] studied (2) with \(a(x)\equiv 0\), established a local existence result, and showed that the local solution is global and decays uniformly if the initial data are small enough. Later, Messaoudi [31] studied (2) with \(a(x)\equiv 0\) and \(b=0\), and they established a general decay result that is not necessarily of exponential or polynomial type.
Park et al. [36] considered the following equation:
and proved the blow-up result of solution with positive initial energy as well as nonpositive initial energy under a weaker assumption on the damping term. Messaoudi [28] studied (3) with \(h=u_{t}|u_{t}|^{m-2}\) and proved the blow-up result of solutions with negative initial energy and \(p>m>2\). Messaoudi [30] studied (3) with \(h=0\) and established a local existence result, showing that the local solution is global and decays uniformly if the initial data are small enough. Song and Zhong [39] studied (3) with \((h(u_{t})=\Delta u_{t})\) and established the blow-up result of solutions with positive initial energy.
Cavalcanti et al. [6] considered the following nonlinear viscoelastic equation:
and established the global existence of weak solution and uniform decay rates of the energy. Messaoudi and Tatar [33] investigated the behavior of solutions to the nonlinear viscoelastic equation given by [6] with \(\gamma =0\) and Dirichlet boundary condition. In addition, they considered a nonlinear source term that is dependent on the solution u. By introducing a new functional and using the potential well method, they showed that the viscoelastic term is enough to ensure the global existence and uniform decay of solutions provided that the initial data are in the same stable set. Later, Wu [43] studied (4) with \(\gamma =0\), nonlinear source, and weak damping terms. He discussed the general uniform decay estimate of energy solution under suitable conditions on the relaxation function g and the initial data.
In 1883, Kirchhoff introduced a model given in [20] as a generalization of the well known d’Alembert’s wave equation
for free vibrations of elastic strings. The parameters in the above equation have physical significant meanings as follows: L is the length of the string, h is the area of the cross section, E is Young’s modulus of the material, ρ is the mass density, and \(P_{0}\) is the initial tension. This type of problem has been considered by many authors during the past decades, and many results have been obtained, we refer the interested readers to [9, 14, 17, 27, 34, 35, 40, 46, 55] and the references therein. For the viscoelastic Kirchhoff-type equation, the following equation
has been considered by many authors. Wu and Tsai [47] investigated the global existence, asymptotic behavior, and blow-up properties for (6). Yang and Gong [51] studied (6) with \(M(s)=1+bs^{\gamma}\) (\(b\geq 0\), \(\gamma >0\), \(s\geq 0\)), \(h(u_{t})=u_{t}\), and \(f(u)=|u|^{p-1}u\). Under certain assumptions on the kernel g and the initial data, they established a new blow-up result for arbitrary positive initial energy. Guesmia et al. [15] studied (6) with \(h=g\equiv 0\) and investigated the well-posedness and the optimal decay rate estimate of energy. Recently, Draifia [12] considered the following nonlinear viscoelastic equation with the Kirchhoff-type damping:
where \(\rho \geq 0\), \(\xi _{0}, \xi _{1}>0\) are positive constants. He studied the intrinsic decay rates for the energy of relaxation kernels described by the inequality \(g'(t)\leq H(g(t))\), \(t\geq 0\), we also refer to other works [4, 5, 13, 16, 18, 19, 37, 38, 42].
In recent years, the viscoelastic wave equation with boundary damping and source terms has been studied by many authors. In the case that \((g=0)\), Vitillaro [41] studied the following initial boundary value problem:
He showed that the superlinear damping term \(-|u_{t}|^{m-2}u_{t}\), when \(2\leq m\leq p\), implies the existence of global solutions for arbitrary initial data, in contrast with the nonexistence phenomenon that occurs when \(m=2< p\). Zhang and Hu [54] proved the asymptotic behavior of the solutions to problem (8) when the initial data are inside a stable set, the nonexistence of the solution when \(p > m\), and the initial data are inside an unstable set.
In the presence of the viscoelastic term \((g\neq 0)\), Cavalcanti et al. [7] considered the following problem:
They proved the existence of strong and weak solutions by using the Faedo–Galerkin method, and assuming that the kernel function g is small enough, they proved uniform decay. Messaoudi and Mustafa in [32] established the general decay rate of solution of (9) without strong conditions on damping term. Wu [44] considered the following initial boundary value problem:
Under appropriate assumptions imposed on the source and damping terms, he established both the existence of solutions and uniform decay rate of the solution energy. He also exhibited the finite time blow-up phenomenon of the solution for certain initial data in the unstable set. Liu and Yu [25] studied (10) with \(a=0\), \(b=1\), and \(h(u_{t})=|u_{t}|^{m-2}u_{t}\). They obtained a general decay result for the global solution under suitable assumptions on the relaxation function g in two cases: \(m=2\) and \(m>2\). Furthermore, they proved two blow-up results: one is for certain solutions with nonpositive initial energy as well as positive initial energy in the case \(m = 2\), and the other is for certain solutions with arbitrary positive initial energy in the case \(m \geq 2\).
Di et al. [11] considered the following initial boundary value problem for a viscoelastic wave equation with nonlinear boundary source term:
They obtained the global existence of a weak solution under some assumptions on g and f. They supposed that \(I(u_{0})\geq 0\) and \(E(0)=d\), and when \(I(u_{0})< 0\) and \(E(0)<\beta \delta \), they established the blow-up in finite time. Later, Di and Shang [10] studied (11) with \(f(u)\equiv 0\), nonlinear boundary damping, and internal source terms. First, they proved the existence of global weak solutions by using a combination of Galerkin approximation, potential well, and monotonicity-compactness methods. They also established decay rates and finite time blow-up of solutions under some assumptions on g and the initial data.
For the viscoelastic Kirchhoff-type wave equation with nonlinear boundary damping, Wu [45] considered the following viscoelastic equation with Balakrishnan–Taylor damping term and nonlinear boundary/interior sources:
where \(M(t)=a+b\|\nabla u\|_{2}^{2}+\sigma \int _{\Omega}\nabla u.\nabla u_{t} \,dx\). This model was introduced by Balakrishnan and Taylor in [1] to study the inherent damping problem in flutter structures. In the problem at hand, Wu discussed the uniform decay rates by imposing usual assumptions on the kernel function, damping, and source term. Zarai et al. [53] studied (12) with \(h=\alpha u_{t}\) and without a source term \((|u|^{p-1}u)\). They proved the global existence of solutions and a general decay result for the energy by using the multiplier technique.
Li and Xi [22] considered the following nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions:
where \(a\geq 0\), \(m\geq 2\), \(p>2\). By using multiplier techniques and under certain conditions on M, h, α, β, and on the initial data, they demonstrated that the rate at which the energy of the solution decreases over time as \(t \longrightarrow +\infty \) is determined by the characteristics of the convolution kernel h at infinity. Later, Li et al. [23] studied (13), proved the finite time blow-up of solutions, and gave an upper bound of the blow-up time \(T^{*}\).
Motivated by the previous works, our objective in this work is to examine the global existence, general decay, and the finite time blow-up of solutions. So, to achieve this goal, we organized our paper as follows: In Sect. 2, we give and recall some preliminaries and lemmas and put the necessary assumptions. In Sect. 3 we obtain global existence of the solution. In Sect. 4, we establish the decay rates of solution. In Sect. 5, we prove the finite time blow-up of solutions.
2 Material and assumptions
In this section we give some notation for function spaces and preliminary lemmas. We denote by \(\|u\|_{p}\) and \(\|u\|_{p,\Gamma _{1}}\) to the usual \(L^{p}(\Omega )\) and \(L^{p}(\Gamma _{1})\) norms, respectively. For Sobolev space \(H_{0}^{1}(\Omega )\) norm, we use the notation
Let
and \(c_{*}\), \(c_{p}\) be the Poincaré-type constants defined as the smallest positive constants such that
and
To state and prove our results, we need the following assumptions:
- \((G_{1})\)::
-
The kernel function g is a decreasing \(C^{1}\)-function satisfying for \(s>0\)
$$ g(s)\geq 0,\qquad g'(s)\leq 0,\qquad a- \int _{0}^{+\infty} g(s)\,ds=l\geq 0. $$ - \((G_{2})\)::
-
There exists a positive differentiable function ξ such that
$$ g'(s) \leq -\xi (s)g(s)\quad \forall s>0. $$ - \((G_{3})\)::
-
The constant p satisfies
$$ 4< m< p,\quad \text{if } n=1,2,\quad \text{and}\quad 4< m< p< \frac{2(n-1)}{n-2}\quad \text{if } n\geq 3. $$
Assume further that g satisfies
Now, we define the energy associated with problem (1) by
Lemma 2.1
Let u be a solution of problem (1). Then
Proof
Multiplying the first equation in (1) by \(u_{t}\) and integrating it over Ω, we get (18). □
Next, we define the following functionals:
and
Then, by (19) and (20), it is obvious that
Lemma 2.2
([29])
Suppose that \(p\leq 2\frac{n-1}{n-2}\) holds. Then there exists a positive constant \(C > 1\) depending only on Ω such that
for any \(u\in H_{0}^{1}(\Omega )\), \(2\leq s\leq p\).
As in [29], we can prove the following lemma.
Lemma 2.3
Suppose that \(p\leq 2 \frac{(n-1)}{n-2}\) holds, then there exists a positive constant \(C>1\) depending only on \(\Gamma _{1}\) such that
for any \(u\in H_{\Gamma _{0}}^{1}(\Omega )\), \(2\leq s\leq p\).
Now, concerning the study of local existence, we will just state the theorem below and the proof can be found in [3, 21, 24, 26, 48–50, 52].
Theorem 2.4
Assume that \((G_{1})-(G_{3})\) hold. Then, for any \(u_{0}\in H_{\Gamma _{0}}^{1}(\Omega )\) and \(u_{1}\in H_{\Gamma _{0}}^{1}(\Omega ) \cap L^{m}(\Gamma _{1})\) be given. Then there exists a unique local solution u of problem (1) such that
for some \(T >0\).
3 Global existence
In this section, we prove that the solution established in problem (1) is global in time.
Lemma 3.1
Assuming that \((G_{1})\)–\((G_{3})\) hold, and for any \((u_{0},u_{1})\in H_{\Gamma _{0}}^{1}(\Omega )\times L^{2}(\Omega )\) satisfy
then
Proof
Since \(I(0) > 0\), then by the continuity of \(u(t)\), there exists a time \(T_{*}< T\) such that
Let \(t_{0}\) be such that
This implies that, for all \(t\in [0,T_{*})\),
Hence, from \((G_{1})\), (26), (21), and Lemma 2.1, we obtain
By exploiting (15), (27), (22), and \((G_{1})\), we obtain
Hence, we can get
which contradicts (25). Thus, \(I(t)>0\) on \((0,T_{*})\).
Repeating this procedure and using the fact that
\(T_{*}\) is extended to T. □
Theorem 3.2
Assuming that the conditions of Lemma 3.1hold, solution (1) is global and bounded.
Proof
It suffices to show that \(\|\nabla u\|_{2}^{2}+\|\nabla u_{t}\|_{2}^{2}\) is bounded independently of t. It follows from (18), (21), and (26) that
Therefore,
where K is a positive constant. The proof is complete. □
4 Decay of solution
This section is devoted to the study of the stability of the solution of problem (1). So, to prove our main results, we put the following functionals:
and
Next, we define the following functional:
Then, we have the following lemmas.
Lemma 4.1
For ϵ small enough and choosing N large enough, we have
holds for two positive constants \(\beta _{1}\) and \(\beta _{2}\).
Proof
By using Hölder’s, Young’s inequalities, and (14), we get
where c is a positive constant dependent on ρ and \(E(0)\). If we take ϵ to be sufficiently small, then (34) follows from (35). □
Lemma 4.2
The functional \(\phi (t)\) defined in (31) satisfies
where \(k_{0}\) and \(k_{1}\) are positive constants dependent on η.
Proof
Differentiating (31) with respect to t and using equation (1), we get
Employing Holder’s and Young’s inequalities and Lemma 2.2, we estimate the third and fourth terms on the right-hand side of (37) as follows:
and
A substitution of (38)–(39) into (37) yields (36). □
Lemma 4.3
The functional \(\psi (t)\) defined in (32) satisfies
Proof
Differentiating (32) with respect to t and using equation (1), we get
Applying Young’s and Holder’s inequalities, we obtain for \(\lambda >0\)
and
By using Young’s, Holder’s inequalities, \((G_{1})\), (15), and Lemma 2.1, we obtain the following estimates:
and
where \(k_{3}\), \(k_{4}\) are positive constants, which depend only on \(E(0)\), m, and p.
Since \(0<-\int _{0}^{t}g'(s)\,ds\leq g(0)\), we have
and
where \(k_{5}\) is a positive constant, which depends only on \(E(0)\) and ρ.
A substitution of (42)–(47) into (41) yields
where
□
Lemma 4.4
Assume that \((G_{1})\)–\((G_{3})\) hold. Let \(u_{0}\in H_{\Gamma _{0}}^{1}(\Omega )\) and \(u_{1}\in H_{\Gamma _{0}}^{1}(\Omega ) \cap L^{m}(\Gamma _{1})\) be given and satisfy (22), then, for any \(t_{0}>0\), the functional \(L(t)\) verifies
for some \(\kappa _{i}>0\), \((i=1,2)\).
Proof
From Lemmas 2.1, 4.2, and 4.3, we have
where \(g_{0}=\int _{0}^{t_{0}}g(s)\,ds\). First, we choose λ to satisfy
When λ is fixed, we pick N to be sufficiently large such that (34) remains valid and
Once λ and N are fixed, we select ϵ such that
which yields for \(\kappa _{i}>0\), \(i=1,2\),
□
Theorem 4.5
Assume that the conditions of Lemma 4.4hold. Then there exist two positives constants k, ω such that, for each \(t_{0}>0\), the energy of the solution to problem (1) satisfies
Proof
Multiplying (51) by \(\xi (t)\), we get
which implies
We define the Lyapunov functional as follows:
It is easy to show that \(F(t)\) is equivalent to \(E(t)\) because of (34). Using the fact that \(\xi '(t)\leq 0\), we obtain
Then, by performing a simple integration of Eq. (55) over \((t_{0},t)\), we get
Therefore, (52) is obtained. □
5 Blow-up of solution
Theorem 5.1
Suppose that \((G_{1})-(G_{3})\), (16), \(\rho +2< p\), and \(E(0)<0\) hold. Let \(u_{0}\in H_{\Gamma _{0}}^{1}(\Omega )\) and \(u_{1}\in H_{\Gamma _{0}}^{1}(\Omega ) \cap L^{m}(\Gamma _{1})\), then the solution of problem (1) blows up in finite time.
Proof
Let
then (18), (17), and (56) give
and
Next, we define
where σ is a small constant and will be chosen later, and
Taking a derivative of (59) and using (1), we obtain
Applying Young’s inequality, for \(\eta , \delta >0\), we obtain
and
Then inequality (61) becomes
It follows from (17) and (56), for constant \(\zeta >0\), that
Using (63), we find that, for some number \(0<\eta <\frac{\zeta}{2}\),
where \(4<\zeta <p\) and
Therefore, by taking \(\delta =(\frac{mk}{m-1}H(t)^{-\sigma})^{-\frac{m-1}{m}}\), where k is a positive constant to be specified later, we can obtain
where \(c_{7}=(m/m-1)^{1-m}>0\).
Since \(m< p\), and from (58), (60), and Lemma 2.3, we deduce
for \(s=m+\sigma p(m-1)\leq p\). Combining (66) with (65), we get
where \(c_{8}=c_{7}\frac{c_{m}C_{*}}{p^{\sigma (m-1)}}\). First, we choose \(k>0\) large enough such that
Once k is fixed, we select ε small enough such that
and
Thus, we obtain
where λ is a positive constant.
On the other hand, we have
Using Holder’s and Young’s inequalities, we have
for \(\frac{1}{q}+\frac{1}{q_{*}}=1\). Taking \(q=\frac{(1-\sigma )(\rho +2)}{\rho +1}>1\), then by (60) we have \(\frac{q_{*}}{(1-\sigma )}= \frac{\rho +2}{(1-\sigma )(\rho +2)-(\rho +1)}< p\). Applying Lemma 2.2 and (30), we get
Similar to (70), we have
Therefore, from (71) and (72), we get
Combining (68) and (73), we find that
where ξ is a positive constant. A simple integration of (74) over \((0,t)\) yields
which allows us to deduce that \(\Gamma (t)\) blows up in finite time \(T^{*}\), and
□
Availability of data and materials
Not applicable.
References
Balakrishnan, A.V., Taylor, L.W.: Distributed parameter nonlinear damping models for flight structure, Damping 89, Flight Dynamics Lab and Air Force Wright Aeronautral Labs WPAFB (1989)
Berrimi, S., Messaoudi, S.A.: Existence and decay of solutions of a viscoelastic equation with a nonlinear source. Nonlinear Anal. 64, 2314–2331 (2006). https://doi.org/10.1016/j.na.2005.08.015
Boumaza, N., Gheraibia, B.: On the existence of a local solution for an integro-differential equation with an integral boundary condition. Bol. Soc. Mat. Mex. 26, 521–534 (2020). https://doi.org/10.1007/s40590-019-00266-y
Boumaza, N., Gheraibia, B.: General decay and blowup of solutions for a degenerate viscoelastic equation of Kirchhoff type with source term. J. Math. Anal. Appl. 489(2), 124185 (2020). https://doi.org/10.1016/j.jmaa.2020.124185
Boumaza, N., Saker, M., Gheraibia, B.: Asymptotic behavior for a viscoelastic Kirchhoff-type equation with delay and source terms. Acta Appl. Math. 171(1), 18 (2021). https://doi.org/10.1007/s10440-021-00387-5
Cavalcanti, M.M., Cavalcanti, V.N.D., Ferreira, J.: Existence and uniform decay for nonlinear viscoelastic equation with strong damping. Math. Methods Appl. Sci. 24, 1043–1053 (2001). https://doi.org/10.1002/mma.250
Cavalcanti, M.M., Cavalcanti, V.N.D., Prates, J.S., Soriano, J.A.: Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differ. Integral Equ. 14(1), 85–116 (2001)
Cavalcanti, M.M., Cavalcanti, V.N.D., Soriano, J.A.: Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping. Electron. J. Differ. Equ. 2002, 44, 1–14 (2002)
Dai, X.Q., Han, J.B., Lin, Q., Tian, X.T.: Anomalous pseudo-parabolic Kirchhoff-type dynamical model. Adv. Nonlinear Anal. 11, 503–534 (2022). https://doi.org/10.1515/anona-2021-0207
Di, H., Shang, Y.: Existence, nonexistence and decay estimate of global solutions for a viscoelastic wave equation with nonlinear boundary damping and internal source terms. Eur. J. Pure Appl. Math. 10(4), 668–701 (2017)
Di, H., Shang, Y., Peng, X.: Global existence and nonexistence of solutions for a viscoelastic wave equation with nonlinear boundary source term. Math. Nachr. 289(11–12), 1408–1432 (2016). https://doi.org/10.1002/mana.201500169
Draifia, A.: Intrinsic decay rates for the energy of a nonlinear viscoelastic equation with Kirchhoff type damping. Commun. Optim. Theory 2020, 1–20 (2020). https://doi.org/10.23952/cot.2020.19
Gheraibia, B., Boumaza, N.: General decay result of solutions for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term. Z. Angew. Math. Phys. 71(6), 198 (2020). https://doi.org/10.1007/s00033-020-01426-1
Gu, G., Yang, Z.: On the singularly perturbation fractional Kirchhoff equations: critical case. Adv. Nonlinear Anal. 11, 1097–1116 (2022). https://doi.org/10.1515/anona-2022-0234
Guesmia, A., Messaoudi, S.A., Webler, C.M.: Well-posedness and optimal decay rates for the viscoelastic Kirchhoff equation. Bol. Soc. Parana. Mat. 35(3), 203–224 (2017). https://doi.org/10.5269/bspm.v35i3.31395
Hu, Q., Dang, J., Zhang, H.: Blow-up of solutions to a class of Kirchhoff equations with strong damping and nonlinear dissipation. Bound. Value Probl. 2017, 112 (2017). https://doi.org/10.1186/s13661-017-0843-4
Ikehata, R.: A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms. Differ. Integral Equ. 8, 607–616 (1995). https://doi.org/10.57262/die/1369316509
Irkil, N., Pişkin, E., Agarwal, P.: Global existence and decay of solutions for a system of viscoelastic wave equations of Kirchhoff type with logarithmic nonlinearity. Math. Methods Appl. Sci. 45(6), 2921–2948 (2022). https://doi.org/10.1002/mma.7964
Kamache, H., Boumaza, N., Gheraibia, B.: General decay and blow up of solutions for the Kirchhoff plate equation with dynamic boundary conditions, delay and source terms. Z. Angew. Math. Phys. 73(2), 76 (2022). https://doi.org/10.1007/s00033-022-01700-4
Kirchhoff, G.: Vorlesungen über Mechanik. Teubner, Leipzig (1883)
Li, D., Zhang, H., Hu, Q.: Energy decay and blow-up of solutions for a viscoelastic equation with nonlocal nonlinear boundary dissipation. J. Math. Phys. 62, 061505 (2021). https://doi.org/10.1063/5.0051570
Li, F., Xi, S.: Dynamic properties of a nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions I. Math. Notes 106, 814–832 (2019). https://doi.org/10.1134/S0001434619110142
Li, F., Xi, S., Xu, K., Xue, X.: Dynamic properties for nonlinear viscoelastic Kirchhoff-type equation with acoustic control boundary conditions II*. J. Appl. Anal. Comput. 9(6), 2318–2332 (2019). https://doi.org/10.11948/20190085
Lian, W., Wang, J., Xu, R.Z.: Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differ. Equ. 269, 4914–4959 (2020). https://doi.org/10.1016/j.jde.2020.03.047
Liu, W.J., Yu, J.: On decay and blow-up of the solution for a viscoelastic wave equation with boundary damping and source terms. Nonlinear Anal. 74(6), 2175–2190 (2011). https://doi.org/10.1016/j.na.2010.11.022
Luo, Y., Xu, R.Z., Yang, C.: Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities. Calc. Var. 61, 210 (2022). https://doi.org/10.1007/s00526-022-02316-2
Matsuyama, T., Ikehata, R.: On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms. J. Math. Anal. Appl. 204(3), 729–753 (1996). https://doi.org/10.1006/jmaa.1996.0464
Messaoudi, S.A.: Blow up and global existence in a nonlinear viscoelastic wave equation. Math. Nachr. 260, 58–66 (2003). https://doi.org/10.1002/mana.200310104
Messaoudi, S.A.: Blow-up of positive-initial-energy solutions of a nonlinear viscoelastic hyperbolic equation. J. Math. Anal. Appl. 320, 902–915 (2006). https://doi.org/10.1016/j.jmaa.2005.07.022
Messaoudi, S.A.: General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 69, 2589–2598 (2008). https://doi.org/10.1016/j.na.2007.08.035
Messaoudi, S.A.: General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 341, 1457–1467 (2008). https://doi.org/10.1016/j.jmaa.2007.11.048
Messaoudi, S.A., Mustafa, M.: On the control of solutions of viscoelastic equations with boundary feedback. Nonlinear Anal., Real World Appl. 10, 3132–3140 (2009). https://doi.org/10.1016/j.nonrwa.2008.10.026
Messaoudi, S.A., Tatar, N.E.: Global existence and uniform stability of solutions for a quasilinear viscoelastic problem. Math. Methods Appl. Sci. 30, 665–680 (2007). https://doi.org/10.1002/mma.804
Ono, K.: Blowing up and global existence of solutions for some degenerate nonlinear wave equations with some dissipation. Nonlinear Anal. 30(7), 4449–4457 (1997). https://doi.org/10.1016/S0362-546X(97)00183-1
Ono, K.: Global existence, decay and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings. J. Differ. Equ. 137, 273–301 (1997). https://doi.org/10.1006/jdeq.1997.3263
Park, S.H., Lee, M.J., Kang, J.R.: Blow-up results for viscoelastic wave equations with weak damping. Appl. Math. Lett. 80, 20–26 (2018). https://doi.org/10.1016/j.aml.2018.01.002
Pişkin, E.: Global nonexistence of solutions for a system of viscoelastic wave equations with weak damping terms. Malaya J. Mat. 3(2), 168–174 (2015)
Pişkin, E., Fidan, A.: Blow up of solutions for viscoelastic wave equations of Kirchhoff type with arbitrary positive initial energy. Electron. J. Differ. Equ. 2017, 242, 1–10 (2017)
Song, H.T., Zhong, C.K.: Blow up of solutions of a nonlinear viscoelastic wave equation. Nonlinear Anal., Real World Appl. 11, 3877–3883 (2010). https://doi.org/10.1016/j.nonrwa.2010.02.015
Taniguchi, T.: Existence and asymptotic behaviour of solutions to weakly damped wave equations of Kirchhoff type with nonlinear damping and source terms. J. Math. Anal. Appl. 361(2), 566–578 (2010). https://doi.org/10.1016/j.jmaa.2009.07.010
Vitillaro, E.: Global existence for wave equation with nonlinear boundary damping and source terms. J. Differ. Equ. 186, 259–298 (2002). https://doi.org/10.1016/S0022-0396(02)00023-2
Wu, S.T.: Exponential energy decay of solutions for an integro-differential equation with strong damping. J. Math. Anal. Appl. 364(2), 609–617 (2010). https://doi.org/10.1016/j.jmaa.2009.11.046
Wu, S.T.: General decay of solutions for a viscoelastic equation with nonlinear damping and source terms. Acta Math. Sci. 31B, 1436–1448 (2011)
Wu, S.T.: General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions. Z. Angew. Math. Phys. 63, 65–106 (2012). https://doi.org/10.1007/s00033-011-0151-2
Wu, S.T.: General decay of solutions for a viscoelastic equation with Balakrishnan-Taylor damping and nonlinear boundary damping-source interactions. Acta Math. Sci. 35B(5), 981–994 (2015). https://doi.org/10.1016/S0252-9602(15)30032-1
Wu, S.T., Tsai, L.Y.: Blow-up of solutions for some non-linear wave equations of Kirchhoff type with some dissipation. Nonlinear Anal., Theory Methods Appl. 65(2), 243–264 (2006). https://doi.org/10.1016/j.na.2004.11.023
Wu, S.T., Tsai, L.Y.: On global existence and blow-up of solutions for an integro-differential equation with strong damping. Taiwan. J. Math. 10(4), 979–1014 (2006). https://doi.org/10.11650/twjm/1500403889
Xu, H.: Existence and blow-up of solutions for finitely degenerate semilinear parabolic equations with singular potentials. Commun. Anal. Mech. 15(2), 132–161 (2023). https://doi.org/10.3934/cam.2023008
Xu, R.Z., Su, J.: Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 264, 2732–2763 (2013). https://doi.org/10.1016/j.jfa.2013.03.010
Yang, C., Radulescu, V., Xu, R.Z., Zhang, M.: Global well-posedness analysis for the nonlinear extensible beam equations in a class of modified Woinowsky-Krieger models. Adv. Nonlinear Stud. 22, 436–468 (2022). https://doi.org/10.1515/ans-2022-0024
Yang, Z., Gong, Z.: Blow-up of solutions for viscoelastic equations of Kirchhoff type with arbitrary positive initial energy. Electron. J. Differ. Equ. 2016, 332, 1–8 (2016)
Yu, J., Shang, Y., Di, H.: Global existence, nonexistence, and decay of solutions for a viscoelastic wave equation with nonlinear boundary damping and source terms. J. Math. Phys. 61(7), 071503 (2020). https://doi.org/10.1063/5.0012614
Zarai, A., Tatar, N.E., Abdelmalek, S.: Elastic membrance equation with memory term and nonlinear boundary damping: global existence, decay and blowup of the solution. Acta Math. Sci. 33B(1), 84–106 (2013). https://doi.org/10.1016/S0252-9602(12)60196-9
Zhang, H., Hu, Q.: Asymptotic behavior and nonexistence of wave equation with nonlinear boundary condition. Commun. Pure Appl. Anal. 4, 861–869 (2005). https://doi.org/10.3934/cpaa.2005.4.861
Zhang, J., Liu, H., Zuo, J.: High energy solutions of general Kirchhoff type equations without the Ambrosetti-Rabinowitz type condition. Adv. Nonlinear Anal. 12, 20220311 (2023). https://doi.org/10.1515/anona-2022-0311
Acknowledgements
This work was supported by the Directorate-General for Scientific Research and Technological Development, Algeria (DGRSDT).
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Saker, M., Boumaza, N. & Gheraibia, B. Dynamics properties for a viscoelastic Kirchhoff-type equation with nonlinear boundary damping and source terms. Bound Value Probl 2023, 58 (2023). https://doi.org/10.1186/s13661-023-01746-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13661-023-01746-x
Keywords
- Viscoelastic wave equation
- Kirchhoff-type equation
- Density function
- Global existence
- General decay
- Blow-up